JPH0534310A - Device for measuring dielectric constant of fuel - Google Patents

Device for measuring dielectric constant of fuel

Info

Publication number
JPH0534310A
JPH0534310A JP19456991A JP19456991A JPH0534310A JP H0534310 A JPH0534310 A JP H0534310A JP 19456991 A JP19456991 A JP 19456991A JP 19456991 A JP19456991 A JP 19456991A JP H0534310 A JPH0534310 A JP H0534310A
Authority
JP
Japan
Prior art keywords
fuel
layer winding
winding coil
frequency
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19456991A
Other languages
Japanese (ja)
Inventor
Akira Okada
章 岡田
Hiroyoshi Suzuki
尋善 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19456991A priority Critical patent/JPH0534310A/en
Publication of JPH0534310A publication Critical patent/JPH0534310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a device for measuring the dielectric constant of fuel to determine the content of a specific constituent of the fuel by adjusting apparent self-inductance of a detection coil. CONSTITUTION:The title item is provided with a conductive electrode 3, a single-layer winding coil 4 which is disposed away from the electrode 3 at a specified distance, fuel being introduced between the conductive electrode 3 and the single-layer winding coil 4, and a cylindrical conductor 8 nearly coaxially with the single-layer winding coil 4 on the opposite side of the fuel side of the single-layer winding coil 4. The dielectric constant of the fuel is detected by a coil periphery surface of the single-layer winding coil 4 and a periphery surface of the conductive electrode 3, thus enabling the content of a specific constituent of the fuel, for example, methanol, to be detected constantly and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃焼器等に供給され
る燃料の誘電率を非接触で検知して燃料の性状を判別す
る燃料の誘電率検知装置に関し、特に自動車等エンジン
に用いられるアルコール混合燃料中のアルコール含有率
を測定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel permittivity detector for detecting the permittivity of fuel supplied to a combustor or the like in a non-contact manner to determine the property of the fuel, and is particularly used for engines of automobiles and the like. The present invention relates to a device for measuring the alcohol content in alcohol-blended fuel.

【0002】[0002]

【従来の技術】近年、米国や欧州等の各国で、石油の消
費量の低減と、自動車排気ガスによる大気汚染の低減を
図るため、ガソリン中にアルコールを混合した燃料が自
動車用として導入されつつある。このようなアルコール
混合燃料をガソリン燃料の空燃比にマッチングされたエ
ンジンにそのまま用いると、アルコールがガソリンに比
べ理論空燃比が小さいため空燃比がリーン化して運転が
困難となるため、アルコール混合燃料中のアルコール含
有率を検出して、この検出値に応じて空燃比、点火時期
等を調整している。
2. Description of the Related Art In recent years, fuel mixed with alcohol in gasoline is being introduced for automobiles in various countries such as the United States and Europe in order to reduce consumption of oil and air pollution caused by automobile exhaust gas. is there. If such an alcohol mixed fuel is used as it is in an engine that matches the air-fuel ratio of gasoline fuel, the stoichiometric air-fuel ratio of alcohol is smaller than that of gasoline, making the air-fuel ratio lean and making operation difficult. The alcohol content rate of is detected, and the air-fuel ratio, ignition timing, etc. are adjusted according to the detected values.

【0003】従来、上記のようなアルコール含有率の検
出にはアルコール混合燃料の誘電率を検出する方式と、
屈折率を検出する方式が主に提案されている。かかる方
式の内、誘電率を検出する方式の従来装置として、例え
ば特公昭63−31734号公報に記載されたように非
接触で液体中の誘電率を検出するものが利用できる。こ
の従来装置をアルコール混合燃料中のアルコール含有率
の検出に使用した場合につき、図10を用いて説明す
る。
Conventionally, a method of detecting the permittivity of alcohol-mixed fuel has been used to detect the alcohol content as described above.
A method of detecting the refractive index has been mainly proposed. As a conventional apparatus of the method of detecting the dielectric constant among such methods, for example, a method of detecting the dielectric constant of a liquid in a non-contact manner as described in JP-B-63-31734 can be used. A case where this conventional device is used to detect the alcohol content in the alcohol-blended fuel will be described with reference to FIG.

【0004】図10は従来の燃料の誘電率検知装置を示
す構成図で、101はセラミック、耐油性プラスチック
等の絶縁体で作られ、内部に燃料通路102を設けた絶
縁管、103は絶縁管101の一部にリング状に巻回さ
れた励起電極、104は励起電極103より所定距離離
れてやはり絶縁管101に巻回された単層巻の検出コイ
ルであり、かかる101〜104によりセンサ部が形成
されている。105は定周波発振器で増幅器106を介
して励起電極103に一定周波数の電圧を供給してお
り、一方検出コイル104の一端は接地され、他端の信
号が高域通過フィルタ107、全波整流器108、増幅
器109を介して出力Vout として出力される。
FIG. 10 is a block diagram showing a conventional fuel dielectric constant detecting device. Reference numeral 101 is an insulating tube made of an insulating material such as ceramic or oil resistant plastic, and a fuel passage 102 is provided inside, and 103 is an insulating tube. A part of 101 is an excitation electrode wound in a ring shape, and 104 is a single-layer winding detection coil that is also wound around the insulating tube 101 at a predetermined distance from the excitation electrode 103. Are formed. A constant frequency oscillator 105 supplies a voltage of a constant frequency to the excitation electrode 103 via the amplifier 106, while one end of the detection coil 104 is grounded, and the signal at the other end is a high-pass filter 107 and a full-wave rectifier 108. , And is output as an output V out via the amplifier 109.

【0005】次にかかる従来装置の動作につき説明す
る。図10におけるセンサ部の励起電極103に印加す
る周波数を変化させると、検出コイル104の誘起電圧
は、燃料の誘電率が異なると異なった周波数で最大値を
示す。これは、励起電極103と検出コイル104の間
の燃料の誘電率εに対応する静電容量Cf と検出コイル
104の自己インダクタンスLとでLC共振を生じ、共
振周波数でコイルの誘起電圧が最大となるためであり、
この共振周波数fは概略下式で表わされる。
The operation of the conventional device will be described below. When the frequency applied to the excitation electrode 103 of the sensor unit in FIG. 10 is changed, the induced voltage of the detection coil 104 shows the maximum value at different frequencies when the permittivity of the fuel is different. This is because LC resonance occurs due to the capacitance C f corresponding to the permittivity ε of the fuel between the excitation electrode 103 and the detection coil 104 and the self-inductance L of the detection coil 104, and the induced voltage of the coil is maximum at the resonance frequency. Is because
This resonance frequency f is roughly expressed by the following equation.

【0006】[0006]

【数1】 [Equation 1]

【0007】ここにk,a,bはセンサ部の形状により
決まる定数、Cs はセンサ部の形状により定まる静電容
量である。共振周波数fは数1式のように燃料の誘電率
εに依存するため、燃料の誘電率εが大なるほど共振周
波数は低下する。例えば、所定のセンサ形状で測定した
結果では、燃料が誘電率ε=33のメタノールでは共振
周波数fm は約5MHz であり、誘電率ε=2のガソリン
では共振周波数fg は約5.7MHz であった。
Here, k, a, and b are constants determined by the shape of the sensor section, and C s is a capacitance determined by the shape of the sensor section. Since the resonance frequency f depends on the permittivity ε of the fuel as shown in Formula 1, the resonance frequency decreases as the permittivity ε of the fuel increases. For example, as a result of measurement with a predetermined sensor shape, the resonance frequency f m is about 5 MHz when the fuel is methanol having a dielectric constant ε = 33, and the resonance frequency f g is about 5.7 MHz when gasoline is the dielectric constant ε = 2. there were.

【0008】そこで、燃料通路102にメタノール混合
ガソリンを流し、定周波発振器105より共振周波数f
m よりやや高い周波数fo の信号を発振させ、増幅器1
06を介し励起電極103を一定電圧で励起すると、検
出コイル104に生じた誘起電圧信号は高域通過フィル
タ107で交流成分のみが抽出され、全波整流器108
で全波整流されてその交流振幅が検出され、増幅器10
9で所定の電圧範囲に調整されて出力される。このと
き、周波数fo での誘起電圧はメタノールの含有率が大
なるほど大きくなるため、したがって出力Vout は、メ
タノール含有率にほぼ比例する。
Therefore, methanol-mixed gasoline is caused to flow in the fuel passage 102, and the constant frequency oscillator 105 causes the resonance frequency f
The amplifier 1 oscillates a signal having a frequency f o slightly higher than m.
When the excitation electrode 103 is excited with a constant voltage via 06, only the AC component of the induced voltage signal generated in the detection coil 104 is extracted by the high-pass filter 107, and the full-wave rectifier 108
Full-wave rectification is performed by the
At 9, the voltage is adjusted to a predetermined voltage range and output. At this time, the induced voltage of the frequency f o is because the content of methanol is large increases, so that the output V out is approximately proportional to the methanol content.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、かかる
従来装置では、温湿度等の環境の変化による寸法変化に
より検出コイルの自己インダクタンスLが変化する場
合、コイル作成時における寸法誤差により製造された検
出コイルの自己インダクタンスLがバラツク場合、上記
数1式から明らかなように、誘電率ε、即ちメタノール
含有率は殆ど変わらないにも関わらず、燃料の共振周波
数fが変化し、燃料中のメタノール含有率の正確な検出
が困難になるといった問題点があった。
However, in such a conventional device, when the self-inductance L of the detection coil changes due to a dimensional change due to a change in environment such as temperature and humidity, the detection coil manufactured due to a dimensional error during coil production. If the self-inductance L of the fuel fluctuates, the resonant frequency f of the fuel changes and the methanol content of the fuel changes, as is clear from the above formula 1, although the dielectric constant ε, that is, the methanol content changes little. There is a problem that it becomes difficult to accurately detect

【0010】この発明は上記のような問題点を解消する
ためになされたもので、センサ部の環境が変化しても、
コイルに寸法誤差があっても、精度よく燃料中の特定成
分の含有率を検出することができる燃料の誘電率検知装
置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and even if the environment of the sensor unit changes,
An object of the present invention is to obtain a fuel dielectric constant detection device capable of accurately detecting the content rate of a specific component in fuel even if the coil has a dimensional error.

【0011】[0011]

【課題を解決するための手段】この発明に係わる燃料の
誘電率検知装置は、燃料通路の中途に設けられた導電性
電極と、前記導電性電極との間に燃料が導入されるとと
もに、前記導電性電極と所定間隔離して配置された単層
巻コイルと、前記単層巻コイルの共振周波数を検出する
手段と、前記単層巻コイルの燃料側とは反対側に前記単
層巻コイルと略同軸に柱状導電体を設けたものである。
In a fuel permittivity detection apparatus according to the present invention, a fuel is introduced between a conductive electrode provided in the middle of a fuel passage and the conductive electrode, and A single-layer winding coil arranged to be separated from a conductive electrode by a predetermined distance, a means for detecting a resonance frequency of the single-layer winding coil, and the single-layer winding coil on the side opposite to the fuel side of the single-layer winding coil. A columnar conductor is provided substantially coaxially.

【0012】[0012]

【作用】この発明における燃料の誘電率検知装置は、単
層巻コイルの燃料側とは反対側に前記単層巻コイルと略
同軸な柱状導電体により、検出コイルの見かけの自己イ
ンダクタンスLを調整し、燃料のεに依存する前記単層
巻コイルの共振周波数を調整することにより、燃料中の
誘電率、即ちメタノール含有率を精度よく検出する。
In the fuel dielectric constant detecting device according to the present invention, the apparent self-inductance L of the detection coil is adjusted by the columnar conductor substantially coaxial with the single layer winding coil on the side opposite to the fuel side of the single layer winding coil. Then, by adjusting the resonance frequency of the single-layer winding coil depending on the ε of the fuel, the dielectric constant in the fuel, that is, the methanol content is accurately detected.

【0013】[0013]

【実施例】以下、この発明の一実施例を図について説明
する。図1はこの発明に係わる燃料の誘電率検知装置の
一実施例を示す構成図、図2はこの一実施例のセンサ部
の構造図、図3は見かけのインダクタンスの変化を示す
図、図4はセンサ部のインピーダンスの周波数特性図、
図5は検知回路部の一具体例を示す図、図6は具体的回
路におけるタイムチャート図、図7は具体的回路例を用
いた実施例での出力特性図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a fuel dielectric constant detection device according to the present invention, FIG. 2 is a structural diagram of a sensor portion of this embodiment, FIG. 3 is a diagram showing apparent changes in inductance, and FIG. Is the frequency characteristic diagram of the sensor impedance,
FIG. 5 is a diagram showing a specific example of the detection circuit unit, FIG. 6 is a time chart diagram in a specific circuit, and FIG. 7 is an output characteristic diagram in an embodiment using a specific circuit example.

【0014】図1及び図2において、Aはセンサ部であ
って、1は耐油性プラスチック等の絶縁体で形成され、
内部に単層巻コイル4を持ちさらにその燃料側とは反対
側に単層巻コイル4と略同軸に柱状導電体8が導かれる
円筒容器状の絶縁体、4は検出コイルとして絶縁体1の
中に埋め込まれ後述の導電性電極3と所定間隔離してコ
イルの柱面が対向配置された単層巻コイル、4a,4b
は単層巻コイル4のリード、3は絶縁体1の外側に設け
られ、その柱面が絶縁体1の柱面と略平行でかつ絶縁体
1と略同軸の導電性電極で、チタン、ステンレス、表面
がアルマイト処理されたアルミニウム等が燃料に対する
耐性上好ましい。
In FIGS. 1 and 2, A is a sensor portion, 1 is formed of an insulating material such as oil-resistant plastic,
A cylindrical container-shaped insulator 4 having a single-layer winding coil 4 inside and in which a columnar conductor 8 is guided substantially coaxially with the single-layer winding coil 4 on the side opposite to the fuel side, 4 is a detector coil of the insulator 1. Single-layer winding coils 4a, 4b embedded in the conductive electrode 3 to be described later and separated from each other by a predetermined distance so that the pillar surfaces of the coil are opposed to each other.
Is a lead of the single-layer winding coil 4, and 3 is a conductive electrode which is provided outside the insulator 1 and whose pillar surface is substantially parallel to the pillar surface of the insulator 1 and is substantially coaxial with the insulator 1. Aluminum whose surface is anodized is preferable in terms of resistance to fuel.

【0015】2は単層巻コイル4の外周面側と絶縁体1
を隔てて導電性電極3の円柱内周面との間に形成された
燃料通路、5は円筒容器状の絶縁体1が取り付けられ、
導電性電極3と燃料シール7を介して結合されて、全体
で燃料容器を形成するフランジで、6は燃料通路2に燃
料を導くニップルである。
Reference numeral 2 denotes an outer peripheral surface side of the single-layer winding coil 4 and the insulator 1.
A cylindrical container-shaped insulator 1 is attached to a fuel passage 5 formed between the conductive electrode 3 and the inner circumferential surface of the column with a space therebetween.
Reference numeral 6 denotes a flange that is joined to the conductive electrode 3 through the fuel seal 7 to form a fuel container as a whole, and 6 is a nipple that guides the fuel to the fuel passage 2.

【0016】Bは検知回路部を示しており、10は単層
巻コイル4とリード4aにより直列に接続されて直列回
路を形成する抵抗値Rs の直列抵抗、11は単層巻コイ
ル4と抵抗10との接続部の信号と、抵抗10の他端の
信号、即ち直列回路への印加信号が接続された0°位相
比較器、12は0°位相比較器11の出力が接続された
低域通過フィルタ、13は低域通過フィルタ12の出力
と位相0°に相当する所定基準電圧Vref が接続された
比較積分器、14は比較積分器13の出力が接続された
電圧制御発振器、15は電圧制御発振器14の出力の増
幅器であり、その出力は前記直列回路に接続され、16
は電圧制御発振器14の出力周波数の分周器である。
Reference numeral B denotes a detection circuit portion, 10 is a series resistor having a resistance value R s which is connected in series with the single-layer winding coil 4 by leads 4a to form a series circuit, and 11 is the single-layer winding coil 4. The 0 ° phase comparator to which the signal at the connection with the resistor 10 and the signal at the other end of the resistor 10, that is, the signal applied to the series circuit are connected, 12 is the low voltage to which the output of the 0 ° phase comparator 11 is connected. A pass-pass filter, 13 is a comparator / integrator to which the output of the low-pass filter 12 and a predetermined reference voltage V ref corresponding to a phase of 0 ° are connected, 14 is a voltage-controlled oscillator to which the output of the comparator / integrator 13 is connected, 15 Is an amplifier of the output of the voltage controlled oscillator 14, the output of which is connected to the series circuit;
Is a frequency divider for the output frequency of the voltage controlled oscillator 14.

【0017】図1の更に具体的な回路例を示す図5にお
いて、17a〜17cはインバータ回路、18a,18
bはDフリップフロップ回路、19はエクスクルーシブ
オア回路、20はオペアンプOP2によるDCオフセッ
ト回路、21は容量Cp のDCカットコンデンサであ
る。
In FIG. 5 showing a more specific circuit example of FIG. 1, 17a to 17c are inverter circuits, and 18a and 18c.
Reference numeral b is a D flip-flop circuit, 19 is an exclusive OR circuit, 20 is a DC offset circuit by the operational amplifier OP2, and 21 is a DC cut capacitor having a capacitance C p .

【0018】図2はこの一実施例のセンサ部の構造図を
示すものであり、絶縁体1の中心部に円筒容器状となる
ようにネジがきってあり柱状導電体8をねじ込める構造
で、柱状導電体8の検出コイルの軸方向に対する位置を
可変にすることができる。この実施例では検出コイルと
して単層巻コイル4を使用している。図3(b)は、図
3(a)に示すように検出コイルの上端から柱状導電体
を徐々に挿入していったとき、検出コイルの上端から柱
状導電体の下端までの距離dに対する見かけの自己イン
ダクタンスLの変化を示したものである。柱状導電体を
挿入してその位置を可変することにより、L0 からL1
の間に見かけの自己インダクタンスを調整することがで
きる。
FIG. 2 is a structural view of the sensor portion of this embodiment, which has a structure in which the central portion of the insulator 1 is threaded so as to form a cylindrical container shape, and the columnar conductor 8 can be screwed in. The position of the columnar conductor 8 with respect to the axial direction of the detection coil can be made variable. In this embodiment, the single layer winding coil 4 is used as the detection coil. FIG. 3B shows the apparent distance d from the upper end of the detection coil to the lower end of the columnar conductor when the columnar conductor is gradually inserted from the upper end of the detection coil as shown in FIG. 3 shows a change in self-inductance L of the above. By inserting a columnar conductor and changing its position, L 0 to L 1
The apparent self-inductance can be adjusted during.

【0019】次にかかる実施例につきメタノール混合ガ
ソリン中のメタノール含有率を検知する場合を例にと
り、その動作を説明する。図4は図2における燃料通路
2に流す燃料をガソリンあるいはメタノールとし、単層
巻コイル4のリード4a,4b間に印加する高周波信号
の周波数を可変にした場合の単層巻コイル4のインピー
ダンスZの周波数特性を示す図である。単層巻コイル4
に印加する高周波信号の周波数を変化させると、単層巻
コイル4の自己インダクタンスLと単層巻コイル4と導
電性電極3間の静電容量Cにより、特定の周波数でイン
ピーダンスが最大、電流−電圧位相が0°なるLC並列
共振を生ずる。この共振周波数fは、概略、数1式と同
じく下記数2式となり、単層巻コイル4と導電性電極3
間の燃料通路2を流れる燃料の誘電率εに依存して、誘
電率εが大なるほど、即ち誘電率ε=2のガソリンと誘
電率ε=33のメタノールの混合燃料においてはメタノ
ールの含有率が高いほど低下する。
Next, the operation of the embodiment will be described by taking the case of detecting the methanol content in methanol-blended gasoline as an example. FIG. 4 shows the impedance Z of the single-layer winding coil 4 when the fuel flowing in the fuel passage 2 in FIG. 2 is gasoline or methanol and the frequency of the high-frequency signal applied between the leads 4a and 4b of the single-layer winding coil 4 is variable. It is a figure which shows the frequency characteristic of. Single layer winding coil 4
When the frequency of the high-frequency signal applied to the single-layer winding coil 4 is changed, the impedance becomes maximum at a specific frequency and the electric current − by the self-inductance L of the single-layer winding coil 4 and the capacitance C between the single-layer winding coil 4 and the conductive electrode 3. An LC parallel resonance having a voltage phase of 0 ° is generated. The resonance frequency f is approximately the same as the equation 1 and is the following equation 2 and the single-layer winding coil 4 and the conductive electrode 3 are
Depending on the permittivity ε of the fuel flowing in the fuel passage 2 between the two, the larger the permittivity ε, that is, in the mixed fuel of gasoline with permittivity ε = 2 and methanol with permittivity ε = 33, the content ratio of methanol is The higher it is, the lower it is.

【0020】[0020]

【数2】 [Equation 2]

【0021】ここでk,a,bは従来装置と同じくセン
サ部Aの形状により決まる定数であり、例えば絶縁体1
や単層巻コイル4の径、絶縁体1の材料の誘電率、導電
性電極3と単層巻コイル4の間隔、単層巻コイル4のL
等による。
Here, k, a, and b are constants determined by the shape of the sensor portion A, as in the conventional device, for example, the insulator 1
Or the diameter of the single-layer winding coil 4, the dielectric constant of the material of the insulator 1, the distance between the conductive electrode 3 and the single-layer winding coil 4, the L of the single-layer winding coil 4.
Etc.

【0022】次に、図1において、かかる共振周波数の
検出方法を具体的に説明する。燃料通路2にメタノール
混合ガソリンを流した状態で、増幅器15より抵抗10
と単層巻コイル4の直列回路に高周波信号が与えられ、
抵抗10の両端の信号、即ち前記直列回路にかかる電圧
信号と、単層巻コイル4にかかる電圧信号が0°位相比
較器11に入力され、両者の位相差が比較される。
Next, referring to FIG. 1, the method of detecting the resonance frequency will be described in detail. With the methanol-blended gasoline flowing in the fuel passage 2, a resistor 10 is
And a high-frequency signal is applied to the series circuit of the single-layer winding coil 4,
The signal across the resistor 10, that is, the voltage signal applied to the series circuit and the voltage signal applied to the single-layer winding coil 4 are input to the 0 ° phase comparator 11, and the phase difference between them is compared.

【0023】増幅器15に正弦波増幅器を用いて前記直
列回路に印加する高周波信号を正弦波とすれば、前記電
圧信号も正弦的になるため、0°位相比較器11として
は乗算器を用いればよい。0°位相比較器11は前記両
者の位相差に相当する信号を出力し、低域通過フィルタ
12は前記位相差に比例した直流電圧信号を出力する。
比較積分器13は低域通過フィルタ12の位相0°の出
力に相当する基準電圧Vref と、低域通過フィルタ12
の出力を比較積分する。比較積分器13の電圧出力によ
り、前記直列回路に増幅器15を介して印加される高周
波信号の周波数が電圧制御発振器14により決定され
る。
If a sine wave amplifier is used as the amplifier 15 and the high frequency signal applied to the series circuit is a sine wave, the voltage signal also becomes sinusoidal. Therefore, if a multiplier is used as the 0 ° phase comparator 11. Good. The 0 ° phase comparator 11 outputs a signal corresponding to the phase difference between the two, and the low pass filter 12 outputs a DC voltage signal proportional to the phase difference.
The comparator / integrator 13 uses the reference voltage V ref corresponding to the output of the low-pass filter 12 having a phase of 0 °, and the low-pass filter 12
The output of is compared and integrated. The voltage output of the comparator / integrator 13 determines the frequency of the high frequency signal applied to the series circuit via the amplifier 15 by the voltage controlled oscillator 14.

【0024】即ち、かかる直列回路、および11〜15
の回路により位相同期ループが形成され、電圧制御発振
器14の発振周波数は前記直列回路にかかる電圧信号
と、単層巻コイル4にかかる電圧信号の位相差が0°と
なるよう制御される。このため、比較積分器13の電圧
出力Vout あるいは電圧制御発振器14の周波数出力は
センサ部の前記並列共振周波数、即ち燃料の誘電率ε、
いいかえればメタノール含有率に対応した値となる。
That is, such a series circuit and 11 to 15
A phase-locked loop is formed by this circuit, and the oscillation frequency of the voltage controlled oscillator 14 is controlled so that the phase difference between the voltage signal applied to the series circuit and the voltage signal applied to the single-layer winding coil 4 is 0 °. Therefore, the voltage output V out of the comparator / integrator 13 or the frequency output of the voltage controlled oscillator 14 is the parallel resonance frequency of the sensor unit, that is, the permittivity ε of the fuel,
In other words, the value corresponds to the methanol content.

【0025】かかる電圧制御発振器14の出力周波数
は、センサ部の大きさにもよるが、図2に示すごとき小
形な形状の実施例では、図4にて示したように数MHz の
高周波であるため分周器16により分周器16により出
力測定に適当な周波数まで分周されて周波数出力fout
される。
Although the output frequency of the voltage controlled oscillator 14 depends on the size of the sensor portion, in the embodiment having a small shape as shown in FIG. 2, it is a high frequency of several MHz as shown in FIG. Therefore, the frequency is divided by the frequency divider 16 to a frequency suitable for output measurement, and the frequency output f out
To be done.

【0026】図5は0°位相比較器としてエクスクルー
シブオア回路19を用いて前記直列回路にかかる電圧信
号と、単層巻コイル4にかかる電圧信号の位相差を0°
とするよう位相同期ループを形成した検知回路Bの具体
的回路例を示すものであり、回路の各部分P1〜P6の
信号のタイムチャートを図6に示している。
In FIG. 5, the phase difference between the voltage signal applied to the series circuit and the voltage signal applied to the single layer winding coil 4 is 0 ° by using the exclusive OR circuit 19 as the 0 ° phase comparator.
FIG. 6 shows a specific circuit example of the detection circuit B in which the phase-locked loop is formed as described above, and FIG. 6 shows a time chart of signals of respective portions P1 to P6 of the circuit.

【0027】図5において、電圧制御発振器14から出
力される高周波の矩形波信号(P1)は第1のDフリッ
プフロップ回路18aのCKポートに入力され、第2の
Dフリップフロップ回路18bのCKポートには前記矩
形波信号(P1)をインバータ回路17aで位相反転し
た信号が入力される。ここで第2のDフリップフロップ
回路18bのDポートには第1のDフリップフロップ回
路18aの反転出力ポートの信号が入力され、第1のD
フリップフロップ回路18aのDポートには第2のDフ
リップフロップ回路18bの出力ポートQの信号が入力
されている。
In FIG. 5, the high frequency rectangular wave signal (P1) output from the voltage controlled oscillator 14 is input to the CK port of the first D flip-flop circuit 18a and the CK port of the second D flip-flop circuit 18b. A signal obtained by inverting the phase of the rectangular wave signal (P1) by the inverter circuit 17a is input to. Here, the signal of the inverting output port of the first D flip-flop circuit 18a is input to the D port of the second D flip-flop circuit 18b, and the first D
The signal of the output port Q of the second D flip-flop circuit 18b is input to the D port of the flip-flop circuit 18a.

【0028】このため、前記直列回路にかかる第1のD
フリップフロップ回路18aの出力ポートQの信号(P
2)は前記矩形波信号(P1)の立上がりでデータが更
新されて、信号(P1)を1/2分周した信号となる。
他方、インバータ回路17bを介してエクスクルーシブ
オア回路19の一方に入力される第2のDフリップフロ
ップ回路18bの出力ポートQの信号(P3)は信号
(P1)の立下がりでデータが更新され、前記信号(P
2)と同一周波数で、位相が90°異なる信号となる。
Therefore, the first D related to the series circuit is
The signal at the output port Q of the flip-flop circuit 18a (P
In 2), the data is updated at the rising of the rectangular wave signal (P1), and becomes a signal obtained by dividing the signal (P1) by 1/2.
On the other hand, the signal (P3) at the output port Q of the second D flip-flop circuit 18b, which is input to one side of the exclusive OR circuit 19 via the inverter circuit 17b, has its data updated at the trailing edge of the signal (P1). Signal (P
The signal has the same frequency as 2) but has a phase difference of 90 °.

【0029】エクスクルーシブオア回路19の他方の入
力には、抵抗10と単層巻コイル4との接続点、即ち単
層巻コイル4にかかる電圧信号(P4)がインバータ回
路17cを介して信号(P5)として入力され、信号
(P3)の位相反転信号と比較される。ここで、単層巻
コイル4に生じる電圧信号(P4)が図6のごとく正弦
的となるため、その直流レベルを電源電圧Vs を抵抗R
により1/2分圧してオペアンプOP2によるDCオフ
セット回路20で制御し、直流成分のみを直流カットコ
ンデンサ21で接地部より分離してインバータ回路17
cの判定レベルに制御する。
At the other input of the exclusive OR circuit 19, a voltage signal (P4) applied to the connection point between the resistor 10 and the single-layer winding coil 4, that is, the voltage applied to the single-layer winding coil 4 (P5) via the inverter circuit 17c. ) And compared with the phase inversion signal of the signal (P3). Here, since the voltage signal (P4) generated in the single-layer winding coil 4 is sinusoidal as shown in FIG. 6, its DC level is set to the power supply voltage V s and the resistance R
The voltage is divided into 1/2 and controlled by the DC offset circuit 20 by the operational amplifier OP2, and only the DC component is separated from the ground portion by the DC cut capacitor 21, and the inverter circuit 17
Control to the judgment level of c.

【0030】このことで、インバータ回路17cは波形
整形器として作用しており、従ってインバータ回路17
cの出力(P5)はLC共振周波数においては信号(P
2)と逆相、即ち信号(P3)の逆相信号と90°位相
がずれた矩形波信号となる。従ってエクスクルーシブオ
ア回路19の出力(P6)は、結局直列回路への印加信
号と、単層巻コイル4にかかる電圧信号の位相差が0°
の時、即ち前記LC共振周波数の時にデューティ50%
となる。なお両者の位相差が0°でない場合の各波形の
変化を図6に示した。
As a result, the inverter circuit 17c acts as a waveform shaper, and therefore the inverter circuit 17c.
The output (P5) of c is a signal (P5) at the LC resonance frequency.
It is a rectangular wave signal that is 90 ° out of phase with the opposite phase signal of the signal (P3), that is, the opposite phase signal of 2). Therefore, in the output (P6) of the exclusive OR circuit 19, the phase difference between the signal applied to the series circuit and the voltage signal applied to the single-layer winding coil 4 is 0 °.
50% duty at the time of LC resonance frequency
Becomes FIG. 6 shows changes in each waveform when the phase difference between the two is not 0 °.

【0031】エクスクルーシブオア回路19の出力(P
6)は低域通過フィルタ12に入力される。その直流出
力電圧は前記共振周波数の時に電源電圧の1/2となる
ため、かかる出力を電源電圧の1/2の基準電位Vref
を持つ比較積分器(オペアンプOP1を有する。)13
に入力する。その出力で電圧制御発振器14の周波数を
制御することにより、かかる検知回路Bは直列回路への
印加信号と、単層巻コイル4にかかる電圧信号の位相差
が0°となるよう電圧制御発振器14の周波数が制御さ
れる位相同期ループとして作用する。このため、電圧制
御発振器14の周波数を分周器16で分周した周波数出
力foutは前記共振周波数、即ち燃料の誘電率εに対し
て単調に減少する関数となる。
Output of the exclusive OR circuit 19 (P
6) is input to the low pass filter 12. Since the DC output voltage becomes 1/2 of the power supply voltage at the resonance frequency, such output is set to the reference potential V ref of 1/2 of the power supply voltage.
Comparing integrator (having operational amplifier OP1) 13
To enter. By controlling the frequency of the voltage-controlled oscillator 14 with its output, the detection circuit B causes the phase difference between the signal applied to the series circuit and the voltage signal applied to the single-layer winding coil 4 to be 0 °. Acts as a phase-locked loop whose frequency is controlled. Therefore, the frequency output f out obtained by dividing the frequency of the voltage controlled oscillator 14 by the frequency divider 16 is a function that monotonically decreases with respect to the resonance frequency, that is, the permittivity ε of the fuel.

【0032】図7は前記図5の検知回路を用いたかかる
装置の実施例のアルコール混合ガソリンにおけるアルコ
ール含有率に対する周波数出力fout を示したもので、
メタノール含有率が増加し、誘電率εが大なるとともに
単調に出力が低下する特性となる。
FIG. 7 shows the frequency output f out with respect to the alcohol content in the alcohol blended gasoline of the embodiment of such a device using the detection circuit of FIG.
The methanol content increases, the dielectric constant ε increases, and the output monotonously decreases.

【0033】かかる構成においては、図4の破線で示す
ごとく、燃料中の不純物による燃料の導電率の上昇やセ
ンサ部の温湿度環境変化による絶縁抵抗の低下等により
共振点のQが低下しても、図4の破線に示すように位相
が0°となる共振点周波数には殆ど影響しないため、出
力変動を生ずることがないという利点がある。
In such a structure, as shown by the broken line in FIG. 4, the Q at the resonance point is lowered due to the increase in the conductivity of the fuel due to the impurities in the fuel and the decrease in the insulation resistance due to the change in the temperature and humidity environment of the sensor section. However, as shown by the broken line in FIG. 4, since there is almost no effect on the resonance point frequency at which the phase becomes 0 °, there is an advantage that output fluctuation does not occur.

【0034】図2に示すようなこの一実施例のセンサ部
の構造での見かけの自己インダクタンスLの調整は、調
整する環境を常に同じにし、成分の変わることのない試
験液(一級試薬メタノールなど)を燃料通路に導入し
て、例えば上記実施例に示した回路を用いるならば、そ
のときのVout またはfout がある値を示すまで柱状導
電体8をねじ込んでゆき、ある値を示したところで柱状
導電体8を固定する。
In the adjustment of the apparent self-inductance L in the structure of the sensor portion of this embodiment as shown in FIG. 2, the environment for adjustment is always the same, and the test liquid whose components do not change (primary reagent methanol, etc.) is used. ) Is introduced into the fuel passage and, for example, the circuit shown in the above embodiment is used, the columnar conductor 8 is screwed in until V out or f out at that time shows a certain value, and a certain value is shown. By the way, the columnar conductor 8 is fixed.

【0035】図8に前記柱状導電体8の固定方法の具体
例を示す。図8(a)のように前記柱状導電体8の上端
面がフランジ5の上面よりも下に位置するならば、図示
網の目で示すようにその部分に樹脂など8aを充填する
ことにより柱状導電体8を固定する。図8(b)のよう
に前記柱状導電体8の上端面がフランジ5の上面よりも
上に位置するならば、ナット等8bで固定し、さらに接
着剤等8cにより固定すればよい。
FIG. 8 shows a specific example of a method of fixing the columnar conductor 8. If the upper end surface of the columnar conductor 8 is located below the upper surface of the flange 5 as shown in FIG. 8A, the columnar conductor 8a is filled with resin 8a as shown by the meshes in the figure to form a columnar shape. The conductor 8 is fixed. If the upper end surface of the columnar conductor 8 is located above the upper surface of the flange 5 as shown in FIG. 8B, it may be fixed with a nut 8b and then with an adhesive 8c.

【0036】図9は別の実施例のセンサ部の断面図を示
すものであり、第1実施例と同じ又は相当部分には同符
号1〜8を付してあり、この実施例では柱状導電体8の
側面にかえりを設けた構造で、圧入することにより柱状
導電体8を挿入、固定するようにしたものである。
FIG. 9 is a sectional view of a sensor portion of another embodiment, in which the same or corresponding portions as those in the first embodiment are designated by the same reference numerals 1 to 8. In this embodiment, columnar conductive materials are used. The body 8 has a burr on the side surface, and the columnar conductor 8 is inserted and fixed by press fitting.

【0037】上記実施例ではセンサ部の単層巻コイルと
導電性電極が同軸の例を示したが、必ずしも同軸でな
く、単層巻コイルの柱面と導電性電極の間に燃料による
静電容量が存在するようにすれば良い。また、上記実施
例では本装置をメタノール含有率の検出に用いた場合を
示したが、他の液体中の誘電率検出用として広く適用が
可能である。
In the above embodiment, the example in which the single-layer winding coil of the sensor section and the conductive electrode are coaxial is shown. However, they are not necessarily coaxial, and electrostatic discharge due to fuel is provided between the pillar surface of the single-layer winding coil and the conductive electrode. It suffices if there is capacity. Further, although the case where the present device is used for detecting the methanol content is shown in the above-mentioned embodiment, it can be widely applied for detecting the dielectric constant in other liquids.

【0038】[0038]

【発明の効果】以上説明したように、この発明によれ
ば、燃料通路の中途に燃料を挟んで導電性電極と単層巻
コイルと前記単層巻コイルの共振周波数を検出する手段
を備え、さらに前記単層巻コイルの燃料側とは反対側に
前記単層巻コイルと略同軸に柱状導電体を設置するとと
もに、前記柱状導電体を前記単層巻コイルの長さ方向に
移動、固定できるようにしたことにより、前記単層巻コ
イルの見かけの自己インダクタンスを可変にすることが
できるため、常に精度よく燃料中のアルコール含有率を
検知できる。
As described above, according to the present invention, a conductive electrode, a single-layer winding coil, and a means for detecting the resonance frequency of the single-layer winding coil are provided with the fuel interposed in the middle of the fuel passage, Further, a columnar conductor can be installed on the side of the single-layer winding coil opposite to the fuel side substantially coaxially with the single-layer winding coil, and the columnar conductor can be moved and fixed in the length direction of the single-layer winding coil. By doing so, the apparent self-inductance of the single-layer winding coil can be made variable, so that the alcohol content in the fuel can always be detected accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係わる燃料の誘電率検知装置の一実
施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a fuel dielectric constant detection device according to the present invention.

【図2】この発明の一実施例のセンサ部の構造図であ
る。
FIG. 2 is a structural diagram of a sensor unit according to an embodiment of the present invention.

【図3】この発明の一実施例による見かけのインダクタ
ンスの変化を示す説明図である。
FIG. 3 is an explanatory diagram showing changes in apparent inductance according to an embodiment of the present invention.

【図4】この発明の一実施例によるセンサ部インピーダ
ンスの周波数特性図である。
FIG. 4 is a frequency characteristic diagram of sensor impedance according to an embodiment of the present invention.

【図5】この発明の一実施例による検知回路部の具体例
を示す図である。
FIG. 5 is a diagram showing a specific example of a detection circuit unit according to an embodiment of the present invention.

【図6】この発明の一実施例による具体的回路における
タイムチャート図である。
FIG. 6 is a time chart diagram in a specific circuit according to an embodiment of the present invention.

【図7】この発明の一実施例による具体的回路例での出
力特性図である。
FIG. 7 is an output characteristic diagram in a specific circuit example according to an embodiment of the present invention.

【図8】この発明の一実施例による柱状導電体の固定方
法の各具体例を示す図である。
FIG. 8 is a diagram showing each specific example of the method of fixing the columnar conductor according to the embodiment of the present invention.

【図9】この発明の別の実施例のセンサ部の断面図であ
る。
FIG. 9 is a sectional view of a sensor unit according to another embodiment of the present invention.

【図10】従来の燃料の誘電率検知装置を示す構成図で
ある。
FIG. 10 is a configuration diagram showing a conventional fuel dielectric constant detection device.

【符号の説明】[Explanation of symbols]

1 絶縁体 2 燃料通路 3 導電性電極 4 単層巻コイル 8 柱状導電体 A センサ部 B 検知回路部 DESCRIPTION OF SYMBOLS 1 Insulator 2 Fuel passage 3 Conductive electrode 4 Single layer winding coil 8 Columnar conductor A Sensor part B Detection circuit part

Claims (1)

【特許請求の範囲】 【請求項1】 燃料通路の中途に設けられた導電性電極
と、前記導電性電極との間に燃料が導入されるととも
に、前記導電性電極と所定間隔離して配置された単層巻
コイルと、燃料の誘電率に相当する前記単層巻コイルの
共振周波数を検出する手段を備えた燃料の誘電率検知装
置であって、前記単層巻コイルの燃料側に対するその反
対側に前記単層巻コイルと略同軸に柱状導電体を設置す
るとともに、前記柱状導電体の前記単層巻コイルの軸方
向に対する端面位置を可変にすることにより前記共振周
波数を調整するようにしたことを特徴とする燃料の誘電
率検知装置。
Claim: What is claimed is: 1. A fuel is introduced between a conductive electrode provided in the middle of a fuel passage and the conductive electrode, and is separated from the conductive electrode by a predetermined distance. A single-layer winding coil, and a device for detecting a dielectric constant of the single-layer winding coil, which corresponds to the dielectric constant of the fuel, for detecting the resonance frequency of the single-layer winding coil. A columnar conductor is installed substantially coaxially with the single-layer winding coil on the side, and the resonance frequency is adjusted by varying the end face position of the columnar conductor with respect to the axial direction of the single-layer winding coil. A fuel dielectric constant detection device characterized by the above.
JP19456991A 1991-08-03 1991-08-03 Device for measuring dielectric constant of fuel Pending JPH0534310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19456991A JPH0534310A (en) 1991-08-03 1991-08-03 Device for measuring dielectric constant of fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19456991A JPH0534310A (en) 1991-08-03 1991-08-03 Device for measuring dielectric constant of fuel

Publications (1)

Publication Number Publication Date
JPH0534310A true JPH0534310A (en) 1993-02-09

Family

ID=16326717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19456991A Pending JPH0534310A (en) 1991-08-03 1991-08-03 Device for measuring dielectric constant of fuel

Country Status (1)

Country Link
JP (1) JPH0534310A (en)

Similar Documents

Publication Publication Date Title
US5225783A (en) Dielectric constant detection apparatus for fuel
KR960010689B1 (en) Sensor
JPH0572164A (en) Detecting device for dielectric constant of fuel
US5119671A (en) Method for flexible fuel control
JP3126872B2 (en) Fuel mixing ratio detector
US5313168A (en) Apparatus for detecting fuel dielectric constant
US5150683A (en) Flexible fuel sensor system
US5337017A (en) Apparatus for detecting alcohol content of liquid
JP2925423B2 (en) Fuel alcohol concentration detector
EP0344929A2 (en) Apparatus and method for capacitance measurements
US5550478A (en) Housing for flexible fuel sensor
US5091704A (en) Oscillator having resonator coil immersed in a liquid mixture to determine relative amounts of two liquids
US5150062A (en) Electrostatic capacitance sensing circuit
JP2647563B2 (en) Fuel dielectric constant detector
JPH0534310A (en) Device for measuring dielectric constant of fuel
JPH0552797A (en) Dielectric constant detection device
JPH05126778A (en) Dielectric constant detector of fuel
JPH05312755A (en) Detecting apparatus for concentration of alcohols of fuel
US9097696B2 (en) Device for measuring a composition of a fuel mixture
JPH0572166A (en) Dielectric constant detecting device for fuel
JPH05126779A (en) Dielectric constant detector of fuel
JP7117512B2 (en) Concentration sensor
JP2950082B2 (en) Liquid permittivity measuring device
JPH0572165A (en) Dielectric constant detecting device for fuel
JPH04262250A (en) Detecting apparatus for permittivity of fuel