JPH05341050A - Radiation sensing element - Google Patents

Radiation sensing element

Info

Publication number
JPH05341050A
JPH05341050A JP15098192A JP15098192A JPH05341050A JP H05341050 A JPH05341050 A JP H05341050A JP 15098192 A JP15098192 A JP 15098192A JP 15098192 A JP15098192 A JP 15098192A JP H05341050 A JPH05341050 A JP H05341050A
Authority
JP
Japan
Prior art keywords
junction
series
radiation
phonon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15098192A
Other languages
Japanese (ja)
Other versions
JP3170650B2 (en
Inventor
Masahiko Kurakado
雅彦 倉門
Toru Takahashi
徹 高橋
Atsuki Matsumura
篤樹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15098192A priority Critical patent/JP3170650B2/en
Publication of JPH05341050A publication Critical patent/JPH05341050A/en
Application granted granted Critical
Publication of JP3170650B2 publication Critical patent/JP3170650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the measuring accuracy of a radiation sensing element which measures the energy of the radiations or the photo-intensity by sensing the phonon generated in a base board by the radiations or light with superconductive tunnel couplings embodied in series or in series/parallel connections on the surface of the base board. CONSTITUTION:A radiation sensing element includes a base board 11, which is to convert radiations into phonon, and four or more superconductive tunnel couplings 12 embodied in at least one row arrangement as series connections on at least one surface area of the base board in such a way as surrounding a region 13 wider than a circle having a dia. four times as large as the thickness of the base board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導トンネル接合を用
いた放射線検出素子に関するものである。詳しく述べる
と、本発明は、超電導トンネル接合を用いた放射線、光
等の検出素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detecting element using a superconducting tunnel junction. More specifically, the present invention relates to a radiation, light, etc. detection element using a superconducting tunnel junction.

【0002】[0002]

【従来の技術】超電導トンネル接合を用いた放射線検出
素子では、従来の半導体検出素子以上の高感度とエネル
ギー高分解能が得られる可能性がある。また、いわゆる
光は放射線であるX線と同様に電磁波であり、超電導ト
ンネル接合を用いた光センサーは、遠赤外から紫外領域
までの広い波長域の光に対して高感度となり得る。
2. Description of the Related Art A radiation detecting element using a superconducting tunnel junction may have higher sensitivity and higher energy resolution than conventional semiconductor detecting elements. Further, so-called light is an electromagnetic wave like X-ray which is radiation, and an optical sensor using a superconducting tunnel junction can have high sensitivity to light in a wide wavelength range from far infrared to ultraviolet.

【0003】放射線や光の検出においては、多くの場
合、検出効率が高いことが必要とされる。1個の超電導
トンネル接合で放射線や光を直接検出する場合、あるい
は1個の接合で放射線や光で発生したフォノンを測定し
て間接的にそれらを検出する場合には、検出効率を高め
るために接合の面積を大きくすると、接合の静電容量が
接合面積に比例するために、信号電圧の大きさは接合面
積に反比例して小さくなってしまう。
In the detection of radiation and light, high detection efficiency is often required. To increase the detection efficiency when directly detecting radiation or light with a single superconducting tunnel junction or indirectly detecting phonons generated by radiation or light with a single junction When the area of the junction is increased, the capacitance of the junction is proportional to the junction area, so that the magnitude of the signal voltage decreases in inverse proportion to the junction area.

【0004】接合面積の増大に伴なう静電容量の増加を
できるだけ抑制するために考案されたのが接合を直列に
接続して1つの素子とする直列接合検出器である。直列
接合検出器では、接合部総面積S、接合部の単位面積当
たりの静電容量C0 、信号増幅器の入力静電容量や検出
素子と増幅器間の信号ケーブルの静電容量などの検出素
子に並列につながった静電容量の和C´とに応じて、直
列に接続する接合の数nをn=(SC0 /C´)1/2
最適化することにより、Sの増加に伴なう信号電圧Vs
の減少が大きく抑制できること(Vs はS1/2 に反比
例)が示されている。(特開平3−274772号;倉
門 他、Review of Scientific Instruments、Vol.62、
156〜162頁、1991年)。
A series junction detector in which the junctions are connected in series to form one element was devised in order to suppress the increase in the electrostatic capacitance due to the increase in the junction area as much as possible. In the series junction detector, the total area S of the junction, the electrostatic capacitance C 0 per unit area of the junction, the input capacitance of the signal amplifier and the detection element such as the capacitance of the signal cable between the detection element and the amplifier are used. By optimizing the number n of the junctions connected in series to n = (SC 0 / C ′) 1/2 according to the sum C ′ of the electrostatic capacitances connected in parallel, S Signal voltage V s
It is shown that the decrease of V can be greatly suppressed (V s is inversely proportional to S 1/2 ). (JP-A-3-274772; Kuramon et al., Review of Scientific Instruments, Vol. 62,
156-162, 1991).

【0005】しかしながら、従来の直列接合検出器では
接合を基板表面に一様に配置しているために、フォノン
を介して放射線を検出する場合、接合のフォノンに対す
る感度や接合の電流−電圧特性などといった接合特性の
一様性が悪いとエネルギー分解能が大幅に低下するとい
う問題があった。すなわち、放射線によって発生したフ
ォノンは多数の接合で一様に吸収されるのではなく、フ
ォノンが発生した場所から特定の方向にある比較的少数
の接合で優先的に吸収される(フォノンフォーカス効
果)。そのため、接合特性の一様性が悪いと、放射線の
エネルギーは一定でも、信号の大きさが放射線の入射位
置によって異なるためにエネルギー分解能が大幅に悪く
なるという欠点があった。
However, in the conventional series junction detector, since the junctions are uniformly arranged on the substrate surface, when radiation is detected through the phonons, the sensitivity of the junctions to the phonons, the current-voltage characteristics of the junctions, etc. When the uniformity of the joining characteristics is poor, there is a problem that the energy resolution is significantly reduced. That is, phonons generated by radiation are not uniformly absorbed by a large number of junctions, but are preferentially absorbed by a relatively small number of junctions in a specific direction from the location where the phonons are generated (phonon focus effect). .. Therefore, if the bonding characteristics are not uniform, there is a drawback in that the energy resolution is significantly deteriorated because the signal magnitude differs depending on the incident position of the radiation even if the radiation energy is constant.

【0006】また、従来の直列接合検出器では、フォノ
ンを吸収するために接合を配置する領域が放射線の入射
する領域に比べ十分広くないと、直列接合で吸収される
フォノンの量がフォノンが発生した場所に依存するた
め、逆にいえば接合を配置した領域内で接合に吸収され
ずにその外に散逸してしまうフォノンの量がフォノン発
生位置で異なってしまうために、エネルギースペクトル
が低エネルギー側に広がってしまい、この場合にもエネ
ルギー分解能が悪くなてしまう(フォノン散逸効果)。
例えば4mm×4mmの領域に直列接合を一様に配置し
た素子では、その中心にα粒子を照射した場合と中心か
ら1mm離れた場所に照射した場合とでは信号の大きさ
が約15%も異なっていた。
Further, in the conventional series junction detector, if the area where the junction is arranged to absorb the phonons is not sufficiently wider than the area where the radiation is incident, the amount of phonons absorbed in the series junction causes phonons. Since it depends on the location where the phonon is generated, the amount of phonons that are not absorbed by the junction and are dissipated outside the junction is different in the region where the junction is arranged. It spreads to the side, and the energy resolution also deteriorates in this case (phonon dissipation effect).
For example, in an element in which series junctions are uniformly arranged in a region of 4 mm × 4 mm, the magnitude of the signal is different by about 15% between when the center of the element is irradiated with α particles and when irradiation is performed at a position 1 mm away from the center. Was there.

【0007】フォノンの散逸効果の低減にはSの増大が
有効であると考えられる。しかしながら、従来の直列接
合検出器では、信号電圧は1個の接合の場合のように接
合面積Sに反比例しないものの、直列に接続する接合の
数nを最適化した場合でもSの平方根に反比例する。ま
た接合と接合との間を単に広げて接合を配置する領域を
広くしようとすれば、フォノンはその発生した場所に応
じてさらに少数の接合で優先的に吸収されることにな
り、フォノン散逸効果は低減できるもののフォノンフォ
ーカス効果によってエネルギー分解能が劣化することに
なる。そのような訳で従来の直列接合検出器には接合を
配置する領域の面積を大きくして高分解能を達成するの
は容易ではないという欠点があった。
It is considered that increasing S is effective in reducing the dissipation effect of phonons. However, in the conventional series junction detector, the signal voltage is not inversely proportional to the junction area S as in the case of one junction, but is inversely proportional to the square root of S even when the number n of junctions connected in series is optimized. .. Also, if one tries to widen the area between the junctions by widening the area between the junctions, the phonons will be preferentially absorbed by a smaller number of junctions depending on the place where the junctions occur, and the phonon dissipation effect Can be reduced, but the energy resolution is deteriorated by the phonon focusing effect. Therefore, the conventional series junction detector has a drawback that it is not easy to increase the area of the region where the junction is arranged to achieve high resolution.

【0008】[0008]

【発明が解決しようとする課題】従って本発明は、前述
のごとき従来の問題、すなわち放射線や光によって基板
で発生したフォノンを、基板の表面に一様に配置した直
列に接続した超電導トンネル接合で検出することによっ
て、放射線のエネルギーや光の強度を測定する検出素子
では、信号の大きさがフォノンの発生位置に大きく依存
してしまうために測定の精度が低いという問題を解決し
た新規な放射線検出素子を提供することを課題とするも
のである。
Therefore, the present invention provides a conventional superconducting tunnel junction in which phonons generated by radiation or light are uniformly arranged on the surface of the substrate and connected in series. A new radiation detection method that solves the problem of low measurement accuracy because the detection element that measures the energy of radiation or the intensity of light by detecting it greatly depends on the position where phonons are generated. It is an object to provide an element.

【0009】[0009]

【課題を解決しようとするための手段】上記課題を解決
するために、本発明では、放射線エネルギーをフォノン
に変換するための基板11と、その表面にフォノンのセ
ンサーとして4個以上の超電導トンネル接合を直列に接
続した直列接合12を少なくとも1列配置して構成した
放射線検出素子において、基板の厚さの4倍を直径とす
る円より広い領域に超電導トンネル接合を配置しないフ
ォノンに対する不感領域13を基板表面に設け、この不
感領域の周りに超電導トンネル接合を配置する。
In order to solve the above problems, according to the present invention, a substrate 11 for converting radiation energy into phonons and four or more superconducting tunnel junctions on the surface thereof as phonon sensors. In a radiation detecting element configured by arranging at least one series junction 12 in which the superconducting tunnel junctions are connected in series, a phonon-insensitive region 13 in which a superconducting tunnel junction is not disposed in a region wider than a circle having a diameter of four times the thickness of the substrate A superconducting tunnel junction is provided on the surface of the substrate and around this dead region.

【0010】こうすることにより、放射線などで発生し
たフォノンの大部分が基板表面で何度か散乱されてから
超電導トンネル接合に吸収されるようにできる。なお、
本発明におけるフォノン不感領域13が基板11の厚さ
の4倍を直径とする円より広いこととしたのは、もしそ
れより狭ければ、放射線によって生成されたフォノンの
うちのかなりの部分が基板の表面で散乱されることなく
接合に吸収されるようになると考えられるからである。
このフォノン不感領域13のより望ましい大きさとして
は、基板11の厚さの8倍を直径とする円より広いもの
である。
By doing so, most of the phonons generated by radiation or the like can be scattered several times on the substrate surface and then absorbed by the superconducting tunnel junction. In addition,
The reason why the phonon-insensitive region 13 in the present invention is wider than the circle having a diameter of 4 times the thickness of the substrate 11 is that if it is narrower than that, a substantial part of the phonons generated by the radiation is emitted from the substrate. This is because it is considered that they will be absorbed by the bond without being scattered on the surface of.
A more desirable size of the phonon insensitive region 13 is wider than a circle having a diameter that is eight times the thickness of the substrate 11.

【0011】[0011]

【作用】以下に本発明の作用を図面を参照しつつ説明す
る。図1および図2は本発明の放射線検出素子の一例の
構造を模式的に示す平面図および断面図である。図1お
よび図2に示す放射線検出素子においては、基板11の
一方の表面の中央部に超電導トンネル接合を配置しない
フォノンに対する不感領域13が設けられ、この不感領
域13の周りに超電導トンネル接合の直列接合12が配
置されている。なお図1において、符号14は直列接合
12に接続された信号配線を示すものである。
The operation of the present invention will be described below with reference to the drawings. 1 and 2 are a plan view and a sectional view schematically showing the structure of an example of the radiation detecting element of the present invention. In the radiation detecting element shown in FIG. 1 and FIG. 2, a dead region 13 for the phonons in which the superconducting tunnel junction is not arranged is provided at the center of one surface of the substrate 11, and the superconducting tunnel junction is connected in series around the dead region 13. The joint 12 is arranged. In FIG. 1, reference numeral 14 indicates a signal wiring connected to the serial junction 12.

【0012】図2に示すように、基板コリメーター15
の孔を通って検出素子に入射した放射線16は、基板内
で多数のフォノン17を発生させる。発生したフォノン
は基板11内を伝搬してその表面に達する。大部分のフ
ォノンはフォノン発生位置の近くの表面にまず達する
が、そこには超電導トンネル接合12はないので吸収さ
れることはなく、基板内部のいろいろな方向に反射・散
乱される。散乱されたフォノンは再び基板表面に達する
まで基板内を伝搬し、そこにも超電導トンネル接合がな
ければ再びいろいろな方向に散乱されるし、超電導トン
ネル接合12があれば高い確立で吸収される。このた
め、第1図に示したような本発明の放射線検出素子の場
合には、放射線によって生成されたフォノン17の大部
分は超電導トンネル接合12に達するまでに表面で何度
か散乱されるために特定の領域の比較的少数の接合に集
中的に吸収されることはなく、広く多数の接合によって
吸収されるために接合特性の非一様性はあまり問題とな
らない。また、フォノンの発生位置と超電導トンネル接
合とがもともと離れているために、信号の大きさのフォ
ノン発生位置への依存性が小さい。すなわち、本発明の
放射線検出素子ではフォノンフォーカス効果とフォノン
散逸効果とによるエネルギー分解能の低下を大幅に抑制
できる。
As shown in FIG. 2, the substrate collimator 15
The radiation 16 that has entered the detection element through the holes of 1 generates a large number of phonons 17 in the substrate. The generated phonons propagate in the substrate 11 and reach the surface thereof. Most of the phonons reach the surface near the phonon generation position first, but they are not absorbed because there is no superconducting tunnel junction 12, and are reflected and scattered in various directions inside the substrate. The scattered phonons propagate in the substrate until they reach the surface of the substrate again, and if there is no superconducting tunnel junction there, they are scattered in various directions again, and if the superconducting tunnel junction 12 exists, they are absorbed with high probability. Therefore, in the case of the radiation detecting element of the present invention as shown in FIG. 1, most of the phonons 17 generated by radiation are scattered several times on the surface before reaching the superconducting tunnel junction 12. In particular, the non-uniformity of the bonding characteristics does not become a problem because it is not absorbed intensively by a relatively small number of bondings in a specific region and is absorbed by a large number of bondings. Moreover, since the phonon generation position and the superconducting tunnel junction are originally separated from each other, the dependence of the signal magnitude on the phonon generation position is small. That is, in the radiation detecting element of the present invention, the reduction in energy resolution due to the phonon focusing effect and the phonon dissipation effect can be significantly suppressed.

【0013】また、本発明では、フォノンに対する不感
領域13の周りを取りまくように、不感領域13の面積
よりも小さい面積内に超電導トンネル接合の直列接合あ
るいは直並列接合を帯状に配置すれば、接合総面積は小
さく且つフォノン散逸効果によるエネルギー分解能の劣
化が小さい素子が実現できる。
Further, in the present invention, if a series junction or a series-parallel junction of superconducting tunnel junctions is arranged in a strip shape in an area smaller than the area of the dead region 13 so as to surround the dead region 13 for phonons, the junction is formed. It is possible to realize an element having a small total area and small deterioration in energy resolution due to the phonon dissipation effect.

【0014】[0014]

【実施例】本発明を実施例によりさらに具体的に説明す
る。 実施例1 厚さが0.4mmで面積が15×15mm2 のサファイ
ア基板表面の中心の9×9mm2 の領域をフォノン不感
領域とし、その周りの幅1mmの領域に300×300
μm2 のAl接合を直列に154個形成した。基板の裏
側から、コリメーターの穴を通して5.3MeVのα粒
子を照射した。コリメーターの穴はフォノン不感領域の
中心に相当する箇所に直径0.2mmのものを1つと、
それから0.5mm離れた箇所に直径0.2mmのもの
がもう1つである。信号の測定は、検出素子を約0.4
Kに冷却し、DCジョセフソン電流を抑制するために接
合面に平行に数十ガウスの磁場をかけて行った。エネル
ギースペクトルの電気雑音による広がりは、信号増幅器
のテスト入力端子からパルサーの信号を入力して評価し
た。接合特性は直列接合の電流−電圧特性で評価した
が、ギャップ電圧としては15mVという小さい値しか
得られなかった。このことはこの素子の接合特性の一様
性がかなり悪い事を示している。それにもかかわらず、
α粒子に対するエネルギー分解能は135keVであっ
た。そのうち電気雑音による広がりが116keVであ
り、エネルギー分解能は単なるノイズで殆ど決定されて
いた。従来の直列接合検出素子では、電気雑音によるエ
ネルギースペクトルの広がりが34keVと小さいとき
にも、α粒子に対するエネルギー分解能が400keV
程度と悪かった。また、α粒子による波高分布のピーク
は低エネルギー側に顕著な広がりは示しておらず、本発
明の直列接合素子ではフォノン散逸効果によるエネルギ
ー分解能の低下もほとんどないことがわかった。
EXAMPLES The present invention will be described more specifically by way of examples. Example 1 thickness area at 0.4mm is the 9 × 9 mm 2 region of the center of the 15 × 15 mm 2 of the surface of the sapphire substrate phonons dead region, 300 × 300 in the region of the width 1mm around its
154 μm 2 Al junctions were formed in series. From the back side of the substrate, 5.3 MeV α particles were irradiated through the hole of the collimator. The hole of the collimator is one with a diameter of 0.2 mm at the center of the phonon dead zone.
Another is 0.2 mm in diameter 0.5 mm away. The signal is measured with a detection element of about 0.4.
After cooling to K, a magnetic field of several tens of gauss was applied parallel to the junction surface in order to suppress the DC Josephson current. The spread of the energy spectrum due to electrical noise was evaluated by inputting the pulsar signal from the test input terminal of the signal amplifier. The junction characteristic was evaluated by the current-voltage characteristic of the series junction, but only a small value of 15 mV was obtained as the gap voltage. This indicates that the uniformity of the junction characteristics of this device is rather poor. Nevertheless,
The energy resolution for α particles was 135 keV. The spread due to electrical noise was 116 keV, and the energy resolution was mostly determined by noise. In the conventional series junction detection element, the energy resolution for α particles is 400 keV even when the spread of the energy spectrum due to electrical noise is as small as 34 keV.
It was bad. Further, it was found that the peak of the wave height distribution due to α particles did not show a significant spread on the low energy side, and that the series junction element of the present invention showed almost no decrease in energy resolution due to the phonon dissipation effect.

【0015】実施例2 本発明の放射線検出素子ではフォノン散逸効果によるエ
ネルギー分解能の低下が小さいことを更に明確にするた
め、第2の実施例として、フォノン不感領域の中心に相
当する位置とそこから3mm離れた位置に直径が0.2
mmの穴をそれぞれ1個づつあけたコリメーターを用い
て上記と同様の測定を行なった。用いた素子は、それぞ
れの接合の面積が180×180μm2 であること以外
は前記の実施例1での素子と構造も材料も同じものであ
る。この素子の場合には、電流−電圧特性でのギャップ
電圧として60mVという値が得られ、素子の接合特性
の一様性はかなり良いと考えられるものであった。この
素子でも5.3MeVのα粒子を測定したところ、電気
雑音によるエネルギースペクトルの広がりは96ke
V、コリメーターの中心の穴に対応する信号のエネルギ
ー分解能は約120keV、2つの穴に対応する信号の
大きさの差は約100keVであった。すなわち、この
素子ではα粒子がフォノン不感領域の中心に入射した場
合とそこから3mm離れた場所に入射した場合で信号の
大きさがせいぜい2%しか違っていなかった。従来の直
列接合素子では中心からわずか1mm離れた場所に入射
したα粒子による信号は中心に入射したものによる信号
より約15%も小さかったのと比較することにより、本
発明の効果が顕著であることが明らかである。
Example 2 In order to further clarify that the radiation detecting element of the present invention has a small decrease in energy resolution due to the phonon dissipation effect, as a second example, a position corresponding to the center of the phonon insensitive region and The diameter is 0.2 at 3mm apart.
The same measurement as above was carried out using a collimator having one mm hole each. The element used has the same structure and material as the element in Example 1 except that the area of each junction is 180 × 180 μm 2 . In the case of this element, a value of 60 mV was obtained as the gap voltage in the current-voltage characteristic, and it was considered that the uniformity of the junction characteristic of the element was quite good. Also in this device, when a 5.3 MeV α particle was measured, the spread of the energy spectrum due to electric noise was 96 ke.
V, the energy resolution of the signal corresponding to the center hole of the collimator was about 120 keV, and the difference in the magnitude of the signals corresponding to the two holes was about 100 keV. That is, in this device, the signal magnitudes differed by at most 2% when the α particles were incident on the center of the phonon insensitive region and when they were incident 3 mm away from the center. The effect of the present invention is remarkable by comparing with the conventional series-junction element that the signal due to the α-particles incident only 1 mm away from the center was about 15% smaller than the signal due to the incident at the center. It is clear.

【0016】実施例3 不感領域を小さくしたときにエネルギー分解能がどうな
るかを調べるため、第3の実施例として、厚さが0.4
mmで面積が15×15mm2 のサファイア基板表面の
中心の2×2mm2 の領域をフォノン不感領域とし、そ
の周りの幅5mmの領域に180×180μm2 のAl
接合を120個直列にしたものを並列に4列、すなわち
合計480個配置した。コリメーターの直径0.4mm
の穴を通して基板裏側中心のみに5.3MeVのα粒子
を照射した。電気雑音によるエネルギースペクトルの広
がりは約180keV、α粒子に対するエネルギー分解
能は約200keVであった。すなわち、フォノン不感
領域は2×2mm2 と狭くとも、フォノンの発生位置と
接合までの距離が基板の厚さより十分大きければ本発明
の効果は大きいことが明らかとなった。
Example 3 In order to examine what happens to the energy resolution when the dead area is reduced, as a third example, the thickness is 0.4
area in mm is the 2 × 2 mm 2 in the region of the center of the 15 × 15 mm 2 of the surface of the sapphire substrate phonons dead region, Al region of 180 × 180 [mu] m 2 of 5mm wide around it
120 junctions in series were arranged in parallel in 4 rows, that is, 480 in total. Collimator diameter 0.4mm
Only the center of the back side of the substrate was irradiated with α particles of 5.3 MeV through the holes. The spread of the energy spectrum due to electrical noise was about 180 keV, and the energy resolution for α particles was about 200 keV. That is, it was revealed that even if the phonon insensitive region is as narrow as 2 × 2 mm 2 , the effect of the present invention is great if the distance between the phonon generation position and the junction is sufficiently larger than the thickness of the substrate.

【0017】なお、これらの実施例では基板の裏側から
放射線を入射したが、直列接合を形成した表側から放射
線を入射しても良いことは当然である。また、基板の両
面に直列接合を形成しても良いことも当然である。
Although the radiation is incident from the back side of the substrate in these embodiments, it goes without saying that the radiation may be incident from the front side on which the series junction is formed. Further, it goes without saying that series bonding may be formed on both surfaces of the substrate.

【0018】放射線エネルギーをフォノンに変換するた
めに基板としては、発生したフォノンのエネルギーの減
衰が小さいものが好ましい。そのためには基板としては
超電導体あるいは半導体あるいは絶縁体の単結晶が適し
ていると考えられるが、その他の材料であってもフォノ
ンのエネルギーの減衰が小さいものであれば良い。
For converting the radiation energy into phonons, it is preferable that the substrate has a small attenuation of the generated phonon energy. For that purpose, a single crystal of a superconductor, a semiconductor or an insulator is considered to be suitable for the substrate, but other materials may be used as long as the attenuation of phonon energy is small.

【0019】[0019]

【発明の効果】以上述べたように、本発明は直列接合検
出素子での接合特性の非一様性とフォノンフォーカス効
果によるエネルギー分解能の劣化とフォノン散逸効果に
よるエネルギー分解能の劣化とを同時に低減することを
可能とし、超電導トンネル接合の直列素子および直並列
素子のエネルギー分解能を大幅に向上させる効果があ
る。
As described above, the present invention simultaneously reduces the nonuniformity of the junction characteristics in the series junction detection element and the deterioration of the energy resolution due to the phonon focusing effect and the deterioration of the energy resolution due to the phonon dissipation effect. This makes it possible to significantly improve the energy resolution of the series element and the series-parallel element of the superconducting tunnel junction.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の放射線検出素子の一例の構造を示す
平面図であり、
FIG. 1 is a plan view showing a structure of an example of a radiation detecting element of the present invention,

【図2】は本発明の放射線検出素子の一例の構造を示す
断面図である。
FIG. 2 is a sectional view showing a structure of an example of a radiation detecting element of the present invention.

【符号の説明】[Explanation of symbols]

11…サファイア基板、12…超電導トンネル接合の直
列接合、13…フォノン不感領域、14…信号配線、1
5…コリメーター、16…α粒子、17…放射線によっ
て発生したフォノン。
11 ... Sapphire substrate, 12 ... Series junction of superconducting tunnel junction, 13 ... Phonon insensitive region, 14 ... Signal wiring, 1
5 ... Collimator, 16 ... Alpha particle, 17 ... Phonon generated by radiation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線のエネルギーをフォノンに変換す
るための基板と、その表面にフォノンのセンサーとして
4個以上の超電導トンネル接合を直列に接続した直列接
合を少なくとも1列配置して構成した放射線検出素子に
おいて、基板表面に超電導トンネル接合を配置しないフ
ォノンに対する不感領域を設け、この不感領域の周りに
超電導トンネル接合を配置し、前記不感領域が基板の厚
さの4倍を直径とする円より広いことを特徴とする放射
線検出素子。
1. A radiation detector comprising a substrate for converting energy of radiation into phonons, and at least one row of serial junctions in which at least four superconducting tunnel junctions are connected in series as phonon sensors on the surface of the substrate. In the device, an insensitive region for phonons in which no superconducting tunnel junction is arranged is provided on the surface of the substrate, and the superconducting tunnel junction is arranged around this insensitive region, and the insensitive region is wider than a circle whose diameter is four times the thickness of the substrate. A radiation detecting element characterized by the above.
JP15098192A 1992-06-10 1992-06-10 Radiation detection element Expired - Fee Related JP3170650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15098192A JP3170650B2 (en) 1992-06-10 1992-06-10 Radiation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15098192A JP3170650B2 (en) 1992-06-10 1992-06-10 Radiation detection element

Publications (2)

Publication Number Publication Date
JPH05341050A true JPH05341050A (en) 1993-12-24
JP3170650B2 JP3170650B2 (en) 2001-05-28

Family

ID=15508681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15098192A Expired - Fee Related JP3170650B2 (en) 1992-06-10 1992-06-10 Radiation detection element

Country Status (1)

Country Link
JP (1) JP3170650B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061212A (en) * 2002-07-26 2004-02-26 Masahiko Kurakado Superconductor radiation sensor system
JP2009168827A (en) * 2009-05-01 2009-07-30 Masahiko Kurakado Superconductor radiation sensor system
JP2013171994A (en) * 2012-02-21 2013-09-02 Nippon Signal Co Ltd:The Superconducting tunnel junction detector
JP2013171993A (en) * 2012-02-21 2013-09-02 Nippon Signal Co Ltd:The Superconducting tunnel junction detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061212A (en) * 2002-07-26 2004-02-26 Masahiko Kurakado Superconductor radiation sensor system
JP4631102B2 (en) * 2002-07-26 2011-02-16 雅彦 倉門 Superconductor radiation sensor system
JP2009168827A (en) * 2009-05-01 2009-07-30 Masahiko Kurakado Superconductor radiation sensor system
JP2013171994A (en) * 2012-02-21 2013-09-02 Nippon Signal Co Ltd:The Superconducting tunnel junction detector
JP2013171993A (en) * 2012-02-21 2013-09-02 Nippon Signal Co Ltd:The Superconducting tunnel junction detector

Also Published As

Publication number Publication date
JP3170650B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
JP3411580B2 (en) Ionizing radiation detector
US5821539A (en) Fast operating radiation detector and method for operating same
JP2799036B2 (en) Radiation detection element and radiation detector
CN109414231B (en) Method for determining misalignment of an X-ray detector
Petersson et al. Position sensitive light detectors with high linearity
Lu et al. First results of a Double-SOI pixel chip for X-ray imaging
JP3170650B2 (en) Radiation detection element
TWI782784B (en) Imaging systems and imaging methods
TWI813940B (en) Imaging system and operating method thereof
JPH0446471B2 (en)
Bolotnikov et al. Development of high spectral resolution CdZnTe pixel detectors for astronomical hard X-ray telescopes
d'Amen et al. Signal formation and sharing in AC-LGADs using the ALTIROC 0 front-end chip
US3524985A (en) Composite solid state radiation detector
RU2248012C2 (en) Low-energy gamma-ray emission and x-ray radiation registrar
Chesi et al. Performance of a 256 pad hybrid photon detector for ring imaging
JP2564979B2 (en) Radiation detector
JP3561788B2 (en) Radiation detection element and radiation detector
US5254850A (en) Method and apparatus for improving photoconductor signal output utilizing a geometrically modified shaped confinement region
Tomita et al. Infrared light charge injector as a tool for the study of silicon detectors
Fujieda et al. Detection of charged particles in thick hydrogenated amorphous silicon layers
US4166218A (en) P-i-n diode detector of ionizing radiation with electric field straightening
D’amen et al. First Characterization of AC-LGAD Sensors using a Readout ASIC
Ripamonti et al. 2: a new semiconductor device for positron-sensitive picosecond detection of single optical photons
JPS5893292A (en) Manufacture of semiconductor radiation detector
Heijne et al. A fast high resolution beam hodoscope using silicon microstrip detectors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees