JPH0534250A - Method for preparing sample for transmission electron microscope - Google Patents

Method for preparing sample for transmission electron microscope

Info

Publication number
JPH0534250A
JPH0534250A JP19312691A JP19312691A JPH0534250A JP H0534250 A JPH0534250 A JP H0534250A JP 19312691 A JP19312691 A JP 19312691A JP 19312691 A JP19312691 A JP 19312691A JP H0534250 A JPH0534250 A JP H0534250A
Authority
JP
Japan
Prior art keywords
etching
sample
electron microscope
transmission electron
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19312691A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Yasufumi Yabuuchi
康文 藪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19312691A priority Critical patent/JPH0534250A/en
Publication of JPH0534250A publication Critical patent/JPH0534250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method for fabricating a sample for a transmission electron microscope at a desired position by performing composition analysis in a depth direction by means of secondary ion masses, Auger electrons or the like while etching and by stopping the etching at a desired depth position on a desired region. CONSTITUTION:Semiconductor laser of AlGaInP crystal-grown on a GaAs substrate is fixed to a reinforcing ring 8 made of stainless steel with a square hole opened, and GaAs is etched out by sulfuric etching solution. This structure is put into a secondary ion detector where Cs+ ions are used to start sputter etching. If a transmission electron microscope image only of an active layer of 0.06mum is to be observed, as the active layer does not contain Al, it is possible to stop etching on a P-AlGaInP interface of the active layer by stopping the etching at a time when no more Al ions are generated. Then a fixing jig is put upside down and Cs ions are used from a substrate side to start sputter etching, and the etching is stopped at a time when no more Al ions are detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超薄膜を作製して層構造
や結晶欠陥等を観察する透過電子顕微鏡において、所望
の位置でエッチングを停止して透過電子顕微鏡用試料を
作製する方法を提供するものである。
FIELD OF THE INVENTION The present invention provides a method for producing a sample for a transmission electron microscope by stopping etching at a desired position in a transmission electron microscope for producing an ultrathin film and observing the layer structure, crystal defects and the like. To do.

【0002】[0002]

【従来の技術】最近の半導体結晶成長技術の著しい進歩
により単原子層レベルでの結晶成長が可能となった。特
に、有機金属気相成長法(MOVPE法)や分子線エピ
タキシー法(MBE法)により、組成の異なる極めて薄
い層を積層した超格子構造を作製したり、これらの超格
子を活性領域に用いた半導体レーザや光検出器等の光デ
バイスやヘテロ構造を利用したHEMTなどの高速電子
デバイスなどが次々と開発されている。
2. Description of the Related Art Recent remarkable progress in semiconductor crystal growth technology has enabled crystal growth at the monoatomic layer level. In particular, a metal-organic vapor phase epitaxy method (MOVPE method) or a molecular beam epitaxy method (MBE method) is used to form a superlattice structure in which extremely thin layers having different compositions are stacked, or these superlattices are used in an active region. Optical devices such as semiconductor lasers and photodetectors and high-speed electronic devices such as HEMTs using a heterostructure have been developed one after another.

【0003】従来、これらのデバイスで劣化したものの
評価方法としては透過電子顕微鏡が用いられている。透
過電子顕微鏡観察用試料の作製方法としてこれまでには
図6に示すような方法が取られていた。観察すべき試料
をダミーガラス71、77で挟んで接着して1mm以下
の厚みに機械的に切断する。切断後、研磨治具を用いて
30μm以下の厚さまで薄くする。その後、イオンミリ
ング装置内に入れて数Å以下もしくは被観測領域でない
領域に小さな穴があくまでイオンエッチングを行なって
透過電子顕微鏡用試料を作製していた。
Conventionally, a transmission electron microscope has been used as a method for evaluating deterioration of these devices. As a method for producing a sample for observation with a transmission electron microscope, a method as shown in FIG. 6 has been used so far. The sample to be observed is sandwiched between dummy glasses 71 and 77 and adhered, and mechanically cut to a thickness of 1 mm or less. After cutting, it is thinned to a thickness of 30 μm or less using a polishing jig. After that, the sample was put in an ion milling machine and a small hole was ion-etched to a region of several Å or less or a region other than the observed region to prepare a sample for a transmission electron microscope.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このイ
オンエッチングにはかなりの時間を要するものもあり、
2〜3日かけて試料を作製しても被観察領域がすべてエ
ッチング除去されて観察領域でない領域だけが残ってい
て結局観察用試料ができない場合が多い。特に、InP
系の混晶などは試料作製が非常に困難である。さらに、
所定の領域を観察するために所望の位置でエッチングを
停止するのはほとんど不可能であり、少しエッチングし
ては観察できるかどうかを透過電子顕微鏡で確認しなが
ら観察用試料を作製しているのが現状である。この場合
も試料作製に時間を要する割には観察したい領域を薄膜
化するのは難しい。
However, this ion etching may take a considerable amount of time,
In many cases, even if a sample is manufactured over 2 to 3 days, the observed region is entirely removed by etching and only the non-observed region remains, so that an observation sample cannot be obtained in the end. Especially InP
It is very difficult to prepare a sample for mixed crystals of the system. further,
It is almost impossible to stop etching at a desired position in order to observe a predetermined area, and while observing with a transmission electron microscope whether or not observation is possible with a little etching, a sample for observation is prepared. Is the current situation. Even in this case, it is difficult to thin the region to be observed, although it takes time to prepare the sample.

【0005】[0005]

【課題を解決するための手段】この発明の要旨とすると
ころは、所望の微小領域を所望の深さ位置でエッチング
を停止して透過電子顕微鏡用試料を作製するものであり
深さ位置をモニターしながらエッチングを行う方法を提
供する。組成の異なる積層構造からなる半導体素子にお
いて所定の厚さまで所定の化学エッチング溶液により選
択的化学エッチング除去した後、Cs+イオンでエッチ
ング除去しながら2次イオンの質量を検出して所望の位
置でエッチングを停止して透過電子顕微鏡観察用試料の
作製する方法低真空中で中性粒子例えばArを用いてス
パッターし、中断して高真空にして試料表面に電子線を
照射して2次電子およびオージェ電子を検出して、所望
の領域および組成分析による所望の深さ位置に達してい
るかの確認を繰り返し、所望の深さ位置に達した時点で
エッチングを停止して透過電子顕微鏡用試料を作製する
方法や高真空中でArを用いてスパッターしながら、排
気ラインに設置された4重極質量分析装置を用いてスパ
ッターされた粒子の元素分析を行い、所望の位置に達し
た時点でエッチングを停止して透過電子顕微鏡用試料を
作製する方法を提供する。
The gist of the present invention is to prepare a sample for a transmission electron microscope by stopping the etching of a desired minute region at a desired depth position, and monitor the depth position. A method of performing etching while being provided. In a semiconductor device having a laminated structure of different composition, after selective chemical etching removal to a predetermined thickness with a predetermined chemical etching solution, the mass of secondary ions is detected while etching away with Cs + ions to etch at a desired position. Method of stopping and preparing sample for transmission electron microscope observation Sputtering with neutral particles such as Ar in low vacuum, suspending to high vacuum and irradiating electron beam on sample surface to secondary electron and Auger electron The method of producing a sample for a transmission electron microscope by repeatedly detecting whether a desired region and a desired depth position by composition analysis are repeated, and stopping the etching when the desired depth position is reached. Element content of particles sputtered using a quadrupole mass spectrometer installed in the exhaust line while sputtering with Ar in high vacuum or high vacuum. It was carried out, to provide a method of producing by stopping etching the transmission electron microscope specimen when it reaches the desired position.

【0006】[0006]

【作用】半導体のデバイスは通常300μm以上の厚み
を有する基板の上に結晶成長して表面から高々10μm
の厚みの領域を活性領域として使用するので、結晶成長
された半導体と基板の組成が異なりエッチングに選択性
がある場合、まず、基板のみを選択化学エッチングして
完全に除去して結晶成長膜のみとしCs+イオンもしく
はArによってスパッターエッチングしながら2次イオ
ンの質量や電子線照射により2次電子やオージェ電子あ
るいはスパッター粒子の元素を検出して所望の深さまで
エッチングすることで透過電子顕微鏡用試料を作製する
ことができる。したがって、Cs+イオンやArでのス
パッターエッチングはエッチング速度が速いだけでなく
エッチング表面は極めて平坦であり大面積にわたって観
察が可能な領域を作製することができる。
The semiconductor device normally has a crystal growth on a substrate having a thickness of 300 μm or more and a maximum of 10 μm from the surface.
When the composition of the crystal-grown semiconductor and the substrate are different and there is selectivity in etching, the region with the thickness of is used as the active region. While sputter etching with Cs + ions or Ar, secondary electron mass and electron beam irradiation detect secondary electrons, Auger electrons or elements of sputtered particles and etch to a desired depth to prepare a sample for transmission electron microscope. can do. Therefore, sputter etching with Cs + ions or Ar not only has a high etching rate, but also the etching surface is extremely flat, and a region that can be observed over a large area can be formed.

【0007】[0007]

【実施例】【Example】

(実施例1)以下に実施例を用いて本発明を説明する。
たとえば半導体デバイスの構造はGaAs基板上に結晶
成長されたAlGaInP系の半導体レーザの場合につ
いて説明する。図1はn型GaAs基板1上にSeドー
プn型GaAsバッファー層2が0.5μm、Seドー
プN型AlGaInPクラッド層3が1μm、非ドープ
GaInP活性層4が0.06μm、ZnドープP型A
lGaInPクラッド層5が1μm、Znドープp型G
aInP層6が0.2μmおよびp型GaAs層7が
0.5μm積層された赤色半導体レーザ構造で、大きさ
は縦350μm、横350μm、高さ100μmであ
る。これを、図2(a)に示すように厚さ20μmで中
心に400μm×400μmの四角の穴の開いたステン
レス製の補強リング8にエポキシ系の接着剤で固定し、
硫酸系のエッチング液(H2SO4:H 22:H2O=
1:8:1)でGaAsをエッチング除去する(図2
(b))。
(Example 1) The present invention will be described below with reference to examples.
For example, the structure of a semiconductor device is a crystal on a GaAs substrate.
In the case of grown AlGaInP semiconductor laser
And explain. FIG. 1 shows Se-doped on an n-type GaAs substrate 1.
N-type GaAs buffer layer 2 is 0.5 μm, Se doped
N-type AlGaInP cladding layer 3 is 1 μm, undoped
GaInP active layer 4 is 0.06 μm, Zn-doped P-type A
lGaInP clad layer 5 is 1 μm, Zn-doped p-type G
The aInP layer 6 is 0.2 μm and the p-type GaAs layer 7 is
Red semiconductor laser structure with 0.5 μm stacked, size
Is 350 μm in length, 350 μm in width, and 100 μm in height.
It As shown in FIG. 2 (a), this is a medium with a thickness of 20 μm.
Stainless steel with a square hole of 400 μm × 400 μm in the heart
Fix it to the reinforcement ring 8 made of LES with epoxy adhesive,
Sulfuric acid type etching solution (H2SOFour: H 2O2: H2O =
GaAs is etched away at 1: 8: 1 (Fig. 2).
(B)).

【0008】これを図3に示すような押さえリング1
1、ねじ10、支え冶具12からなる固定冶具に固定し
て、2次イオン検出装置内に入れて、図に示す矢印の方
向からCs+イオンを用いてスパッターエッチングを開
始する。固定冶具を用いる理由は補強リング8だけでは
とり扱いが不自由であるだけでなくエピ膜13が補強リ
ングの一方の面に接しているので、選択的化学エッチン
グの後2次イオン検出装置に設置したとき設置時の衝撃
あるいは補強リングのそり等で破壊する恐れがあるから
である。0.06μmの活性層のみの透過電子顕微鏡像
を観察しようとすると活性層にはAlが含まれていない
ので、例えば、表面からエッチングして図4に示すよう
にAlイオンが出なくなった時点でエッチングを停止す
ると活性層のPーAlGaInP界面でエッチングを停
止することが可能である。次に、図3に示す固定治具を
上下反対にして基板側からCsイオンを用いてスパッタ
ーエッチングを開始してAlイオンが検出されなくなっ
た時点でエッチングを停止する。こうすることによっ
て、厚さ0.06μmの活性層のみを薄膜化して透過電
子顕微鏡用試料を作製することができる。
The pressing ring 1 as shown in FIG.
It is fixed to a fixing jig composed of 1, a screw 10, and a supporting jig 12, and is put in a secondary ion detecting device, and sputter etching is started using Cs + ions from the direction of the arrow shown in the figure. The reason why the fixing jig is used is that the reinforcing ring 8 alone is not easy to handle, and the epi film 13 is in contact with one surface of the reinforcing ring, so that it is installed in the secondary ion detector after selective chemical etching. This is because there is a risk of damage due to shock during installation or warpage of the reinforcing ring when installed. When an attempt is made to observe a transmission electron microscope image of only the 0.06 μm active layer, the active layer does not contain Al. For example, when etching from the surface, Al ions are no longer generated as shown in FIG. When the etching is stopped, it is possible to stop the etching at the P-AlGaInP interface of the active layer. Next, the fixing jig shown in FIG. 3 is turned upside down to start sputter etching using Cs ions from the substrate side, and stop etching when Al ions are no longer detected. By doing so, only the 0.06 μm-thick active layer can be thinned to prepare a sample for a transmission electron microscope.

【0009】(実施例2)次に、前述の実施例に比べて
エッチングにはがかなり時間が長くかかるが測定ポイン
トを観察しながら透過電子顕微鏡用試料の作製するため
結果的には確実にほぼ100%の歩留まりで試料を作製
する方法を説明する。用いた試料は実施例1で述べたも
のと同じである。図3に示すように基板を化学エッチン
グで除去してエピ膜13のみとし、オージェ電子検出装
置が載置されているスパッターエッチング装置のなかに
入れる。走査電子顕微鏡にオージェ電子検出装置が組み
込まれているのが理想的である。Arでスパッターエッ
チングしている時は真空度が良くないので加速電子を試
料表面に照射して表面分析はできない。したがって、オ
ージェ電子による組成分析時には高真空(10-8tor
r以下)にして、スパッターエッチング時には低真空
(10-4torr程度)にするため所望の試料を作製す
るためにはかなり時間が必要であるが、走査電子顕微鏡
で表面状態やスパッター位置を観察しながらエッチング
を行える利点があり、不必要な領域のエッチングによる
汚染防止や微少領域の透過電子顕微鏡用試料の作製が可
能となった。
(Embodiment 2) Next, etching takes a considerably longer time than in the above-mentioned embodiment, but since a sample for a transmission electron microscope is produced while observing the measurement point, the result is almost certain. A method for producing a sample with a yield of 100% will be described. The sample used is the same as that described in Example 1. As shown in FIG. 3, the substrate is removed by chemical etching to form only the epi film 13, and the epitaxial film 13 is placed in a sputter etching device on which an Auger electron detection device is mounted. Ideally, the Auger electron detector is incorporated into the scanning electron microscope. Since the degree of vacuum is not good during sputter etching with Ar, the surface of the sample cannot be analyzed by irradiating the sample surface with accelerated electrons. Therefore, during composition analysis by Auger electron, high vacuum (10 -8 torr)
r) or less) and a low vacuum (about 10 −4 torr) during sputter etching requires a considerable amount of time to prepare a desired sample, but the surface condition and the sputter position are observed with a scanning electron microscope. However, it has the advantage of being able to perform etching, and it has become possible to prevent contamination by etching unnecessary areas and to prepare transmission electron microscope samples in minute areas.

【0010】これまでのイオンミリング装置によるイオ
ンエッチングではイオンがどの領域に照射されているの
かエッチング初期の段階ではほとんどわからなかったが
本発明では初期の段階から2次電子像によって確認しな
がらエッチングを行えるので無駄なエッチングは皆無と
なった。また、従来のイオンミリング装置ではイオンは
試料表面すれすれの非常に浅い角度で照射されていた
が、本発明では中性粒子やイオンの照射角度は全く気に
する必要はない。
In the ion etching by the conventional ion milling apparatus, it was hardly known in the initial stage of etching which region was irradiated with ions, but in the present invention, the etching is performed while confirming the secondary electron image from the initial stage. Since it can be done, there is no needless etching. Further, in the conventional ion milling device, the ions are irradiated at an angle that is very shallow as the surface of the sample slides, but in the present invention, it is not necessary to care about the irradiation angle of neutral particles or ions.

【0011】(実施例3)前述の2つの実施例では、深
さの位置はかなり正確に求めることが可能であり、試料
によっては正確さを必要とするものもあるが、だいたい
の位置でよい場合には4重極質量分析装置をスパッター
装置の排気ラインに設置してスッパターされた粒子の元
素分析をすることで深さ位置が求められる。以下に実施
例を説明する。 用いた試料は実施例1で述べたものと
同じである。図3に示すように基板を化学エッチングで
除去してエピ膜13のみとし、図5に示すような排気ラ
イン52に4重極質量分析装置51が載置されているス
パッターエッチング装置のなかに入れ、試料台54上に
載置する。半導体の母結晶を分析するのであるから真空
度はあまり高くなくてもよいが汚染等を考慮して10-6
torr以上の真空度は必要である。
(Embodiment 3) In the above-mentioned two embodiments, the depth position can be determined with a high degree of accuracy, and some samples require precision, but the position may be approximately the same. In this case, the depth position can be obtained by installing a quadrupole mass spectrometer in the exhaust line of the sputtering device and performing elemental analysis of the sputtered particles. Examples will be described below. The sample used is the same as that described in Example 1. As shown in FIG. 3, the substrate is removed by chemical etching to form only the epi film 13, and the epitaxial film 13 is placed in an exhaust line 52 as shown in FIG. 5 in which a quadrupole mass spectrometer 51 is placed. , And mount it on the sample table 54. Since the mother crystal of the semiconductor is analyzed, the degree of vacuum need not be so high, but 10 -6 in consideration of contamination and the like.
A vacuum degree of torr or higher is necessary.

【0012】Arイオンを図に示すような方向から試料
表面に照射する。このときの加速エネルギーは被測定材
料にもよるがエッチング速度がたとえば1μm/h程度
となるように調整される。エッチング速度があまり速い
と表面が荒れたり、所望の深さ位置でエッチングを停止
できずエッチングし過ぎる可能性がある。透過電子顕微
鏡での観察可能な試料の厚さは50nm程度以下での
で、エッチング速度はある程度遅い方が制御しやすい。
The sample surface is irradiated with Ar ions from the direction shown in the figure. The acceleration energy at this time is adjusted so that the etching rate is, for example, about 1 μm / h, although it depends on the material to be measured. If the etching rate is too high, the surface may be roughened, or the etching may not be stopped at a desired depth position and may be overetched. Since the thickness of the sample that can be observed with the transmission electron microscope is about 50 nm or less, it is easier to control if the etching rate is slower to some extent.

【0013】この場合も実施例1と同様Alが検出され
なくなった時点で素早くエッチングを停止して、反対側
のエッチングを開始する。このようにして、所望の深さ
位置でエッチングを停止して、活性層のみを取り出して
透過電子顕微鏡観察が可能となる。
Also in this case, the etching is quickly stopped when Al is no longer detected as in the first embodiment, and the etching on the opposite side is started. In this way, etching can be stopped at a desired depth position, and only the active layer can be taken out and observed with a transmission electron microscope.

【0014】[0014]

【発明の効果】このように本発明によれば、所望の領域
を所望も深さ位置までエッチングが可能であるため、特
定の層の欠陥や劣化状態の観察が可能であるとともに、
観察試料の作製方法として、ほぼ100%の歩留まりで
作製できるため、試料作製が無駄になることがほとんど
なく観察までの時間短縮に大いに効果がある。
As described above, according to the present invention, since it is possible to etch a desired region to a desired depth position, it is possible to observe defects and deteriorated states of a specific layer, and
As a method for producing an observation sample, since it can be produced with a yield of almost 100%, there is almost no waste of sample preparation, and it is very effective in shortening the time until observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いて半導体素子の層構造の斜視図で
ある。
FIG. 1 is a perspective view of a layer structure of a semiconductor device used in the present invention.

【図2】本発明に用いた被測定試料を固定するための補
強リングおよび固定方法である。
FIG. 2 is a reinforcing ring and a fixing method for fixing the sample to be measured used in the present invention.

【図3】本発明の補強リング固定台の断面図である。FIG. 3 is a sectional view of a reinforcing ring fixing base of the present invention.

【図4】本発明を用いて求めた表面からの深さ方向の位
置を示す図である。
FIG. 4 is a diagram showing positions in the depth direction from the surface obtained by using the present invention.

【図5】本発明の装置の断面図である。FIG. 5 is a cross-sectional view of the device of the present invention.

【図6】従来の試料作製方法である。FIG. 6 shows a conventional sample preparation method.

【符号の説明】[Explanation of symbols]

1 n−GaAs基板 2 n−GaAsバッファ−層 3 N−AlGaInPクラッド層 4 GaInP活性層 5 P−AlGaInPクラッド層 6 p−GaInP層 7 p−GaAsキャップ層 8 補強リング 9 エポキシ系接着剤 10 ねじ 11 押さえリング 12 支え冶具 13 エピ膜 14 Cs 50 チャンバー 51 4重極質量分析装置 52 排気ライン 54 試料台 55 イオンガン 56 のぞき窓 71 ダミーガラス 72 接着剤 74 エピ膜 75 GaAs基板 76 接着剤 77 ダミーガラス 1 n-GaAs substrate 2 n-GaAs buffer layer 3 N-AlGaInP clad layer 4 GaInP active layer 5 P-AlGaInP clad layer 6 p-GaInP layer 7 p-GaAs cap layer 8 Reinforcement ring 9 Epoxy adhesive 10 screws 11 Press ring 12 Support jig 13 Epi film 14 Cs 50 chambers 51 Quadrupole mass spectrometer 52 Exhaust line 54 sample table 55 ion gun 56 peep windows 71 dummy glass 72 Adhesive 74 Epi film 75 GaAs substrate 76 Adhesive 77 Dummy glass

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】組成の異なる積層構造からなる半導体素子
において所定の厚さまで選択的化学エッチングによりエ
ッチング除去した後、Cs+イオンでエッチング除去し
ながら2次イオンの質量を検出して所望の位置でエッチ
ングを停止して作製することを特徴とする透過電子顕微
鏡用試料の作製方法。
1. A semiconductor device having a laminated structure having different compositions is etched and removed to a predetermined thickness by selective chemical etching, and then the mass of secondary ions is detected while etching and removing with Cs + ions to etch at a desired position. A method for producing a sample for a transmission electron microscope, which comprises:
【請求項2】組成の異なる積層構造からなる半導体素子
において所定の厚さまで選択的化学エッチングによりエ
ッチング除去した後、第1の真空度でArでスパッター
エッチングを行った後、エッチングを停止し、第2の真
空度とし、前記エッチング部分に電子を照射して2次電
子およびオージェ電子を検出して、所定の位置まで前記
エッチングと前記オージェ電子の検出を繰り返して作製
することを特徴とする透過電子顕微鏡用試料の作製方
法。
2. A semiconductor element having a laminated structure of different composition is removed by selective chemical etching to a predetermined thickness, then sputter-etched with Ar at a first vacuum degree, and then etching is stopped. The transmitted electron is characterized in that the degree of vacuum is set to 2, and the etching portion is irradiated with electrons to detect secondary electrons and Auger electrons, and the etching and the Auger electron detection are repeated up to a predetermined position. Method for preparing sample for microscope.
【請求項3】組成の異なる積層構造からなる半導体素子
において所定の厚さまで選択的化学エッチングによりエ
ッチング除去した後、Arでスパッターエッチングしな
がら四重極質量分析装置を用いて元素の質量を検出して
所望の位置でエッチングを停止して作製することを特徴
とする透過電子顕微鏡用試料の作製方法。
3. A semiconductor element having a laminated structure having a different composition is etched and removed to a predetermined thickness by selective chemical etching, and then the mass of the element is detected using a quadrupole mass spectrometer while sputter etching with Ar. And a method for producing a sample for a transmission electron microscope, which is characterized in that etching is stopped at a desired position.
【請求項4】被測定試料よりも大きい穴を有するステン
レス製の補強リングにエポキシ系接着剤で前記被測定試
料を固定し、前記補強リングは押さえリング、ねじ、支
え冶具からなる固定台に固定されていることを特徴とす
る透過電子顕微鏡用試料の作製方法。
4. The sample to be measured is fixed to a stainless steel reinforcing ring having a hole larger than that of the sample to be measured with an epoxy adhesive, and the reinforcing ring is fixed to a fixing base composed of a holding ring, a screw, and a supporting jig. And a method for producing a sample for a transmission electron microscope.
JP19312691A 1991-08-01 1991-08-01 Method for preparing sample for transmission electron microscope Pending JPH0534250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19312691A JPH0534250A (en) 1991-08-01 1991-08-01 Method for preparing sample for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19312691A JPH0534250A (en) 1991-08-01 1991-08-01 Method for preparing sample for transmission electron microscope

Publications (1)

Publication Number Publication Date
JPH0534250A true JPH0534250A (en) 1993-02-09

Family

ID=16302702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19312691A Pending JPH0534250A (en) 1991-08-01 1991-08-01 Method for preparing sample for transmission electron microscope

Country Status (1)

Country Link
JP (1) JPH0534250A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0865070A1 (en) * 1997-03-10 1998-09-16 Applied Materials, Inc. Method and apparatus for sputter etch conditioning a ceramic body
US6395347B1 (en) * 1993-11-30 2002-05-28 Seiko Instruments Inc. Micromachining method for workpiece observation
CN111562280A (en) * 2020-04-26 2020-08-21 宁波市计量测试研究院(宁波市衡器管理所、宁波新材料检验检测中心) Method for testing carbon content distribution of neodymium iron boron blank
KR20220127033A (en) * 2021-03-10 2022-09-19 큐알티 주식회사 method of fabricating and analyzing of specimen structure for secondary ion mass spectrometry equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395347B1 (en) * 1993-11-30 2002-05-28 Seiko Instruments Inc. Micromachining method for workpiece observation
EP0865070A1 (en) * 1997-03-10 1998-09-16 Applied Materials, Inc. Method and apparatus for sputter etch conditioning a ceramic body
US5861086A (en) * 1997-03-10 1999-01-19 Applied Materials, Inc. Method and apparatus for sputter etch conditioning a ceramic body
CN111562280A (en) * 2020-04-26 2020-08-21 宁波市计量测试研究院(宁波市衡器管理所、宁波新材料检验检测中心) Method for testing carbon content distribution of neodymium iron boron blank
KR20220127033A (en) * 2021-03-10 2022-09-19 큐알티 주식회사 method of fabricating and analyzing of specimen structure for secondary ion mass spectrometry equipment

Similar Documents

Publication Publication Date Title
Young et al. Fabrication of planar and cross-sectional TEM specimens using a focused ion beam
US7276691B2 (en) Ion beam device and ion beam processing method
US6838685B1 (en) Ion beam apparatus, ion beam processing method and sample holder member
US7112790B1 (en) Method to prepare TEM samples
Chu et al. TEM Cross Section Sample Preparation Technique for III–V Compound Semiconductor Device Materials by Chemical Thinning
JPH0534250A (en) Method for preparing sample for transmission electron microscope
US6784427B1 (en) Samples for transmission electron microscopy
US6927174B2 (en) Site-specific method for large area uniform thickness plan view transmission electron microscopy sample preparation
JPS62213117A (en) Manufacture of semiconductor device
Hull et al. Microscopic studies of semiconductor lasers utilizing a combination of transmission electron microscopy, electroluminescence imaging, and focused ion beam sputtering
Chen et al. Study of twins in GaAs, GaP and InAs crystals
JP3536100B2 (en) Evaluation method of semiconductor device
EP0488632B1 (en) A method for growing a compound semiconductor and a method for producing a semiconductor laser
Kohmoto et al. Reduced nonradiative recombination in etched/regrown AlGaAs/GaAs structures fabricated by in situ processing
EP0275209A2 (en) A semi conductor laser device
US5248376A (en) Process for thermal-etching treatment of compound semiconductor substrate used in molecular beam epitaxy and apparatus for performing same
EP0196897A1 (en) Thermal etching of a compound semiconductor
JPH11160210A (en) Observation sample for transmission electron microscope and its preparation
JPH11329325A (en) Manufacture of mesh and thin piece of sample
JP2004271393A (en) Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method
JP2816551B2 (en) Semiconductor quantum wire creation method
Tanaka et al. Photochemical etching technique for preparing high–quality TEM samples of n–type compound semiconductors
Marcus Transmission Electron Microscopy of Semiconductor Materials and Devices
JPS5955030A (en) Evaluation of semiconductor crystal
JPH05290779A (en) Preparation of sample for transmission type electron microscope