JPH05126779A - Dielectric constant detector of fuel - Google Patents

Dielectric constant detector of fuel

Info

Publication number
JPH05126779A
JPH05126779A JP28984491A JP28984491A JPH05126779A JP H05126779 A JPH05126779 A JP H05126779A JP 28984491 A JP28984491 A JP 28984491A JP 28984491 A JP28984491 A JP 28984491A JP H05126779 A JPH05126779 A JP H05126779A
Authority
JP
Japan
Prior art keywords
output
fuel
resistor
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28984491A
Other languages
Japanese (ja)
Inventor
Kenji Ogawa
賢二 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28984491A priority Critical patent/JPH05126779A/en
Priority to US07/972,852 priority patent/US5313168A/en
Priority to DE4237554A priority patent/DE4237554C2/en
Publication of JPH05126779A publication Critical patent/JPH05126779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a very accurate dielectric constant detector of fuel which is suitable for mass production and enables precise control thereof even in case of sudden change of dielectric constant of the fuel. CONSTITUTION:Radio frequency rectangular wave is charged to a single-layer winding coil 4 from an amplifier 18 via a resistor 10 and radio frequency sine wave appearing at a connection point of the single-layer winding coil 4 and the resistor 10, is converted into radio frequency rectangular wave by a wave shaper 11. DC current in charged to the single-layer winding coil 4 so that duty of the converted rectangular wave may be 50%, and frequency of the radio frequency wave is controlled so as for phase difference of signals at both ends of the resistor 10 to be 0 degree.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃焼器等に供給され
る燃料の誘電率を非接触で検知し、燃料の性状を判別す
る燃料の誘電率検知装置に関し、特に自動車等のエンジ
ンに用いられる燃料のアルコール含有率を測定するもの
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel permittivity detector for detecting the permittivity of fuel supplied to a combustor or the like in a non-contact manner to determine the property of the fuel, and is particularly used for an engine of an automobile or the like. The present invention relates to a method for measuring the alcohol content of a fuel used.

【0002】[0002]

【従来の技術】近年、米国や欧州等の各国において、石
油の消費量の低減と、自動車の排気ガスによる大気汚染
の低減を図るため、ガソリン中にアルコールを混合した
燃料が自動車用として導入されつつある。しかし、この
ようなアルコール混合燃料をガソリン燃料の空燃比にマ
ッチングされたエンジンにそのまま用いると、アルコー
ルがガソリンに比べて理論空燃比が小さいため、空燃比
がリーン化して運転が困難となった。そこで、アルコー
ル混合燃料中のアルコール含有率を検出し、この検出値
に応じて空燃比、点火時期等を調整することが行なわれ
ている。
2. Description of the Related Art In recent years, in countries such as the United States and Europe, in order to reduce oil consumption and air pollution caused by exhaust gas from automobiles, fuel mixed with alcohol in gasoline has been introduced for automobiles. It's starting. However, if such an alcohol mixed fuel is used as it is in an engine matched to the air-fuel ratio of gasoline fuel, the theoretical air-fuel ratio of alcohol is smaller than that of gasoline, so the air-fuel ratio becomes lean and operation becomes difficult. Therefore, the alcohol content rate in the alcohol-mixed fuel is detected, and the air-fuel ratio, the ignition timing, etc. are adjusted according to the detected values.

【0003】従来、上記のようなアルコール含有率の検
出には、アルコール混合燃料の誘電率を検出方法と、屈
折率を検出する方法が主に提案されており、本出願人は
これらの方法のうち誘電率を検出する方法について特願
平3−22488号により出願しており、以下この方法
について図面を用いて説明する。
Conventionally, for detecting the alcohol content as described above, a method of detecting the dielectric constant of the alcohol-mixed fuel and a method of detecting the refractive index have been mainly proposed, and the applicant of the present invention Among these, a method for detecting the dielectric constant has been applied for in Japanese Patent Application No. 3-22488, and this method will be described below with reference to the drawings.

【0004】図5は特願平3−22488号に示された
従来の誘電率検知装置の構成を示し、Aはセンサ部であ
り、1はセラミック、耐油性プラスチック等の絶縁体で
形成され、内部に燃料が導かれる有底の円筒状絶縁管、
3は絶縁管1の内部に設けられ、その外周面が絶縁管1
の内周面と略平行でかつ絶縁管1と同軸の円柱状の導電
性電極、4は絶縁管1の外周の導電性電極3と対応する
位置に巻回された単層巻コイル、4a,4bは単層巻コ
イル4のリード、2は単層巻コイル4の内周面と絶縁管
1を隔てて導電性電極3の外周面との間に形成された燃
料通路である。
FIG. 5 shows a structure of a conventional dielectric constant detecting device shown in Japanese Patent Application No. 3-22488. A is a sensor portion, and 1 is formed of an insulator such as ceramic or oil resistant plastic. A cylindrical insulating tube with a bottom, through which fuel is guided,
3 is provided inside the insulating tube 1, and the outer peripheral surface of the insulating tube 1
Columnar conductive electrode 4 which is substantially parallel to the inner peripheral surface of the insulating tube 1 and coaxial with the insulating tube 1, is a single-layer coil 4a wound at a position corresponding to the conductive electrode 3 on the outer circumference of the insulating tube 1, 4a, Reference numeral 4b is a lead of the single-layer winding coil 4, and reference numeral 2 is a fuel passage formed between the inner peripheral surface of the single-layer winding coil 4 and the outer peripheral surface of the conductive electrode 3 with the insulating tube 1 interposed therebetween.

【0005】5は導電性電極3が取り付けられるととも
に、絶縁管1と燃料シール7を介して結合され、全体と
して燃料容器を形成するフランジであり、ここでは導電
性電極3と一体に形成されている。6は燃料通路2に燃
料を導くニップルである。Bは検知回路部を示し、10
は単層巻コイル4のリード4aに直列に接続された直列
抵抗(抵抗値RS )、14は直列抵抗10と並列に接続
された0°位相比較器である。
Reference numeral 5 denotes a flange to which the conductive electrode 3 is attached and which is joined to the insulating pipe 1 through the fuel seal 7 to form a fuel container as a whole, and is formed integrally with the conductive electrode 3 here. There is. Reference numeral 6 is a nipple that guides fuel to the fuel passage 2. B indicates a detection circuit unit, and 10
Is a series resistance (resistance value R S ) connected in series to the lead 4a of the single-layer winding coil 4, and 14 is a 0 ° phase comparator connected in parallel with the series resistance 10.

【0006】又、15は位相比較器14の出力側に接続
された低域通過フィルタ、16は低域通過フィルタ12
の出力側及び位相差0°に相当する所定基準電圧Vref
が接続された比較積分器、17は比較積分器16の出力
が接続された電圧制御発振器、18は電圧制御発振器1
7の出力増幅器であり、その出力は直列抵抗10に接続
される。19は電圧制御発振器17の出力周波数の分周
器である。
Reference numeral 15 is a low pass filter connected to the output side of the phase comparator 14, and 16 is a low pass filter 12.
Output side and a predetermined reference voltage V ref corresponding to a phase difference of 0 °
Is connected to the comparator / integrator, 17 is a voltage controlled oscillator to which the output of the comparator / integrator 16 is connected, and 18 is a voltage controlled oscillator 1
7 output amplifier, the output of which is connected to the series resistor 10. Reference numeral 19 is a frequency divider for the output frequency of the voltage controlled oscillator 17.

【0007】次に、上記した従来装置の動作について説
明する。センサ部Aは図4(a)又はこれをさらに詳し
くした図4(b)の等価回路で概略示され、Lは単層巻
コイル4のインダクタンス、Cf は燃料通路2中の燃料
の誘電率εに応じて変化する単層巻コイル4と導電性電
極3との間に生じる静電容量、CP はリード4aに寄生
する浮遊容量や0°位相比較器11の入力容量等、燃料
の誘電率εと無関係な容量である。
Next, the operation of the above conventional apparatus will be described. The sensor unit A is schematically shown in FIG. 4A or an equivalent circuit of FIG. 4B which is a more detailed version thereof, where L is the inductance of the single-layer winding coil 4, and C f is the dielectric constant of the fuel in the fuel passage 2. Capacitance generated between the single-layer winding coil 4 and the conductive electrode 3 that changes according to ε, C P is the stray capacitance parasitic on the lead 4a, the input capacitance of the 0 ° phase comparator 11, etc. It is a capacity unrelated to the rate ε.

【0008】ここで、センサ部Aのリード4aに印加す
る周波数を変化させると、図4(c)に示すような並列
LC共振を示す。即ち、このときの並列共振周波数fr
は fr =1/(2π√(L×(CP +CS ))) =K/√(a+b×ε) …(1) で示される。ここで、K,a,bはセンサ部Aの形状に
よって決まる定数である。共振周波数fr は(1)式に
示したように燃料の誘電率εに依存するため、燃料の誘
電率εが大なるほど共振周波数fr は低くなる。
When the frequency applied to the lead 4a of the sensor section A is changed, parallel LC resonance as shown in FIG. 4C is exhibited. That is, the parallel resonance frequency f r at this time
Is represented by f r = 1 / (2π√ (L × (C P + C S ))) = K / √ (a + b × ε) (1) Here, K, a, and b are constants determined by the shape of the sensor unit A. Since the resonance frequency f r depends on the dielectric constant of the fuel ε as shown in equation (1), the dielectric constant of the fuel ε is the lower the atmospheric Indeed resonance frequency f r.

【0009】例えば、所定のセンサ形状で測定した結果
では、燃料が誘電率ε=33のメタノールでの共振周波
数fr は7.5MHz であり、誘電率ε=2のガソリンで
は約9.5MHz であった。又、メタノールとガソリンと
の任意の混合燃料においては、メタノールの含有率に応
じて概略図4(d)に示したような共振周波数fr の変
化を示す。従って、共振周波数fr に対応する信号を検
知することにより、燃料の誘電率ε、さらにはメタノー
ル混合燃料中のメタノール含有率を検知することができ
る。
For example, as a result of measurement with a predetermined sensor shape, the resonance frequency f r of methanol having a dielectric constant ε = 33 of methanol is 7.5 MHz, and that of gasoline having a dielectric constant ε = 2 is about 9.5 MHz. there were. Further, in an arbitrary mixed fuel of methanol and gasoline, the resonance frequency f r changes as shown in the schematic diagram (d) according to the content ratio of methanol. Therefore, by detecting the signal corresponding to the resonance frequency fr , it is possible to detect the permittivity ε of the fuel and further the methanol content in the methanol mixed fuel.

【0010】検知回路部Bは共振周波数fr を検知する
ように構成されており、以下検知回路部Bの動作を説明
する。燃料通路2にメタノール混合燃料を流した状態で
増幅器18から抵抗10と単層巻コイル4の直列回路に
高周波信号が与えられ、抵抗10の両端間の電圧信号、
即ちこの直列回路に印加される高周波電圧信号と単層巻
コイル4に印加される高周波電圧信号とが位相比較器1
4に入力され、両者の位相が比較される。
The detection circuit section B is configured to detect the resonance frequency fr, and the operation of the detection circuit section B will be described below. A high frequency signal is applied from the amplifier 18 to the series circuit of the resistor 10 and the single-layer winding coil 4 while the methanol mixed fuel is flowing in the fuel passage 2, and the voltage signal across the resistor 10 is applied.
That is, the high frequency voltage signal applied to this series circuit and the high frequency voltage signal applied to the single-layer winding coil 4 are the phase comparator 1
4 and the phases of both are compared.

【0011】いま、共振周波数fr と同じ周波数の高周
波電圧信号が上記直列回路に印加されたとすると、図4
(c)に示したようにセンサ部Aの電流電圧位相は0°
となるので、抵抗10の両端の高周波電圧の位相差は0
°となる。一方、共振周波数fr より低い周波数の高周
波電圧信号が上記直列回路に印加されたとすると、図4
(c)に示すようにセンサ部Aの電流電圧位相は0°よ
り進むので、上記直列回路に印加する高周波信号の位相
を基準として、抵抗10の両端の高周波電圧の位相差は
0°より大となる。
[0011] Now, when a high frequency voltage signal of the same frequency as the resonance frequency f r is applied to the series circuit, FIG. 4
As shown in (c), the current-voltage phase of the sensor unit A is 0 °.
Therefore, the phase difference of the high frequency voltage across the resistor 10 is 0.
Becomes °. On the other hand, when the high frequency voltage signal of a frequency lower than the resonance frequency f r is applied to the series circuit, FIG. 4
As shown in (c), since the current-voltage phase of the sensor unit A leads from 0 °, the phase difference of the high-frequency voltage across the resistor 10 is larger than 0 ° with reference to the phase of the high-frequency signal applied to the series circuit. Becomes

【0012】従って、位相比較器14の出力を低域通過
フィルタ15を介して位相差に相当する直流電圧に変換
し、この直流電圧と位相差0°に相当する直流電圧V
ref とを比較積分器16に入力して両者の差を積分し、
比較積分器16の出力を、上記直列回路に抵抗10を介
して高周波信号を印加している電圧制御発振器17に入
力することにより、位相同期ループが形成される。
Therefore, the output of the phase comparator 14 is converted into a DC voltage corresponding to the phase difference through the low pass filter 15, and this DC voltage and a DC voltage V corresponding to the phase difference of 0 °.
ref is input to the comparison integrator 16 to integrate the difference between the two,
A phase locked loop is formed by inputting the output of the comparator / integrator 16 to the voltage controlled oscillator 17 applying a high frequency signal to the series circuit via the resistor 10.

【0013】電圧制御発振器17はこの位相同期ループ
により抵抗10の両端の高周波電圧信号間の位相差が0
°となるように制御し、電圧制御発振器17の発振周波
数は常に共振周波数fr で発振することになる。このた
め、電圧制御発振器17の出力周波数を分周器19によ
り適当な周波数に分周して周波数出力fout を得る。
又、電圧制御発振器17の発振周波数と制御入力電圧と
が一体一に対応するので、比較積分器16の出力が電圧
出力Vout として取り出される。
The phase-locked loop of the voltage controlled oscillator 17 causes the phase difference between the high frequency voltage signals across the resistor 10 to be zero.
° and controlled to be the oscillation frequency of the voltage controlled oscillator 17 will always be oscillated at the resonance frequency f r. Therefore, the output frequency of the voltage controlled oscillator 17 is divided by the frequency divider 19 into an appropriate frequency to obtain the frequency output f out .
Further, since the oscillation frequency of the voltage controlled oscillator 17 and the control input voltage correspond integrally, the output of the comparison integrator 16 is taken out as the voltage output V out .

【0014】次に、従来装置の具体例について説明す
る。図6は位相比較器14として排他的論理和回路14
cを含むものを用い、抵抗10の両端に現われる高周波
電圧信号の位相差が0°となるような位相同期ループを
形成した場合の具体例を示し、図7は図6の各部信号P
1〜P6のタイミングチャートを示す。電圧制御発振器
17から出力された高周波矩形波信号P1は増幅器18
の第1のDフリップフロップ回路18aのCKポートに
入力され、第2のDフリップフロップ回路18bのCK
ポートには矩形波信号P1をインバータ回路18cによ
り位相反転した信号が入力される。
Next, a specific example of the conventional device will be described. FIG. 6 shows an exclusive OR circuit 14 as the phase comparator 14.
FIG. 7 shows a specific example of the case where a phase-locked loop is formed by using a circuit including c and a high-frequency voltage signal appearing across the resistor 10 has a phase difference of 0 °.
The timing chart of 1-P6 is shown. The high frequency rectangular wave signal P1 output from the voltage controlled oscillator 17 is supplied to the amplifier 18
Is input to the CK port of the first D flip-flop circuit 18a and the CK of the second D flip-flop circuit 18b.
A signal obtained by inverting the phase of the rectangular wave signal P1 by the inverter circuit 18c is input to the port.

【0015】又、第2のDフリップフロップ回路18b
のDポートには第1のDフリップフロップ回路18aの
反転出力ポートの信号が入力され、第1のDフリップフ
ロップ回路18aのDポートには第2のDフリップフロ
ップ回路18bの出力ポートQの信号が入力されてお
り、抵抗10を介して単層巻コイル4に印加される高周
波信号である第1のDフリップフロップ回路18aの出
力ポートQの信号P2は高周波矩形波信号P1の立ち上
がりでデータが更新され、信号P1を1/2分周した信
号となり、インバータ14aを介して排他的論理和回路
14cに入力され、他方第2のDフリップフロップ回路
18bの出力ポートQの信号P3は信号P1の立下りで
更新され、信号P2と同一周波数で位相が90°異なる
信号となる。
In addition, the second D flip-flop circuit 18b
The signal of the inverted output port of the first D flip-flop circuit 18a is input to the D port of the first D flip-flop circuit 18a, and the signal of the output port Q of the second D flip-flop circuit 18b is input to the D port of the first D flip-flop circuit 18a. Is inputted and the signal P2 at the output port Q of the first D flip-flop circuit 18a, which is a high frequency signal applied to the single-layer winding coil 4 via the resistor 10, is data at the rising edge of the high frequency rectangular wave signal P1. The updated signal becomes a signal obtained by dividing the signal P1 by ½, and is input to the exclusive OR circuit 14c via the inverter 14a. On the other hand, the signal P3 at the output port Q of the second D flip-flop circuit 18b is equal to the signal P1. It is updated at the trailing edge and becomes a signal having the same frequency as the signal P2 but a phase difference of 90 °.

【0016】排他的論理和回路14cの入力には、抵抗
10と単層巻コイル4との接続点即ち単層巻コイル4に
印加される信号P4が入力されるとともに、他方の入力
には信号P3がインバータ14bにより位相反転されて
入力され、この両者の位相を比較する。ここで、抵抗1
0と単層巻コイル4との接続点に現われる高周波信号P
4は図7に示すように正弦的であるので、その直流レベ
ルをオペアンプ20と可変抵抗21によりインバータ1
4aの判定レベルとなるように調整することにより、正
弦波信号P4を波形整形して矩形波P5が得られる。
A signal P4 applied to the connection point between the resistor 10 and the single-layer winding coil 4, that is, the single-layer winding coil 4 is input to the input of the exclusive OR circuit 14c, and the signal is input to the other input. The phase of P3 is inverted and input by the inverter 14b, and the phases of both are compared. Where resistance 1
0 and the high-frequency signal P appearing at the connection point of the single-layer winding coil 4
4 is sinusoidal as shown in FIG. 7, its direct current level is determined by the operational amplifier 20 and the variable resistor 21.
By adjusting so that the determination level is 4a, the sine wave signal P4 is waveform-shaped to obtain the rectangular wave P5.

【0017】センサ部AのLC回路が共振する周波数に
おいては、インバータ14aの出力矩形波P5は、抵抗
10に印加される矩形波P2と逆相であり、第2のDフ
リップフロップ回路18bの出力ポートQの信号P3と
は位相が90°ずれた矩形波信号となる。従って、排他
的論理和回路14cの出力は、抵抗10の両端に現われ
る信号P2,P4の位相差が0°の時即ちセンサ部Aの
LC回路が共振する周波数のときにデューティ50%の
矩形波P6となり、共振周波数以外の周波数においては
デューティは50%以下あるいは50%以上となり、信
号P2,P4の位相差に一体一に対応したデューティを
持つ矩形波となる。
At the frequency at which the LC circuit of the sensor section A resonates, the output rectangular wave P5 of the inverter 14a has an opposite phase to the rectangular wave P2 applied to the resistor 10, and the output of the second D flip-flop circuit 18b. It becomes a rectangular wave signal whose phase is 90 ° out of phase with the signal P3 of the port Q. Therefore, the output of the exclusive OR circuit 14c is a rectangular wave with a duty of 50% when the phase difference between the signals P2 and P4 appearing at both ends of the resistor 10 is 0 °, that is, when the LC circuit of the sensor unit A resonates. It becomes P6, and the duty becomes 50% or less or 50% or more at frequencies other than the resonance frequency, and becomes a rectangular wave having a duty corresponding to the phase difference between the signals P2 and P4.

【0018】排他的論理和回路14cの出力P6は低域
通過フィルタ15に入力され、その直流出力は抵抗10
の両端に現われる高周波電圧信号P2,P4の位相差と
一体一に対応する。低域通過フィルタ15の出力は比較
積分器16に入力され、可変抵抗22によって抵抗10
の両端に現われる信号P2,P4の位相差が0°のとき
に低域通過フィルタ15が出力する直流レベルと等しく
なるように調整された電圧Vref との差を積分され、そ
の積分値即ち比較積分器16の出力が電圧制御発振器1
7に入力されて発振周波数が制御される。
The output P6 of the exclusive OR circuit 14c is input to the low pass filter 15, and its DC output is the resistance 10
Corresponding to the phase difference between the high-frequency voltage signals P2 and P4 appearing at both ends of. The output of the low-pass filter 15 is input to the comparison integrator 16, and the variable resistor 22 causes the resistance 10
When the phase difference between the signals P2 and P4 appearing at both ends is 0 °, the difference with the voltage V ref adjusted to be equal to the DC level output by the low-pass filter 15 is integrated, and the integrated value, that is, the comparison The output of the integrator 16 is the voltage controlled oscillator 1
7 and the oscillation frequency is controlled.

【0019】このように、抵抗10の両端に現われる高
周波電圧信号P2,P4の位相差が0°となるように電
圧制御発振器17の出力周波数を制御する位相同期ルー
プが形成されるので、電圧制御発振器17の周波数を分
周器19で分周した周波数出力fout は図4に示した燃
料の誘電率ε即ちメタノール含有率に対して単調減少す
る関数となる。又、電圧制御発振器17に入力される比
較積分器16の出力も電圧出力Vout として出力され
る。
As described above, since the phase locked loop for controlling the output frequency of the voltage controlled oscillator 17 is formed so that the phase difference between the high frequency voltage signals P2 and P4 appearing across the resistor 10 becomes 0 °, the voltage control is performed. The frequency output f out obtained by dividing the frequency of the oscillator 17 by the frequency divider 19 is a function that monotonically decreases with respect to the permittivity ε of the fuel, that is, the methanol content shown in FIG. Further, the output of the comparison integrator 16 input to the voltage controlled oscillator 17 is also output as the voltage output V out .

【0020】[0020]

【発明が解決しようとする課題】しかしながら、上記し
た従来装置では、燃料の誘電率が位相同期ループの制御
が追い付けなくなる程急変すると、信号P2,P4の位
相が異なると共に、図4に示したようにLC共振回路の
インピーダンスが小さくなるため信号P4の振幅が小さ
くなり、正弦的高周波信号P4を波形整形するインバー
タ14aの判定レベルと単層巻コイル4にオペアンプ2
0と可変抵抗21によって与えている直流レベルとが若
干異なることになり、図8に示すように信号P4が判定
レベルを横切らなくなり、結果として図8の信号P5の
ように波形整形が不可能になる。
However, in the above-mentioned conventional apparatus, when the permittivity of the fuel suddenly changes so much that the control of the phase locked loop cannot catch up, the phases of the signals P2 and P4 are different, and as shown in FIG. Since the impedance of the LC resonance circuit becomes small, the amplitude of the signal P4 becomes small, and the decision level of the inverter 14a that shapes the waveform of the sinusoidal high frequency signal P4 and the operational amplifier 2 for the single-layer winding coil 4 are provided.
0 and the DC level given by the variable resistor 21 are slightly different, and the signal P4 does not cross the judgment level as shown in FIG. 8, and as a result, waveform shaping becomes impossible like the signal P5 of FIG. Become.

【0021】このような状態になると、位相比較器14
の出力P6は図8に示すように単に信号P3を反転した
だけのデューティ50%の信号となり、低域通過フィル
タ15の出力は位相同期ループの制御が成立していると
きの出力と同じになり、位相同期ループの制御が破綻し
て燃料の真の誘電率とは異なった信号を出力するという
課題があった。又、本装置を多数製造する場合、インバ
ータ14aの判定レベルに応じて単層巻コイル4に与え
る直流レベルを個別に調整しなければならなかった。
In such a state, the phase comparator 14
8, the output P6 becomes a signal with a duty of 50% simply by inverting the signal P3, and the output of the low pass filter 15 becomes the same as the output when the control of the phase locked loop is established. However, there was a problem that the control of the phase-locked loop failed and a signal different from the true permittivity of the fuel was output. Further, in the case of manufacturing a large number of this device, the DC level applied to the single-layer winding coil 4 had to be individually adjusted according to the determination level of the inverter 14a.

【0022】この発明は上記のような課題を解決するた
めに成されたものであり、燃料の誘電率が位相同期ルー
プの制御が追い付けなくなる程急変した場合でも正常な
制御状態を回復することができるとともに、大量生産に
適した燃料の誘電率検知装置を得ることを目的とする。
The present invention has been made to solve the above problems, and can restore a normal control state even when the permittivity of fuel suddenly changes so that the control of the phase-locked loop cannot catch up. It is an object of the present invention to obtain a fuel dielectric constant detection device that is suitable for mass production.

【0023】[0023]

【課題を解決するための手段】この発明に係る燃料の誘
電率検知装置は、抵抗を介して検知コイルに矩形高周波
を印加する高周波印加手段と、検知コイルと抵抗の接続
点の信号が入力され、所定の比較レベルと比較して矩形
波を出力する波形整形器と、高周波印加手段の出力と波
形整形器の出力との位相差を検出する位相比較器と、位
相比較器の出力が所定値となるように高周波印加手段の
出力周波数を制御する制御手段と、波形整形器の出力の
デューティを検出するデューティ検出手段と、デューテ
ィ検出手段の出力が所定値になるように検知コイルに直
流電圧を供給するバイアス制御手段を設けたものであ
る。
A fuel dielectric constant detecting device according to the present invention is provided with high frequency applying means for applying a rectangular high frequency wave to a detecting coil via a resistor and a signal at a connection point between the detecting coil and the resistor. , A waveform shaper that outputs a rectangular wave by comparing with a predetermined comparison level, a phase comparator that detects the phase difference between the output of the high-frequency applying means and the output of the waveform shaper, and the output of the phase comparator has a predetermined value Control means for controlling the output frequency of the high frequency applying means, duty detecting means for detecting the duty of the output of the waveform shaper, and a DC voltage to the detecting coil so that the output of the duty detecting means becomes a predetermined value. Bias control means for supplying is provided.

【0024】[0024]

【作用】この発明においては、検知コイルと抵抗の接続
点に現われる正弦的高周波電圧信号を矩形状に波形整形
する波形整形器の出力デューティが検出され、この出力
デューティが所定値となるように検知コイルに直流電圧
が供給される。
According to the present invention, the output duty of the waveform shaper for shaping the sinusoidal high-frequency voltage signal appearing at the connection point between the detection coil and the resistor into a rectangular shape is detected, and the output duty is detected so as to become a predetermined value. DC voltage is supplied to the coil.

【0025】[0025]

【実施例】以下、この発明の実施例を図面とともに説明
する。図1はこの実施例による構成を示し、センサ部A
は従来と全く同じである。検知回路部Bにおいて、11
は単層巻コイル4と抵抗10との接続点に接続された波
形整形器、12は波形整形器11の出力が接続された低
域通過フィルタ、13は低域通過フィルタ12の出力
と、波形整形器11の出力のデューティが50%のとき
に低域通過フィルタ12が出力する電圧に相当する所定
の基準電圧Vref が接続され、リード4bを介して単層
巻コイル4に直流レベルを与えるバイアス制御手段、1
4は波形整形器11の出力と抵抗10の増幅器18との
接続側が接続された位相比較器であり、他の構成は従来
と同様である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration according to this embodiment, and the sensor unit A
Is exactly the same as before. In the detection circuit section B, 11
Is a waveform shaper connected to the connection point between the single-layer winding coil 4 and the resistor 10, 12 is a low-pass filter to which the output of the waveform shaper 11 is connected, 13 is an output of the low-pass filter 12, and a waveform When the output duty of the shaper 11 is 50%, a predetermined reference voltage V ref corresponding to the voltage output by the low-pass filter 12 is connected, and a DC level is applied to the single-layer winding coil 4 via the lead 4b. Bias control means, 1
Reference numeral 4 denotes a phase comparator to which the output side of the waveform shaper 11 and the connection side of the resistor 18 to the amplifier 18 are connected, and the other configurations are the same as those of the prior art.

【0026】次に、図2は上記構成の具体例を示し、図
6と同じく抵抗10の両端に現われる高周波電圧信号の
位相差が0°となるように位相当期ループを形成した場
合の具体例であり、多くの部分は共通となっている。以
下、従来例との違いを中心にして説明する。図3は図2
の各部分の信号波形を示す。
Next, FIG. 2 shows a concrete example of the above-mentioned constitution, and a concrete example of the case where the phase current loop is formed so that the phase difference of the high frequency voltage signals appearing at both ends of the resistor 10 becomes 0 ° like FIG. And many parts are common. The difference from the conventional example will be mainly described below. FIG. 3 is FIG.
The signal waveform of each part of is shown.

【0027】電圧制御発振器17から出力された高周波
矩形波信号P1は第1のDフリップフロップ回路18a
のCKポートに入力され、第2のDフリップフロップ回
路18bのCKポートには信号P1をインバータ回路1
8cで位相反転した信号が入力される。第1のDフリッ
プフロップ回路18aのQ出力P2は抵抗10を介して
単層巻コイル4に接続され、第2のDフリップフロップ
回路18bのQ出力P3は信号P2に対して90°の位
相差を持った高周波矩形波となる。
The high frequency rectangular wave signal P1 output from the voltage controlled oscillator 17 is the first D flip-flop circuit 18a.
Of the inverter circuit 1 to the CK port of the second D flip-flop circuit 18b.
The signal whose phase is inverted at 8c is input. The Q output P2 of the first D flip-flop circuit 18a is connected to the single-layer winding coil 4 via the resistor 10, and the Q output P3 of the second D flip-flop circuit 18b has a phase difference of 90 ° with respect to the signal P2. It becomes a high frequency rectangular wave with.

【0028】抵抗10と単層巻コイル4との接続点、即
ち単層巻コイル4に印加される信号P4はTTLやCM
OS等の論理回路の一つであるインバータ回路からなる
波形整形器11により矩形波に整形されるが、その出力
のH,Lレベルの切り換えは入力が判定レベルVth以上
であればL、Vth以下であればHとなり、Vthを調整す
ることはできない。
The connection point between the resistor 10 and the single-layer winding coil 4, that is, the signal P4 applied to the single-layer winding coil 4 is TTL or CM.
The waveform is shaped into a rectangular wave by the waveform shaper 11 which is an inverter circuit which is one of the logic circuits such as the OS. The output is switched between the H and L levels if the input is equal to or higher than the determination level V th. If it is less than or equal to th , it becomes H and V th cannot be adjusted.

【0029】そこで、図6に示す従来では信号P4の直
流成分としてオペアンプ20によって単層巻コイル4の
リード4bにVthに相当する電圧を供給することにより
波形整形を行なっていたが、この実施例では波形整形器
11の出力を低域通過フィルタ12によりそのデューテ
ィに相当する直流電圧に変換し、低域通過フィルタ12
の出力と波形整形器11の出力デューティが50%のと
きに低域通過フィルタ12が出力する電圧に相当する電
圧Vref との差をバイアス制御手段13内の比例積分器
13aで積分し、この積分値を単層巻コイル4のリード
4bに供給する。
Therefore, in the prior art shown in FIG. 6, the waveform was shaped by supplying a voltage corresponding to V th to the lead 4b of the single-layer winding coil 4 by the operational amplifier 20 as the DC component of the signal P4. In the example, the output of the waveform shaper 11 is converted into a DC voltage corresponding to the duty by the low pass filter 12, and the low pass filter 12
And the voltage V ref corresponding to the voltage output by the low-pass filter 12 when the output duty of the waveform shaper 11 is 50% is integrated by the proportional integrator 13a in the bias control means 13, The integrated value is supplied to the lead 4b of the single-layer winding coil 4.

【0030】例えば、信号P4が図3の破線で示したよ
うな場合、波形整形器11の出力P5は破線で示すよう
に常時Hレベルになる。従って、低域通過フィルタ12
の出力も常時Hレベルとなり、このHレベルが比較積分
器13aに入力されるので、バイアス制御手段13の出
力が増加し、これによって信号P4の直流レベルも増加
して波形全体が図3の上方向にシフトされ、最終的に実
線で示したようなレベルに制御される。このため、波形
整形器11の出力P5は実線で示したように常にデュー
ティ50%の矩形波となる。
For example, when the signal P4 is shown by the broken line in FIG. 3, the output P5 of the waveform shaper 11 is always at the H level as shown by the broken line. Therefore, the low pass filter 12
3 is always at the H level, and this H level is input to the comparator / integrator 13a. Therefore, the output of the bias control means 13 is increased, which also increases the DC level of the signal P4 and the entire waveform shown in FIG. Direction, and finally controlled to the level shown by the solid line. Therefore, the output P5 of the waveform shaper 11 is always a rectangular wave with a duty of 50% as shown by the solid line.

【0031】位相比較器14の排他的論理和回路14c
はTTLやCMOS等により形成され、その一方の入力
には信号P3がインバータ回路14bを介して入力さ
れ、他方の入力には波形整形器11の出力P5が入力さ
れ、両信号が位相比較される。センサ部AのLC回路が
共振周波数以外の周波数で励振されているとき、信号P
5と信号P2の位相差は0°ではなく、信号P5,P3
の位相差も90°ではないので、排他的論理和回路14
cの出力P6のデューティは50%ではなくなる。
Exclusive OR circuit 14c of the phase comparator 14
Is formed of TTL, CMOS, or the like, and the signal P3 is input to one of the inputs via the inverter circuit 14b, the output P5 of the waveform shaper 11 is input to the other input, and both signals are compared in phase. .. When the LC circuit of the sensor unit A is excited at a frequency other than the resonance frequency, the signal P
5 and the signal P2 have a phase difference of not 0 ° but signals P5 and P3.
Since the phase difference between the two is not 90 °, the exclusive OR circuit 14
The duty of the output P6 of c is not 50%.

【0032】従って、信号P6を低域通過フィルタ15
に入力し、その直流出力を比較積分器16に入力して位
相差0°に相当する基準電圧Vref との差を積分し、こ
の積分値を電圧制御発振器17に入力してその発振周波
数を制御すると、信号P4の位相は図3の左方向に進
み、これに伴なって信号P6の波形も矢印のように変化
し、最終的には図7に示すような位相フィードバック制
御が成立する。
Therefore, the signal P6 is passed through the low pass filter 15
To the comparator / integrator 16 to integrate the difference from the reference voltage V ref corresponding to a phase difference of 0 °, and the integrated value is input to the voltage controlled oscillator 17 to determine its oscillation frequency. When controlled, the phase of the signal P4 advances to the left in FIG. 3, and along with this, the waveform of the signal P6 also changes as shown by the arrow, and finally the phase feedback control as shown in FIG. 7 is established.

【0033】なお、上記実施例においては、バイアス制
御手段13はデューティ50%に相当する電圧Vref
電源から可変抵抗23により分圧して得ているが、他の
デューティ50%の信号例えば信号P2を低域通過フィ
ルタ12と同等の低域通過フィルタを介してその直流電
圧を得、この電圧と低域通過フィルタ12の出力電圧が
等しくなるようにバイアス制御手段13により単層巻コ
イル4に供給する電圧を制御してもよい。又、本装置を
メタノール混合ガソリン中のメタノール含有率の検出に
用いたが、他の液体中の誘電率の検出にも広く用いるこ
とができる。
In the above embodiment, the bias control means 13 obtains the voltage V ref corresponding to the duty of 50% by dividing the voltage Vref from the power source by the variable resistor 23. However, other signals with the duty of 50%, for example, the signal P2. Is obtained through a low-pass filter equivalent to the low-pass filter 12, and the DC voltage is supplied to the single-layer winding coil 4 by the bias control means 13 so that this voltage becomes equal to the output voltage of the low-pass filter 12. The voltage applied may be controlled. Further, although the present apparatus was used to detect the methanol content in methanol-blended gasoline, it can be widely used to detect the dielectric constant in other liquids.

【0034】[0034]

【発明の効果】以上のようにこの発明によれば、検知コ
イルと直列に接続された抵抗の両端の電圧の位相差を検
出し、この位相差が所定値となるように抵抗を介して検
知コイルに高周波を印加する高周波印加手段の出力周波
数を制御するとともに、位相差の検出に際して検出コイ
ルと抵抗の接続点の電圧を波形整形器により矩形波に整
形し、この矩形波のデューティが所定値になるように検
知コイルに直流電圧を印加しており、波形整形器の出力
デューティは所定値に制御され、燃料の誘電率が位相同
期ループの制御が追い付けなくなるほど急変し、上記位
相差の検出が正常に行なわれなくなった場合でも早急に
正常な制御状態に回復することができ、誘電率検出の精
度を高めることができる。又、本装置を多量に製造する
場合でも、波形整形器のそれぞれの特性に合せて検知コ
イルへ供給する直流電圧を調整する必要がなく、大量生
産に適した装置を得ることができる。
As described above, according to the present invention, the phase difference between the voltages across the resistor connected in series with the detection coil is detected, and the phase difference is detected through the resistor so that the phase difference becomes a predetermined value. Controls the output frequency of the high-frequency applying unit that applies a high frequency to the coil, and shapes the voltage at the connection point between the detection coil and the resistor into a rectangular wave with a waveform shaper when detecting the phase difference, and the duty of this rectangular wave is a predetermined value. A DC voltage is applied to the detection coil so that the output duty of the waveform shaper is controlled to a predetermined value, and the permittivity of the fuel suddenly changes so that the control of the phase-locked loop cannot catch up, and the phase difference is detected. Even if the normal control is no longer performed, the normal control state can be quickly recovered, and the accuracy of the dielectric constant detection can be improved. Further, even when a large amount of this device is manufactured, it is not necessary to adjust the DC voltage supplied to the detection coil in accordance with each characteristic of the waveform shaper, and a device suitable for mass production can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明装置の構成図である。FIG. 1 is a block diagram of an apparatus according to the present invention.

【図2】この発明装置のより具体的な構成図である。FIG. 2 is a more specific configuration diagram of the device of the present invention.

【図3】図2の構成の動作波形を示すタイムチャートで
ある。
FIG. 3 is a time chart showing operation waveforms of the configuration of FIG.

【図4】従来装置のセンサ部の等価回路図及び周波数特
性図である。
FIG. 4 is an equivalent circuit diagram and a frequency characteristic diagram of a sensor unit of a conventional device.

【図5】従来装置の構成図である。FIG. 5 is a configuration diagram of a conventional device.

【図6】従来装置のより具体的な構成図である。FIG. 6 is a more specific configuration diagram of a conventional device.

【図7】図6の構成の動作を示すタイムチャートであ
る。
FIG. 7 is a time chart showing the operation of the configuration of FIG.

【図8】従来装置の出力誤差の説明図である。FIG. 8 is an explanatory diagram of an output error of the conventional device.

【符号の説明】[Explanation of symbols]

A センサ部 1 絶縁管 2 燃料通路 3 導電性電極 4 単層巻コイル B 検知回路部 10 抵抗 11 波形整形器 12 低域通過フィルタ 13 バイアス制御手段 14 位相比較器 16 比較積分器 17 電圧制御発振器 A sensor section 1 insulating tube 2 fuel passage 3 conductive electrode 4 single layer winding coil B detection circuit section 10 resistance 11 waveform shaper 12 low pass filter 13 bias control means 14 phase comparator 16 comparator / integrator 17 voltage controlled oscillator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料通路に設けられ、燃料の誘電率に応
じて容量が変化する検知部と、検知部の出力と実質的に
並列に接続された検知コイルと、検知コイルと直列に接
続された抵抗と、この抵抗を介して検知コイルに矩形高
周波を印加する高周波印加手段と、検知コイルと抵抗の
接続点の信号が入力され、所定の比較レベルと比較して
矩形波を出力する波形整形器と、高周波印加手段の出力
と波形整形器の出力との位相差を検出する位相比較器
と、位相比較器の出力が所定値となるように高周波印加
手段の出力周波数を制御する制御手段と、波形整形器の
出力矩形高周波のデューティを検出するデューティ検出
手段と、デューティ検出手段の出力が所定値となるよう
に検知コイルの上記抵抗が接続されていない側に直流電
圧を与えるバイアス制御手段を備え、高周波印加手段の
出力周波数あるいは制御手段の制御出力により燃料の誘
電率を検出することを特徴とする燃料の誘電率検知装
置。
1. A detector provided in a fuel passage, the capacity of which changes in accordance with the dielectric constant of the fuel, a detector coil connected substantially in parallel with the output of the detector, and a detector coil connected in series. A resistor, a high-frequency applying means for applying a rectangular high-frequency wave to the detection coil via this resistor, and a signal at the connection point between the detection coil and the resistor are input, and a waveform shaping that outputs a rectangular wave in comparison with a predetermined comparison level. A phase comparator that detects a phase difference between the output of the high frequency applying means and the output of the waveform shaper, and a control means that controls the output frequency of the high frequency applying means so that the output of the phase comparator has a predetermined value. An output rectangle of the waveform shaper; a duty detecting means for detecting the duty of a high frequency wave; and a bias control for applying a DC voltage to the side of the detecting coil to which the resistor is not connected so that the output of the duty detecting means becomes a predetermined value. A fuel dielectric constant detecting device comprising a control means, and detecting the dielectric constant of the fuel by the output frequency of the high frequency applying means or the control output of the control means.
JP28984491A 1991-11-06 1991-11-06 Dielectric constant detector of fuel Pending JPH05126779A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28984491A JPH05126779A (en) 1991-11-06 1991-11-06 Dielectric constant detector of fuel
US07/972,852 US5313168A (en) 1991-11-06 1992-11-06 Apparatus for detecting fuel dielectric constant
DE4237554A DE4237554C2 (en) 1991-11-06 1992-11-06 Device for measuring the dielectric constant of a fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28984491A JPH05126779A (en) 1991-11-06 1991-11-06 Dielectric constant detector of fuel

Publications (1)

Publication Number Publication Date
JPH05126779A true JPH05126779A (en) 1993-05-21

Family

ID=17748499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28984491A Pending JPH05126779A (en) 1991-11-06 1991-11-06 Dielectric constant detector of fuel

Country Status (1)

Country Link
JP (1) JPH05126779A (en)

Similar Documents

Publication Publication Date Title
US5225783A (en) Dielectric constant detection apparatus for fuel
JP3126872B2 (en) Fuel mixing ratio detector
US5313168A (en) Apparatus for detecting fuel dielectric constant
JPH0572164A (en) Detecting device for dielectric constant of fuel
US8253426B2 (en) Capacitance detector
KR960010689B1 (en) Sensor
US5337017A (en) Apparatus for detecting alcohol content of liquid
US11143681B2 (en) Method and device for determining a sensor coil inductance
EP0344929A2 (en) Apparatus and method for capacitance measurements
JP2925423B2 (en) Fuel alcohol concentration detector
US5150062A (en) Electrostatic capacitance sensing circuit
US7321267B2 (en) Compensating capacitive dielectric absorption induced frequency error in a phase locked loop
JPH05126779A (en) Dielectric constant detector of fuel
JPH05126778A (en) Dielectric constant detector of fuel
JP2647563B2 (en) Fuel dielectric constant detector
US9097696B2 (en) Device for measuring a composition of a fuel mixture
JPH0552797A (en) Dielectric constant detection device
JPH0534310A (en) Device for measuring dielectric constant of fuel
JP7117512B2 (en) Concentration sensor
JPH05312755A (en) Detecting apparatus for concentration of alcohols of fuel
JP2609255B2 (en) Alcohol concentration detector for fuel
JPS63316515A (en) Proximity sensor
JPH04262250A (en) Detecting apparatus for permittivity of fuel
CN110501051A (en) Impedance limit sensors
JP2950082B2 (en) Liquid permittivity measuring device