JPH05340960A - Multi-dimensional acceleration sensor - Google Patents

Multi-dimensional acceleration sensor

Info

Publication number
JPH05340960A
JPH05340960A JP4149284A JP14928492A JPH05340960A JP H05340960 A JPH05340960 A JP H05340960A JP 4149284 A JP4149284 A JP 4149284A JP 14928492 A JP14928492 A JP 14928492A JP H05340960 A JPH05340960 A JP H05340960A
Authority
JP
Japan
Prior art keywords
electrode
movable electrode
acceleration
fixed
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4149284A
Other languages
Japanese (ja)
Inventor
Masahiro Matsumoto
昌大 松本
Kiyomitsu Suzuki
清光 鈴木
Masayuki Miki
正之 三木
Shigeki Tsuchiya
茂樹 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4149284A priority Critical patent/JPH05340960A/en
Publication of JPH05340960A publication Critical patent/JPH05340960A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a highly accurate downsized multi-dimensional acceleration sensor. CONSTITUTION:Fixed electrodes 101-112 are disposed oppositely to respective faces of a regular hexahedral movable electrode 100. The fixed electrodes impart electrostatic servo power to the movable electrode 100 which is thereby levitated in the center of a space section surrounded by the fixed electrodes 101-112. When the movable electrode 100 makes a displacement in response to multi- dimensional acceleration, an electrostatic servo control system detects variation of capacitances of the movable electrode and respective fixed electrodes and provides each fixed electrode with an electrostatic servo control signal for returning the movable electrode to a reference position (i.e., the center of space section between fixed electrodes). Multi-dimensional acceleration is detected by processing the electrostatic servo signal or the signal representative of variation of capacitance between fixed electrodes or movable electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多次元の加速度を検出す
る加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting multidimensional acceleration.

【0002】[0002]

【従来の技術】従来の多次元加速度センサについては、
特開昭63−118667号公報に記載される3次元加
速度センサのように、元々は1次元の加速度センサを3
個用意して、これらを立方体の直交3面に個々に取り付
けて3次元の加速度を検出するようなものであった。
2. Description of the Related Art Regarding conventional multidimensional acceleration sensors,
Originally, a three-dimensional acceleration sensor such as the three-dimensional acceleration sensor disclosed in JP-A-63-118667 is used.
It was like individually preparing and individually mounting these on three orthogonal planes of a cube to detect a three-dimensional acceleration.

【0003】なお、加速度センサとして代表的なものに
静電容量式の加速度センサがある。これは、加速度に応
答して変位する可動電極をビームやダイヤフラムなどで
弾性支持し、この可動電極を介在させた状態で固定電極
を対向配置させ、可動電極の変位を各固定電極・可動電
極間の静電容量の差でとらえて加速度を検出したり、上
記静電容量差の変化からこの可動電極を基準位置に拘束
しようとする静電サーボ(静電気力)制御信号を発生さ
せ、この静電サーボ制御信号から加速度を検出する。そ
の他にも、歪ゲージ式加速度センサなど種々のものが提
案されている。
Incidentally, as a typical acceleration sensor, there is a capacitance type acceleration sensor. This is because the movable electrode that displaces in response to acceleration is elastically supported by a beam or diaphragm, and the fixed electrode is placed oppositely with this movable electrode interposed, and the displacement of the movable electrode is fixed between each fixed electrode and movable electrode. The acceleration is detected by detecting the difference in electrostatic capacitance between the electrodes, and an electrostatic servo (electrostatic force) control signal is generated to try to restrain the movable electrode at the reference position based on the change in the electrostatic capacitance difference. Acceleration is detected from the servo control signal. In addition, various types such as a strain gauge type acceleration sensor have been proposed.

【0004】[0004]

【発明が解決しようとする課題】ところで、加速度セン
サは一般的に小型軽量であることが要求される。これは
加速度センサが使われる用途が航空機,ロケットあるい
は自動車等であり,各部品の実装面積や重量に対する要
求が非常に厳しくなっているためである。上記従来技術
は単に1次元の加速度センサを3個組合せたに過ぎず,
小型化という面では不満足なものであった。
The acceleration sensor is generally required to be small and lightweight. This is because the applications for which the acceleration sensor is used are aircraft, rockets, automobiles, etc., and the requirements for the mounting area and weight of each component are becoming extremely strict. The above-mentioned prior art merely combines three one-dimensional acceleration sensors,
It was unsatisfactory in terms of downsizing.

【0005】また、多次元加速度センサとしては、微
弱,低周波の加速度を高精度に検出でき、その意味で加
速度に応答する質量部(例えば静電容量式加速度センサ
の場合には可動電極)が高感度であること、しかも各次
元の検出加速度の直交性が高いものが要求される。しか
し、上記のように元々が1次元加速度センサであったも
のを立方体の直交三面にばらに取付ける場合には、その
直交三軸(x軸,y軸,z軸)の位置合わせを精度良く
行なうのが難しい問題があった。
Further, as a multidimensional acceleration sensor, a mass portion (for example, a movable electrode in the case of a capacitance type acceleration sensor) that can detect weak and low-frequency acceleration with high accuracy and responds to the acceleration in that sense is provided. High sensitivity and high orthogonality of detected acceleration in each dimension are required. However, when the original one-dimensional acceleration sensor is randomly attached to the three orthogonal surfaces of the cube as described above, the three orthogonal axes (x axis, y axis, z axis) are accurately aligned. I had a difficult problem.

【0006】本発明は以上の点に鑑みてなされ、その目
的は、多次元加速度センサの小型軽量化を図り、しか
も、高精度の加速度検出を実現させることにある。
The present invention has been made in view of the above points, and an object of the present invention is to reduce the size and weight of a multidimensional acceleration sensor and to realize highly accurate acceleration detection.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、基本的には次のような課題解決手段を提案
する。
In order to achieve the above object, the present invention basically proposes the following means for solving problems.

【0008】一つは、静電容量式の加速度センサにおい
て、直六面体の可動電極の各面に対向して固定電極が配
置され、これらの固定電極から前記可動電極に該可動電
極を前記固定電極で囲まれる空間部中央に浮いた状態で
位置させる静電気力が与えられ、且つ前記可動電極が多
次元の加速度に応答して変位すると前記可動電極・各固
定電極の静電容量の変化をとらえて前記可動電極を基準
位置(ここで基準位置とは前記固定電極間の空間部中央
である)に戻すための静電気力を発生させる静電サーボ
制御信号を形成して、この静電サーボ制御信号を前記各
固定電極に印加する静電サーボ制御系とを備え、この静
電サーボ制御信号或いは各固定電極・可動電極間の静電
容量の変化を示す信号を処理して多次元の加速度を検出
するよう設定して成る(これを第1の課題解決手段とす
る)。
One is a capacitance type acceleration sensor in which fixed electrodes are arranged so as to face each surface of a movable electrode of a rectangular parallelepiped, and the fixed electrodes are connected to the fixed electrodes from the fixed electrodes. When an electrostatic force is applied to float in the center of the space surrounded by, and the movable electrode is displaced in response to multidimensional acceleration, the change in electrostatic capacitance of the movable electrode and each fixed electrode is detected. An electrostatic servo control signal for generating an electrostatic force for returning the movable electrode to the reference position (here, the reference position is the center of the space between the fixed electrodes) is formed, and the electrostatic servo control signal is generated. An electrostatic servo control system applied to each of the fixed electrodes is provided, and a multidimensional acceleration is detected by processing the electrostatic servo control signal or a signal indicating a change in electrostatic capacitance between each fixed electrode / movable electrode. To set That (referred to as first means for solving problems).

【0009】もう一つは、静電容量式の加速度センサに
おいて、加速度に応答して変位する可動電極と、この可
動電極に対向して縦列,横列にそれぞれ2個づつ配置さ
れる固定電極とを備えて成る(これを第2の課題解決手
段とする)。
The other is, in an electrostatic capacitance type acceleration sensor, a movable electrode that is displaced in response to acceleration, and two fixed electrodes that are arranged in a row and a row, respectively, facing the movable electrode. It is provided (this is a second means for solving problems).

【0010】もう一つは、静電容量式の加速度センサに
おいて、加速度に応答して変位する2個の可動電極と、
これらの可動電極にそれぞれ対向して配置される複数個
の固定電極とを備えて成る(これを第3の課題解決手段
とする)。
The other is an electrostatic capacitance type acceleration sensor, in which two movable electrodes which are displaced in response to acceleration,
A plurality of fixed electrodes are arranged so as to face each of these movable electrodes (this is referred to as a third problem solving means).

【0011】もう一つは、静電容量式の加速度センサに
おいて、加速度に対応して上下左右に変位する可動電極
と、この可動電極の上下面にそれぞれ対向して配置され
る固定電極とを備え、前記可動電極の左右面と上下面と
を、或いは左右面又は上下面を櫛歯状の電極面とし、一
方、固定電極のうち可動電極の櫛歯状の電極面と対向す
る電極面を櫛歯状として前記可動電極の櫛歯状電極と微
小空隙を保ちつつ噛み合うように設定して成る(これを
第4の課題解決手段とする)。
The other is an electrostatic capacitance type acceleration sensor, which is provided with movable electrodes which are vertically and horizontally displaced in response to acceleration, and fixed electrodes which are arranged to face the upper and lower surfaces of the movable electrodes, respectively. The left and right surfaces and the upper and lower surfaces of the movable electrode, or the left and right surfaces or the upper and lower surfaces are comb-teeth-shaped electrode surfaces, and the electrode surface of the fixed electrode facing the comb-teeth-shaped electrode surface of the movable electrode is comb-shaped. The teeth are formed so as to mesh with the comb-shaped electrodes of the movable electrode while maintaining a minute gap (this is a fourth problem solving means).

【0012】もう一つは、直六面体と、この直六面体の
3面〜6面に対応する複数個の面を一体成形して成るフ
レキシブルプリント基板と、2〜3個の加速度センサと
を備え、前記フレキシブルプリント基板の各面が前記直
六面体の対応する面に折り曲げられて固着され、且つこ
のフレキシブル基板の直交する2面〜3面の各面ごとに
前記加速度センサが個々に実装されて成る(これを第5
の課題解決手段とする)。
The other is provided with a rectangular parallelepiped, a flexible printed board formed by integrally molding a plurality of surfaces corresponding to the surfaces 3 to 6 of the rectangular parallelepiped, and a couple of acceleration sensors. Each surface of the flexible printed circuit board is bent and fixed to the corresponding surface of the rectangular parallelepiped, and the acceleration sensor is individually mounted on each of the two to three orthogonal surfaces of the flexible printed circuit board ( This is the fifth
To solve the problem).

【0013】[0013]

【作用】第1の課題解決手段の作用…可動電極の直六面
を囲むそれぞれの固定電極には、静電サーボ制御信号
(電圧)が印加されて、各固定電極から可動電極に働く
静電気力と可動電極との質量が均衡し、可動電極がビー
ムのような支持部材無しで固定電極で囲まれる空間中央
(基準位置)に浮いた状態で保たれる。
Operation of the first problem solving means: An electrostatic servo control signal (voltage) is applied to each fixed electrode surrounding the straight six sides of the movable electrode, and an electrostatic force acting on the movable electrode from each fixed electrode. The mass of the movable electrode is balanced with that of the movable electrode, and the movable electrode is kept floating in the center of the space (reference position) surrounded by the fixed electrode without a supporting member such as a beam.

【0014】この状態で、可動電極に3次元の加速度が
作用すると、可動電極と静電気力の均衡がくずれ、可動
電極はその加速度方向に応答して変位する。
When three-dimensional acceleration acts on the movable electrode in this state, the movable electrode and the electrostatic force are out of balance, and the movable electrode is displaced in response to the acceleration direction.

【0015】すると、静電サーボ制御系は、この変位を
可動電極・各固定電極間の静電容量の変化からとらえ
て、各固定電極に可動電極を基準位置に戻すための静電
サーボ制御信号を印加する。これにより、可動電極に作
用する慣性力(加速度に比例する力)と各固定電極から
可動電極に働く静電気力の差分が釣合って、可動電極は
基準位置に戻るよう拘束される。
Then, the electrostatic servo control system detects this displacement from the change in the electrostatic capacitance between the movable electrode and each fixed electrode, and then causes each fixed electrode to return the movable electrode to the reference position by an electrostatic servo control signal. Is applied. This balances the difference between the inertial force acting on the movable electrode (force proportional to the acceleration) and the electrostatic force acting on the movable electrode from each fixed electrode, and the movable electrode is constrained to return to the reference position.

【0016】従って、前記静電サーボ制御信号を求める
ことにより、或いは可動電極・各固定電極間の静電容量
の変化を示す信号から3次元の加速度を検出できる。
Therefore, the three-dimensional acceleration can be detected by obtaining the electrostatic servo control signal or from the signal indicating the change in electrostatic capacitance between the movable electrode and each fixed electrode.

【0017】また、直六面体の可動電極は、ビーム無し
で浮いた状態にあるので、3次元空間における回転加速
度に対しても応答して回転変位できる。このような変位
に対しては、直六面体の可動電極に対向配置される固定
電極を、それぞれ2個づつ平行配置すれば、上記同様に
可動電極・各固定電極の静電容量の変化からこの回転変
位とらえることができる。
Further, since the rectangular parallelepiped movable electrode is in a floating state without a beam, it can be rotationally displaced in response to rotational acceleration in a three-dimensional space. For such a displacement, if two fixed electrodes facing the movable electrode of the rectangular parallelepiped are arranged in parallel with each other, the rotation is caused by the change in the electrostatic capacitance of the movable electrode and each fixed electrode as described above. It can be regarded as displacement.

【0018】そして、この回転変位(ねじりモーメン
ト)と釣り合う静電気力差が可動電極・各固定電極間に
発生するような静電サーボ制御信号を生成して各固定電
極に印加すれば、可動電極は基準位置に戻るように拘束
され、上記同様にこの静電サーボ制御信号或いは可動電
極・各固定電極間の静電容量の変化を示す信号から3次
元の回転加速度を検出できる。
If an electrostatic servo control signal is generated and applied to each fixed electrode such that an electrostatic force difference that balances this rotational displacement (torsional moment) is generated between the movable electrode and each fixed electrode, the movable electrode is The three-dimensional rotational acceleration can be detected from the electrostatic servo control signal or the signal indicating the change in the electrostatic capacitance between the movable electrode and each fixed electrode, as described above, while being constrained to return to the reference position.

【0019】第2の課題解決手段の作用…本課題解決手
段では、一つの可動電極に対向する固定電極を縦列,横
列にそれぞれ2個ずつ配置したので、少なくとも一軸方
向(1次元)の加速度を検出できると共に、少なくとも
1軸を中心にした回転加速度に対して可動電極が応答し
て変位した場合も、横列,縦列の固定電極のそれぞれが
可動電極と協働して、それらの静電容量の変化から可動
電極の回転変位の情報を取り込めるので、これを信号処
理すれば、回転加速度を検出できる。なお、回転加速度
の検出は、上記第1の課題解決手段同様に、静電サーボ
制御信号或いは静電容量の変化から検出すればよい。
Operation of the second problem-solving means: In this problem-solving means, since two fixed electrodes opposed to one movable electrode are arranged in each of the vertical and horizontal rows, acceleration in at least one axial direction (one-dimensional) is obtained. Even if the movable electrodes can be detected and are displaced in response to rotational acceleration about at least one axis, each of the fixed electrodes in the rows and columns cooperates with the movable electrodes to detect the capacitance of them. Since the information on the rotational displacement of the movable electrode can be fetched from the change, the rotational acceleration can be detected by processing this information. The rotational acceleration may be detected from the change in the electrostatic servo control signal or the electrostatic capacitance, as in the first problem solving means.

【0020】第3の課題解決手段の作用…本課題解決手
段では、加速度に応答して変位する2個の可動電極を有
することで、少なくとも1軸方向の加速度に対しての加
速度を検出できると共に、1軸を中心にした回転加速度
に対しては2個の可動電極が異なる変位をとることで、
これらの各可動電極・固定電極の静電容量の変化から回
転加速度を検出できる。この場合の加速度検出も、静電
サーボ制御信号或いは静電容量の変化から検出すればよ
い。
Operation of the third means for solving the problems: In this means for solving the problems, by having two movable electrodes that are displaced in response to the acceleration, it is possible to detect the acceleration with respect to the acceleration in at least one axis direction. By the two movable electrodes having different displacements with respect to the rotational acceleration about the one axis,
Rotational acceleration can be detected from changes in the electrostatic capacitances of these movable electrodes and fixed electrodes. The acceleration detection in this case may also be detected from the electrostatic servo control signal or the change in the electrostatic capacitance.

【0021】第4の課題解決手段の作用…本課題解決手
段においては、2次元の加速度を検出可能であり、特
に、固定電極と可動電極とを櫛歯状に対向させることか
ら、対向電極面積を広くとることができ、小さな印加電
圧(静電サーボ制御信号)で、固定電極から可動電極に
充分なサーボ用の静電気力を働かせることができる。
Action of Fourth Problem Solving Means ... In this problem solving means, two-dimensional acceleration can be detected. In particular, since the fixed electrode and the movable electrode are opposed to each other in a comb shape, the area of the counter electrode is large. Therefore, it is possible to apply a sufficient electrostatic force for servo from the fixed electrode to the movable electrode with a small applied voltage (electrostatic servo control signal).

【0022】第5の課題解決手段の作用…今まで述べた
第1〜第3の課題解決手段は、一つのセンサで多次元
(直線方向の加速度に回転加速度を加えたものを含む)
の加速度を検出するが、本課題解決手段では、加速度セ
ンサそのものは複数個(2個或いは3個)用いられる。
Action of Fifth Problem Solving Means ... The first to third problem solving means described so far are multidimensional with one sensor (including one in which linear acceleration is added to rotational acceleration).
The acceleration is detected, but in this problem solving means, a plurality (two or three) of acceleration sensors themselves are used.

【0023】これらの加速度センサは、フレキシブルプ
リント基板の複数面(3〜6面)のうち所定の面(互い
に直交する2面〜3面)に個々に実装される。残りのフ
レキシブルプリント基板の残りの面は遊び又はリード線
などの配線として使用可能となる。
These acceleration sensors are individually mounted on a predetermined surface (two to three surfaces orthogonal to each other) of a plurality of surfaces (three to six surfaces) of the flexible printed circuit board. The remaining surface of the remaining flexible printed circuit board can be used as play or wiring such as a lead wire.

【0024】そして、このフレキシブルプリント基板の
うち、所定の面に実装される加速度センサは、予め加速
度センサの実装位置が直交三軸となるように設計してお
き、フレキシブルプリント基板のすべての面を直角に折
り曲げて、その折り曲げ線を直六面体(この直六面体は
加速度検出位置にセットされる)のコーナと位置合わせ
しつつフレキシブルプリント基板を接着剤などで固着す
ると、自ずと各加速度センサが直交三軸上に高精度にセ
ットされる。したがって、従来のような加速度センサを
直接、直六面体にばらに取付ける場合に生じる、センサ
位置ずれの問題を解消できる。
The acceleration sensor mounted on a predetermined surface of the flexible printed circuit board is designed in advance so that the mounting positions of the acceleration sensor are orthogonal to each other on three axes, and all surfaces of the flexible printed circuit board are mounted. If you fold it at a right angle and align the fold line with the corner of the straight hexahedron (which is set at the acceleration detection position) and fix the flexible printed circuit board with an adhesive, etc. Highly set on top. Therefore, it is possible to solve the problem of sensor misalignment that occurs when the conventional acceleration sensor is directly and loosely attached to the rectangular parallelepiped.

【0025】そして、これらの加速度センサがそれぞ
れ、各自の取付位置における軸方向の加速度を検出する
ことで、2次元又は3次元の多次元の加速度を可能にす
る。
Each of these acceleration sensors detects the acceleration in the axial direction at its own mounting position, thereby enabling two-dimensional or three-dimensional multi-dimensional acceleration.

【0026】[0026]

【実施例】本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

【0027】まず、実施例の説明に先立ち、図2に示す
従来の1次元PWM(パルス幅変調)静電サ−ボ型の静
電容量式加速度センサを用いて、静電容量式加速度セン
サの動作原理について説明しておく。
First, prior to the description of the embodiment, a conventional one-dimensional PWM (pulse width modulation) electrostatic servo type electrostatic capacitance type acceleration sensor shown in FIG. The operating principle will be described.

【0028】図2における検出部200は、ビ−ム20
4よって支持される可動電極201と、可動電極201
を介在させた状態で、この可動電極201の平行する2
面に微小空隙を保ちつつ対向配置される2個の固定電極
202,203より成る。
The detection unit 200 in FIG.
And the movable electrode 201 supported by the movable electrode 201.
2 of the movable electrodes 201 in parallel with each other.
The two fixed electrodes 202 and 203 are arranged so as to be opposed to each other while keeping a minute gap on the surface.

【0029】可動電極201とビーム204は、例えば
シリコンなどの半導体を微細加工してなり、固定電極2
02,203は導電性の金属材料で構成してある。
The movable electrode 201 and the beam 204 are formed by finely processing a semiconductor such as silicon, and the fixed electrode 2
02 and 203 are made of a conductive metal material.

【0030】この検出部200に上下方向の加速度が働
くと、可動電極201は加速度に応じて上下に変位す
る。
When a vertical acceleration is applied to the detecting section 200, the movable electrode 201 is vertically displaced according to the acceleration.

【0031】サーボ制御系は、容量検出器205,増幅
器206,パルス幅変調器207,駆動ゲ−ト208,
209より成る。
The servo control system includes a capacitance detector 205, an amplifier 206, a pulse width modulator 207, a drive gate 208,
It consists of 209.

【0032】容量検出器205は、固定電極202・可
動電極201間の静電容量と固定電極203・可動電極
201間の静電容量の差△Cを検出する。容量検出器2
05の出力は、増幅器206により増幅され、パルス幅
変調器207により増幅器206の出力に応じたデュ−
ティの矩形波(静電サーボ制御信号)を発生する。
The capacitance detector 205 detects a difference ΔC between the electrostatic capacitance between the fixed electrode 202 and the movable electrode 201 and the electrostatic capacitance between the fixed electrode 203 and the movable electrode 201. Capacitance detector 2
The output of No. 05 is amplified by the amplifier 206, and the pulse width modulator 207 outputs the duty corresponding to the output of the amplifier 206.
Generates a tee rectangular wave (electrostatic servo control signal).

【0033】この矩形波を駆動ゲ−ト208により反転
して固定電極203に印加し、固定電極203・可動電
極201間に静電気力を働かせると共に、駆動ゲ−ト2
08,209により増幅器206の矩形波を固定電極2
02に印加し、固定電極202・可動電極201間に静
電気力を働かせる。
This rectangular wave is inverted by the drive gate 208 and applied to the fixed electrode 203 to exert an electrostatic force between the fixed electrode 203 and the movable electrode 201, and at the same time, the drive gate 2
08 and 209, the rectangular wave of the amplifier 206 is applied to the fixed electrode 2
02 to apply an electrostatic force between the fixed electrode 202 and the movable electrode 201.

【0034】可動電極201に固定電極202と203
から働く静電気力の差分は矩形波のデュ−ティに比例す
る。従って、可動電極201・固定電極202間と可動
電極201・固定電極203間の静電容量の差分△Cが
零になるように、静電サーボ制御信号(矩形波及びその
反転信号)を固定電極202と203へ印加すれば、可
動電極201に働く慣性力(加速度に比例する力)と、
固定電極202と203から可動電極201に作用する
静電気力の差分が釣り合って、可動電極201が基準位
置に戻るように静電サーボ制御されるから、この静電サ
ーボ制御信号(デューティ)を検出し、このデュ−ティ
を低域フィルタ210によりアナログ電圧に変換するこ
とにより、加速度に応じた出力を得ることができる。こ
の時の出力特性は、
Fixed electrodes 202 and 203 are provided on the movable electrode 201.
The difference in the electrostatic force acting from is proportional to the duty of the rectangular wave. Therefore, the electrostatic servo control signal (rectangular wave and its inverted signal) is applied to the fixed electrode so that the difference ΔC in electrostatic capacitance between the movable electrode 201 and the fixed electrode 202 and between the movable electrode 201 and the fixed electrode 203 becomes zero. If applied to 202 and 203, the inertial force acting on the movable electrode 201 (force proportional to acceleration),
The electrostatic servo control is performed so that the movable electrode 201 returns to the reference position by balancing the difference in the electrostatic force acting on the movable electrode 201 from the fixed electrodes 202 and 203. Therefore, this electrostatic servo control signal (duty) is detected. By converting this duty into an analog voltage by the low pass filter 210, an output according to the acceleration can be obtained. The output characteristics at this time are

【0035】[0035]

【数1】 [Equation 1]

【0036】で表される。It is represented by

【0037】次に、図1及び図3〜図8により本発明の
第1実施例に係る多次元のPWM静電サ−ボ方式の加速
度センサについて説明する。本実施例の加速度センサは
3次元の加速度及びそのX軸,Y軸,Z軸を中心に回転
する3次元回転加速度も検出することを意図する。
Next, a multidimensional PWM electrostatic servo type acceleration sensor according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 3 to 8. The acceleration sensor of this embodiment is intended to detect a three-dimensional acceleration and a three-dimensional rotational acceleration that rotates about the X axis, the Y axis, and the Z axis.

【0038】図1は、第1実施例の多次元加速度センサ
の検出部の構造原理を示す説明図である。
FIG. 1 is an explanatory view showing the structural principle of the detecting portion of the multidimensional acceleration sensor of the first embodiment.

【0039】本実施例の加速度センサの検出部300
は、直六面体(ここでは立方体としてあるが直方体でも
よい)の可動電極100と、この直六面体の各面に対向
配置される固定電極101,102,103,104,
105,106,107,108,109,110,1
11,112を配置してある。ここでは、平行配置した
2個ずつの固定電極が1組となって(すなわち、固定電
極101,102と、103,104と、105,10
6と、107,108と、109,110と、111,
112との組)、可動電極100の各面に対向配置して
ある。可動電極100及び固定電極101〜112は、
図2で例示したものと、同一の材質としてある。
Detection unit 300 of the acceleration sensor of this embodiment
Is a movable electrode 100 of a rectangular parallelepiped (here, it may be a rectangular parallelepiped), and fixed electrodes 101, 102, 103, 104, which are arranged to face each surface of the rectangular parallelepiped.
105, 106, 107, 108, 109, 110, 1
11, 112 are arranged. Here, two fixed electrodes arranged in parallel form one set (that is, fixed electrodes 101, 102, 103, 104, 105, 10).
6, 107, 108, 109, 110, 111,
112), and is arranged to face each surface of the movable electrode 100. The movable electrode 100 and the fixed electrodes 101 to 112 are
The same material as that illustrated in FIG. 2 is used.

【0040】そして、各固定電極101〜112から可
動電極100にこの可動電極の質量と均衡をとれる静電
気力を与えることで、可動電極100が固定電極100
〜112で囲まれる空間部中央(基準位置)にビーム無
しの浮いた状態で位置するようにしてある。
Then, by applying an electrostatic force that balances the mass of the movable electrode 100 to the movable electrode 100 from each of the fixed electrodes 101 to 112, the movable electrode 100 is fixed.
It is arranged in a floating state without a beam at the center (reference position) of the space surrounded by ~ 112.

【0041】このようにして、可動電極100と各固定
電極101〜112とが微小空隙を保って対向し、立方
体の可動電極100は、これに働く3次元加速度に応じ
て前後,上下,左右に変位し、あるいは可動電極100
に働く回転加速度(ねじりモーメント)に応じて、前
後,上下,左右に回転変位できる。
In this way, the movable electrode 100 and the fixed electrodes 101 to 112 face each other with a minute gap therebetween, and the cubic movable electrode 100 is moved forward, backward, upward, downward, leftward and rightward according to the three-dimensional acceleration acting on the cubic movable electrode 100. Displaced or movable electrode 100
Depending on the rotational acceleration (torsion moment) that acts on, it can be rotationally displaced forward and backward, vertically and horizontally.

【0042】図3に図1で示した検出部300のS1平
面の断面図を、図4に静電サーボ制御系の信号処理回路
の一部を示す。この信号処理回路を用いてX方向の加速
度の検出とZ軸を中心とする回転加速度の検出動作につ
いて説明する。
FIG. 3 is a sectional view of the detector 300 shown in FIG. 1 taken along the plane S1. FIG. 4 shows a part of the signal processing circuit of the electrostatic servo control system. The operation of detecting acceleration in the X direction and detecting rotational acceleration about the Z axis using this signal processing circuit will be described.

【0043】図4では、静電容量検出部401、増幅器
402,403、パルス幅増幅器404,405、駆動
ゲート406,407,408,409がX軸方向加速
度及びZ軸を中心に回転する回転加速度に対する静電サ
ーボ制御系の回路を構成し、低域フィルタ410,41
1、加算器412、減算器413がそれらの加速度を算
出するための信号処理系の回路を構成する。なお、後述
の図5のY軸方向加速度及びX軸を中心に回転する回転
加速度や図6のZ軸方向加速度及びY軸を中心に回転す
る回転加速度の静電サーボ制御系や加速度算出信号処理
系の回路も同様に構成されるが、図示省略してある。
In FIG. 4, the capacitance detection unit 401, the amplifiers 402 and 403, the pulse width amplifiers 404 and 405, and the drive gates 406, 407, 408, and 409 are accelerations that rotate in the X-axis direction and the Z-axis. Circuit of the electrostatic servo control system for the low-pass filters 410, 41
1, the adder 412, and the subtractor 413 form a circuit of a signal processing system for calculating their accelerations. An electrostatic servo control system and acceleration calculation signal processing of a Y-axis direction acceleration and a rotation acceleration that rotates about the X-axis, and a Z-axis direction acceleration and a rotation acceleration that rotates about the Y-axis shown in FIG. The circuit of the system has the same structure, but is not shown.

【0044】図3において、可動電極100にX軸方向
のうち右方向に加速度が働くと、可動電極100は同方
向に移動し、可動電極100・固定電極103間の静電
容量と、可動電極100・固定電極104間の静電容量
は増加し、可動電極100・固定電極109間の静電容
量と可動電極100・固定電極110間の静電容量は減
少する。
In FIG. 3, when acceleration is applied to the movable electrode 100 in the right direction in the X-axis direction, the movable electrode 100 moves in the same direction, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 103 and the movable electrode 100 move. The capacitance between 100 and the fixed electrode 104 increases, and the capacitance between the movable electrode 100 and the fixed electrode 109 and the capacitance between the movable electrode 100 and the fixed electrode 110 decrease.

【0045】また、可動電極100にZ軸を中心とする
時計方向の回転加速度(ねじりモーメント)が働くと可
動電極100は時計方向に回転し、可動電極100・固
定電極103間の静電容量と可動電極100・固定電極
109間の静電容量は増加し、可動電極100・固定電
極104間の静電容量と可動電極100・固定電極11
0間の静電容量は減少する。
When a clockwise rotational acceleration (torsional moment) about the Z axis acts on the movable electrode 100, the movable electrode 100 rotates clockwise, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 103 becomes The electrostatic capacitance between the movable electrode 100 and the fixed electrode 109 increases, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 104 and the movable electrode 100 and the fixed electrode 11 increase.
The capacitance between 0 decreases.

【0046】このうち、可動電極100・固定電極10
4間の静電容量と可動電極100・固定電極109間の
静電容量の差を容量検出器401で検出し、容量検出器
401の出力を増幅器402により増幅し、パルス幅変
調器405がこの静電容量差に比例したデューティを持
つ矩形波電圧(静電サーボ信号)を形成する。この静電
サーボ制御信号を基に、固定電極109に駆動ゲ−ト4
07,409を介して、増幅器402の出力に応じたデ
ュ−ティを持つ矩形波電圧を印加し、固定電極104に
駆動ゲート407を介してその反転電圧を印加する。
Of these, the movable electrode 100 and the fixed electrode 10
The capacitance detector 401 detects the difference between the capacitance between the four electrodes and the capacitance between the movable electrode 100 and the fixed electrode 109, and the output of the capacitance detector 401 is amplified by the amplifier 402. A rectangular wave voltage (electrostatic servo signal) having a duty proportional to the capacitance difference is formed. Based on this electrostatic servo control signal, the drive gate 4 is attached to the fixed electrode 109.
A rectangular wave voltage having a duty corresponding to the output of the amplifier 402 is applied via 07 and 409, and the inverted voltage thereof is applied to the fixed electrode 104 via the drive gate 407.

【0047】また、これと同様に可動電極100・固定
電極103間の静電容量と可動電極100・固定電極1
10間の静電容量を容量検出器401により検出し、増
幅器403,パルス幅変調器404,駆動ゲ−ト40
6,408により、固定電極110に増幅器403の出
力に応じたデューティを持つ矩形波電圧を印加し、固定
電極103にその反転電圧を印加する。
Similarly to this, the capacitance between the movable electrode 100 and the fixed electrode 103 and the movable electrode 100 and the fixed electrode 1
Capacitance detector 401 detects the capacitance between 10 and amplifier 403, pulse width modulator 404, drive gate 40.
6, 408, a rectangular wave voltage having a duty corresponding to the output of the amplifier 403 is applied to the fixed electrode 110, and the inverted voltage thereof is applied to the fixed electrode 103.

【0048】このとき、固定電極104と109から可
動電極100に働く静電気力の差分と、固定電極103
と110から可動電極100に働く静電気力の差分との
合わせたものが、可動電極100に働く慣性力(加速度
に比例する力)や可動電極100に働くねじりモ−メン
ト(回転角加速度に比例する力)と釣り合うため、可動電
極は、上記の可動電極・各固定電極の静電容量差が零と
なる位置、つまり、固定電極に囲まれる中央空間(基準
位置)に戻されるよう拘束される。
At this time, the difference between the electrostatic force acting on the movable electrode 100 from the fixed electrodes 104 and 109 and the fixed electrode 103.
And 110, the sum of the difference between the electrostatic force acting on the movable electrode 100 and the electrostatic force acting on the movable electrode 100 (the force proportional to the acceleration) or the torsional moment acting on the movable electrode 100 (proportional to the rotational angular acceleration). Force), the movable electrode is constrained to return to the position where the electrostatic capacitance difference between the movable electrode and each fixed electrode becomes zero, that is, the central space (reference position) surrounded by the fixed electrode.

【0049】そして、固定電極103,104,10
9,110から作用する静電気力をデュ−ティ(静電サ
ーボ制御信号)から検出し、このデュ−ティを低域フィ
ルタ410,411によりアナログ電圧に変換し、加算
器412で固定電極103,110から可動電極100
に働く静電気力の差(f1−f4)と固定電極104,
109から可動電極100に働く静電気力の差(f2−
f3)とを加算してX軸方向の加速度に応じた出力を、
また、減算器413で(f1−f4)と(f2−f3)
とを減算してZ軸を中心にした回転加速度に応じた出力
を得ることができる。(ここで、f1は固定電極103
からの静電気力、f2は固定電極104からの静電気
力,f3は固定電極109からの静電気力,f4は固定
電極110からの静電気力である)。
The fixed electrodes 103, 104, 10
The electrostatic force acting from 9, 110 is detected from the duty (electrostatic servo control signal), this duty is converted into an analog voltage by the low-pass filters 410, 411, and the fixed electrode 103, 110 is added by the adder 412. To movable electrode 100
Of the electrostatic force (f1-f4) acting on the fixed electrode 104,
The difference in electrostatic force acting on the movable electrode 100 from 109 (f2-
f3) is added to obtain an output corresponding to the acceleration in the X-axis direction,
In addition, the subtracter 413 outputs (f1-f4) and (f2-f3).
And can be subtracted to obtain an output according to the rotational acceleration about the Z axis. (Here, f1 is the fixed electrode 103
), F2 is an electrostatic force from the fixed electrode 104, f3 is an electrostatic force from the fixed electrode 109, and f4 is an electrostatic force from the fixed electrode 110).

【0050】すなわち、上記の加算器412で算出され
る値は、
That is, the value calculated by the adder 412 is

【0051】[0051]

【数2】 (f1−f4)+(f2−f3)=(f1+f2)−(f3+f4) となり、上記の減算器413で算出される値は、## EQU2 ## (f1-f4) + (f2-f3) = (f1 + f2)-(f3 + f4) and the value calculated by the subtractor 413 is

【0052】[0052]

【数3】 (f1−f4)−(f2−f3)=(f1+f3)−(f2+f4) となる。## EQU00003 ## (f1-f4)-(f2-f3) = (f1 + f3)-(f2 + f4).

【0053】以上の式から、X方向の加速度の場合に
は、数2式に、Z方向を中心とした回転加速度の場合
は、数3式に数値として表れる。
From the above equations, numerical values can be expressed in the equation 2 in the case of acceleration in the X direction and numerical values in the equation 3 in the case of rotational acceleration about the Z direction.

【0054】次に、図5により、検出部300のS2平
面の断面図を示し、Y軸方向の加速度とX軸を中心とす
る回転加速度の検出動作について説明する。
Next, referring to FIG. 5, a cross-sectional view of the S2 plane of the detection unit 300 is shown, and the detection operation of the acceleration in the Y-axis direction and the rotational acceleration about the X-axis will be described.

【0055】図5において、可動電極100にY軸にお
ける図の左方向の加速度が働くと、可動電極100は同
方向に変位し、可動電極100・固定電極107間の静
電容量と可動電極100・固定電極108間の静電容量
は増加し、可動電極100・固定電極111間と可動電
極100・固定電極112間の静電容量は減少する。
In FIG. 5, when acceleration is applied to the movable electrode 100 in the left direction on the Y axis, the movable electrode 100 is displaced in the same direction, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 107 and the movable electrode 100. The electrostatic capacitance between the fixed electrodes 108 increases, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 111 and between the movable electrode 100 and the fixed electrode 112 decreases.

【0056】また、可動電極100にX軸を中心とする
時計方向の回転加速度が働くと、可動電極100は時計
方向に回転し、可動電極100・固定電極111間の静
電容量と可動電極100・固定電極107間の静電容量
は増加し、可動電極100・固定電極112間と可動電
極100・固定電極108間の静電容量は減少する。
When the rotational acceleration in the clockwise direction about the X axis acts on the movable electrode 100, the movable electrode 100 rotates clockwise, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 111 and the movable electrode 100. The electrostatic capacitance between the fixed electrodes 107 increases, and the electrostatic capacitance between the movable electrode 100 and the fixed electrode 112 and between the movable electrode 100 and the fixed electrode 108 decreases.

【0057】従って、上記図4同様に構成した静電サー
ボ制御系及び加速度算出の処理回路を用いれば、Y軸方
向の加速度とX軸を中心とする回転加速度を検出するこ
とができる。
Therefore, by using the electrostatic servo control system and the acceleration calculation processing circuit configured as in FIG. 4, the acceleration in the Y-axis direction and the rotational acceleration about the X-axis can be detected.

【0058】次に、図6に検出部300のS3平面の断
面図を示し、Z軸方向の加速度とY軸を中心とする回転
加速度の検出動作について説明する。
Next, FIG. 6 shows a sectional view of the S3 plane of the detecting section 300, and the detecting operation of the acceleration in the Z-axis direction and the rotational acceleration about the Y-axis will be described.

【0059】Y軸方向の加速度とY軸を中心とする回転
加速度についても,上述したことと同様に可動電極10
0がZ軸方向の加速度あるいはY軸を中心とする回転加
速度に応じ変位する。従って、上記同様の静電サーボ制
御系及び加速度算出の信号処理回路を用いれば、Z方向
の加速度とY軸を中心とする回転角加速度を検出するこ
とができる。
As for the acceleration in the Y-axis direction and the rotational acceleration about the Y-axis, the movable electrode 10 is also used as described above.
0 is displaced according to acceleration in the Z-axis direction or rotational acceleration about the Y-axis. Therefore, by using the electrostatic servo control system and the signal processing circuit for calculating the acceleration similar to the above, the acceleration in the Z direction and the rotational angular acceleration about the Y axis can be detected.

【0060】そして、これらの各軸方向の静電サーボ制
御系及び加速度算出の信号処理回路を組み合わせて協働
させることで、3次元空間に働く加速度を検出でき、し
かも、これと合わせて3次元の回転加速度も検出でき
る。
By combining and cooperating these electrostatic servo control systems for the respective axial directions and the signal processing circuit for calculating the acceleration, the acceleration acting in the three-dimensional space can be detected, and in addition to this, the three-dimensional acceleration can be detected. The rotational acceleration of can also be detected.

【0061】次に、図7により本実施例に用いる容量検
出器401の具体的構成例を説明する。
Next, a concrete example of the configuration of the capacitance detector 401 used in this embodiment will be described with reference to FIG.

【0062】容量検出器401は、演算増幅器701
と、これの帰還部に静電容量702とトランジスタ70
3を設けたリセット付き積分器と、サンプルホ−ルド回
路704,705,706,707,708,709よ
り構成される。
The capacitance detector 401 includes an operational amplifier 701.
And the capacitance 702 and the transistor 70 in the feedback section of this.
3 and a sample-hold circuit 704, 705, 706, 707, 708, 709.

【0063】演算増幅器701の反転入力は可動電極1
00に接続されており、可動電極100の電位を一定に
保っている。
The inverting input of the operational amplifier 701 is the movable electrode 1
00, and keeps the potential of the movable electrode 100 constant.

【0064】なお、図7では便宜上、可動電極100・
固定電極101間の静電容量をC1,可動電極100・
固定電極102間の静電容量をC2,可動電極100・
固定電極103間の静電容量をC3,可動電極100・
固定電極104間の静電容量をC4,可動電極100・
固定電極105間の静電容量をC5,可動電極100・
固定電極106間の静電容量をC6,可動電極100・
固定電極107間の静電容量をC7,可動電極100・
固定電極108間の静電容量をC8,可動電極100・
固定電極109間の静電容量をC9,可動電極100・
固定電極110間の静電容量をC10,可動電極100・
固定電極111間の静電容量をC11,可動電極100・
固定電極112間の静電容量をC12で表している。
In FIG. 7, the movable electrode 100.
The electrostatic capacity between the fixed electrodes 101 is C 1 , the movable electrode 100
The electrostatic capacitance between the fixed electrodes 102 is C 2 , the movable electrode 100
The electrostatic capacitance between the fixed electrodes 103 is C 3 , the movable electrode 100
The electrostatic capacitance between the fixed electrodes 104 is C 4 , and the movable electrode 100.
The electrostatic capacitance between the fixed electrodes 105 is C 5 , the movable electrode 100.
The capacitance between the fixed electrodes 106 is C 6 , the movable electrode 100
The electrostatic capacitance between the fixed electrodes 107 is C 7 , the movable electrode 100
The electrostatic capacitance between the fixed electrodes 108 is C 8 , the movable electrode 100.
The capacitance between the fixed electrodes 109 is C 9 , and the movable electrode 100.
The electrostatic capacitance between the fixed electrodes 110 is C 10 , the movable electrode 100
The capacitance between the fixed electrodes 111 is C 11 , the movable electrode 100
The capacitance between the fixed electrodes 112 is represented by C 12 .

【0065】また、駆動ゲ−ト406,407,40
8,409,710,711,712,713,71
4,715,716,717は、それぞれ対応の固定電
極に接続されている。
Further, the drive gates 406, 407, 40
8,409,710,711,712,713,71
4, 715, 716, and 717 are connected to the corresponding fixed electrodes.

【0066】この容量検出器401のタイミングチャ−
トを図8に示し、これを用いて容量検出器401の動作
を説明する。
Timing chart of this capacitance detector 401
8 is shown in FIG. 8, and the operation of the capacitance detector 401 will be described using this.

【0067】まず、信号φRによりトランジスタ703
をオンにし、静電容量702を放電する。次の瞬間、固
定電極101に印加する矩形波は立ち上がり、固定電極
106に印加される矩形波は立ち下がる。この時,静電
容量C1は充電され、静電容量C6は放電されるから、静
電容量C702にはVP(C6−C1)なる電荷が流れる。
First, the signal φ R causes the transistor 703 to
Is turned on to discharge the electrostatic capacitance 702. At the next moment, the rectangular wave applied to the fixed electrode 101 rises and the rectangular wave applied to the fixed electrode 106 falls. At this time, the electrostatic capacitance C 1 is charged and the electrostatic capacitance C 6 is discharged, so that an electric charge of V P (C 6 −C 1 ) flows in the electrostatic capacitance C 702.

【0068】ここで、VPは矩形波の振幅である。従っ
て、静電容量702の容量をCFとすると演算増幅器7
01の出力には数4式で表される電圧VOが発生する。
Here, V P is the amplitude of the rectangular wave. Therefore, assuming that the capacitance of the electrostatic capacitance 702 is C F , the operational amplifier 7
At the output of 01, the voltage V O represented by the equation 4 is generated.

【0069】[0069]

【数4】VO=VP(C6−C1)/CF この電圧を信号φ1によりサンプルホ−ルド回路704
でサンプリングすることにより、静電容量C1と静電容
量C6の差分を検出することができる。
Equation 4] V O = V P (C 6 -C 1) / C F Sample E the voltage by signal phi 1 - hold circuit 704
By sampling at, the difference between the electrostatic capacitance C 1 and the electrostatic capacitance C 6 can be detected.

【0070】そして、次のタイミングで信号φRにより
トランジスタ703を再びオンにし、静電容量702を
放電させる。次の瞬間には固定電極102へ印加される
矩形波は立上り、固定電極105へ印加される矩形波は
立ち下がる。この時には演算増幅器701の出力には静
電容量C2と静電容量C5の差に応じた信号が発生するか
ら、これを信号φ2によりサンプルホ−ルド回路705
でサンプリングすることにより、静電容量C2と静電容
量C5の差を検出することができる。
Then, at the next timing, the signal Φ R turns on the transistor 703 again to discharge the electrostatic capacitance 702. At the next moment, the rectangular wave applied to the fixed electrode 102 rises and the rectangular wave applied to the fixed electrode 105 falls. At this time, a signal corresponding to the difference between the electrostatic capacitance C 2 and the electrostatic capacitance C 5 is generated at the output of the operational amplifier 701, and this is generated by the signal φ 2 in the sample-hold circuit 705.
By sampling at, the difference between the electrostatic capacitance C 2 and the electrostatic capacitance C 5 can be detected.

【0071】従って、これを順次繰り返すことにより、
静電容量C3と静電容量C10の差,静電容量C4と静電容
量C9の差,静電容量C7と静電容量C12の差,静電容量
8と静電容量C11の差を検出する。
Therefore, by sequentially repeating this,
The difference between capacitance C 3 and capacitance C 10 , the difference between capacitance C 4 and capacitance C 9 , the difference between capacitance C 7 and capacitance C 12 , the capacitance C 8 and capacitance The difference in capacitance C 11 is detected.

【0072】次に、本発明の第2の実施例を図9〜図1
2により説明する。図9は本実施例の検出部の構造原理
を、図10は、図9のY軸方向の断面図、図11は図1
0のa−a´線断面図、図12は本実施例の回路図であ
る。
Next, a second embodiment of the present invention will be described with reference to FIGS.
2 will be described. FIG. 9 shows the structural principle of the detecting portion of this embodiment, FIG. 10 is a sectional view in the Y-axis direction of FIG. 9, and FIG. 11 is FIG.
0 is a sectional view taken along line aa ′ of FIG. 0, and FIG. 12 is a circuit diagram of this embodiment.

【0073】本実施例はZ軸方向の加速度と、X軸を中
心とした回転加速度と、Y軸を中心とした回転加速度を
検出することを意図した多次元PWM静電サ−ボ型の静
電容量式加速度センサである。
In this embodiment, a multi-dimensional PWM electrostatic servo type static sensor intended to detect acceleration in the Z-axis direction, rotational acceleration about the X-axis, and rotational acceleration about the Y-axis. It is a capacitance type acceleration sensor.

【0074】可動電極900はビーム901により支持
されるが、このビームはZ軸方向の加速度に応答して変
位するように支持され、また、ビーム901は弾性を有
する部材で構成して、X軸を中心とした回転加速度が可
動電極900に作用すると、それに対応してねじれ運動
を行なって可動電極900のX軸を中心とした回転変位
を許容する機能と、Y軸を中心とした回転加速度が可動
電極900に作用すると、図9(b)に示すように弾性
変形して、可動電極900のY軸を中心とした回転変位
を許容する機能を与えてある。
The movable electrode 900 is supported by a beam 901. This beam is supported so as to be displaced in response to acceleration in the Z-axis direction, and the beam 901 is made of an elastic member and has an X-axis. When a rotational acceleration centered on the movable electrode 900 acts on the movable electrode 900, the torsional motion corresponding to the function allows the rotational displacement of the movable electrode 900 about the X axis and the rotational acceleration about the Y axis. When acting on the movable electrode 900, the movable electrode 900 is elastically deformed as shown in FIG. 9B to give a function of allowing the rotational displacement of the movable electrode 900 around the Y axis.

【0075】図9(a)に示すように、可動電極900
の上面に対向して、固定電極902,903,904,
905が縦,横列に2個づつ並んで配置され、可動電極
900の下面に対向して、固定電極906,907,9
08,909が同様に縦,横列に2個づつ並んで配置し
てあり、これらの固定電極・固定電極間は、微小間隙を
保って、可動電極900が基準位置にある。
As shown in FIG. 9A, the movable electrode 900
Facing the upper surface of the fixed electrodes 902, 903, 904,
Two 905s are arranged side by side in the vertical and horizontal rows, facing the lower surface of the movable electrode 900, and fixed electrodes 906, 907, 9 are provided.
Similarly, the two electrodes 08 and 909 are arranged side by side in the vertical and horizontal rows, and the movable electrode 900 is at the reference position with a small gap maintained between these fixed electrodes.

【0076】次に本実施例における静電サーボ制御系と
加速度算出のための信号処理回路の構成と動作を図12
により説明する。
Next, FIG. 12 shows the configuration and operation of the electrostatic servo control system and the signal processing circuit for calculating the acceleration in this embodiment.
Will be explained.

【0077】静電サーボ制御系は、第1の実施例同様
に、容量検出器1200、増幅器1201,1202,
1203,1204、パルス幅変調器1213,121
4,1215,1216、駆動ゲ−ト1205,120
6,1207,1208,1209,1210,121
1,1212よりなり、加速度算出のための信号処理回
路は、低域フィルタ1217,1218,1219,1
220及び演算器1221よりなる。
The electrostatic servo control system is similar to the first embodiment in that it has a capacitance detector 1200 and amplifiers 1201, 1202.
1203, 1204, pulse width modulators 1213, 121
4,1215,1216, drive gates 1205,120
6,1207,1208,1209,1210,121
1, 1212, and the signal processing circuit for calculating the acceleration includes low-pass filters 1217, 1218, 1219, 1
It comprises 220 and an arithmetic unit 1221.

【0078】これにより、可動電極900がZ軸方向の
加速度,X軸を中心とした加速度及びY軸を中心とした
加速度に応答して変位すると、可動電極900・固定電
極902間の静電容量と可動電極900・固定電極90
9間の静電容量の差分が零になるように、可動電極90
0・固定電極903間の静電容量と可動電極900・固
定電極908間の静電容量の差分が零になるように、可
動電極900・固定電極904間の静電容量と可動電極
900と固定電極906間の静電容量の差分が零になる
ように、可動電極900・固定電極905間の静電容量
と可動電極900・固定電極907間の静電容量の差分
が零になるように、各固定電極印加する矩形波のデュ−
ティを制御する。
As a result, when the movable electrode 900 is displaced in response to the acceleration in the Z-axis direction, the acceleration about the X-axis, and the acceleration about the Y-axis, the electrostatic capacitance between the movable electrode 900 and the fixed electrode 902. And movable electrode 900 / fixed electrode 90
9 so that the difference in capacitance between the movable electrodes 90 is zero.
The electrostatic capacitance between the movable electrode 900 and the fixed electrode 904 and the movable electrode 900 are fixed so that the difference between the electrostatic capacitance between the fixed electrode 903 and the movable electrode 900 and the fixed electrode 908 becomes zero. In order that the electrostatic capacitance difference between the electrodes 906 becomes zero, the electrostatic capacitance difference between the movable electrode 900 and the fixed electrode 905 and the electrostatic capacitance between the movable electrodes 900 and the fixed electrode 907 becomes zero, Square wave duo applied to each fixed electrode
Control the tee.

【0079】そのため、Z軸方向の加速度による慣性力
やX軸あるいはY軸を中心にするの回転加速度による回
転モ−メントと各固定電極から可動電極900に働く静
電気力差が均衡させることで、可動電極900を基準位
置に拘束するような静電サーボ制御を可能にする。
Therefore, by balancing the inertial force due to the acceleration in the Z-axis direction or the rotational moment due to the rotational acceleration around the X-axis or the Y-axis and the electrostatic force difference acting on the movable electrode 900 from each fixed electrode, It enables electrostatic servo control such that the movable electrode 900 is restricted to the reference position.

【0080】従って、各固定電極から可動電極900に
働かせた静電気力をデュ−ティより求め、これを低域フ
ィルタ1217,1218,1219,1220により
アナログ電圧に変換し、これを演算器1221で演算す
ることにより、Z軸方向の加速度,X軸あるいはY軸を
中心にするの回転角加速度を検出できる。
Therefore, the electrostatic force exerted on the movable electrode 900 from each fixed electrode is obtained from the duty and converted into an analog voltage by the low pass filters 1217, 1218, 1219, 1220, and this is calculated by the calculator 1221. By doing so, the acceleration in the Z-axis direction and the rotational angular acceleration about the X-axis or the Y-axis can be detected.

【0081】ここで、Z軸方向の加速度は低域フィルタ
1217,1218,1219,1220の出力の和を
演算することにより、X軸を中心にする回転角加速度
は、低域フィルタ1217,1218の出力の和と低域
フィルタ1219と1220の出力の和の差分を演算す
ることにより、また、Y軸を中心にする回転角加速度は
低域フィルタ1217,1219の出力の和と低域フィ
ルタ1218,1220の出力の和の差分を演算するこ
とによりY軸を中心にする回転加速度を検出できる。
Here, the acceleration in the Z-axis direction is calculated by calculating the sum of the outputs of the low-pass filters 1217, 1218, 1219, 1220, so that the rotational angular acceleration about the X-axis is calculated by the low-pass filters 1217, 1218. By calculating the difference between the sum of the outputs and the sum of the outputs of the low-pass filters 1219 and 1220, the rotational angular acceleration about the Y axis is calculated as the sum of the outputs of the low-pass filters 1217 and 1219 and the low-pass filter 1218. The rotational acceleration about the Y axis can be detected by calculating the difference between the outputs of 1220.

【0082】次に、図13から図16により本発明の第
3実施例を説明する。
Next, a third embodiment of the present invention will be described with reference to FIGS.

【0083】本実施例は、一軸方向の加速度と一軸を中
心に回転する回転加速度の検出を意図するPWM静電サ
−ボ型の静電容量式加速度センサである。
The present embodiment is a PWM electrostatic servo type capacitance type acceleration sensor intended to detect acceleration in one axis direction and rotational acceleration rotating about one axis.

【0084】図13に本実施例の検出部1300の電極
の配置を、図14に検出部の断面を、図15にa−a’
の断面を示す。
FIG. 13 shows the arrangement of the electrodes of the detection unit 1300 of this embodiment, FIG. 14 is a cross section of the detection unit, and FIG. 15 is aa '.
The cross section of FIG.

【0085】検出部1300はビ−ム1301に支持さ
れる可動電極1302,ビ−ム1305に支持され可動
電極1307との計2個の可動電極を有し、可動電極1
302の上下面に対向して固定電極1303,1304
が配置され、可動電極1307の上下面に対向して固定
電極1306,1308が配置される。
The detection unit 1300 has a total of two movable electrodes, a movable electrode 1302 supported by the beam 1301 and a movable electrode 1307 supported by the beam 1305.
Fixed electrodes 1303 and 1304 facing the upper and lower surfaces of 302
The fixed electrodes 1306 and 1308 are arranged so as to face the upper and lower surfaces of the movable electrode 1307.

【0086】この可動電極1302,1307は、Z軸
方向の加速度に応じて同方向に移動する。また、X軸を
中心にするの回転角加速度に応じて、可動電極1302
と可動電極1307はZ軸方向に相互に反対に移動す
る。
The movable electrodes 1302 and 1307 move in the same direction according to the acceleration in the Z-axis direction. In addition, the movable electrode 1302 is rotated according to the rotational angular acceleration about the X axis.
And the movable electrode 1307 move in opposite directions in the Z-axis direction.

【0087】従って、可動電極1302・固定電極13
03間の静電容量と可動電極1302・固定電極130
4間の静電容量の差分が零になるように、また、可動電
極1307・固定電極1306間の静電容量と可動電極
1307・固定電極1308間の静電容量の差分が零に
なるように、固定電極1303,1304,1306,
1308に静電サーボ制御信号(電圧)を印加し、可動
電極1302,1307に静電気力を働かせる。
Therefore, the movable electrode 1302 and the fixed electrode 13
03 capacitance and movable electrode 1302 / fixed electrode 130
4 so that the difference in capacitance between them becomes zero, and that the difference between the capacitance between movable electrode 1307 and fixed electrode 1306 and the difference between capacitance between movable electrode 1307 and fixed electrode 1308 becomes zero. , Fixed electrodes 1303, 1304, 1306
An electrostatic servo control signal (voltage) is applied to 1308 to exert an electrostatic force on the movable electrodes 1302 and 1307.

【0088】この時、Z軸方向の加速度による慣性力や
X軸を中心にする回転角加速度により各可動電極に働く
力と、各固定電極から各可動電極に働く静電気力差が釣
り合う。
At this time, the force acting on each movable electrode by the inertial force due to the acceleration in the Z-axis direction and the rotational angular acceleration about the X-axis and the electrostatic force difference acting on each movable electrode from each fixed electrode are balanced.

【0089】従って、固定電極1306から可動電極1
307へ働く静電気力と固定電極1303から可動電極
1302へ働く静電気力の和と、固定電極1308から
可動電極1307へ働く静電気力と固定電極1304か
ら可動電極1302へ働く静電気力の和の差分を求める
ことによりZ軸方向の加速度を求めることができる。
Therefore, from the fixed electrode 1306 to the movable electrode 1
The difference between the electrostatic force acting on 307 and the electrostatic force acting on the movable electrode 1302 from the fixed electrode 1303, and the electrostatic force acting on the movable electrode 1307 from the fixed electrode 1308 and the electrostatic force acting on the movable electrode 1302 from the fixed electrode 1304 is obtained. Thus, the acceleration in the Z-axis direction can be obtained.

【0090】また、固定電極1306から可動電極13
07へ働く静電気力と固定電極1304から可動電極1
302へ働く静電気力の和と、固定電極1308から可
動電極1307へ働く静電気力と固定電極1303から
可動電極1302へ働く静電気力の和の差分を求めるこ
とにより、X軸方向の回転角加速度を求めることができ
る。
In addition, from the fixed electrode 1306 to the movable electrode 13
Electrostatic force acting on 07 and fixed electrode 1304 to movable electrode 1
The rotational angular acceleration in the X-axis direction is obtained by obtaining the sum of the electrostatic force acting on 302, the difference between the electrostatic force acting on the movable electrode 1307 from the fixed electrode 1308 and the electrostatic force acting on the movable electrode 1302 from the fixed electrode 1303. be able to.

【0091】次に、本発明の第4実施例を図16及び図
17により説明する。本実施例は、2次元の加速度検出
を意図したPWM静電サ−ボ型の静電容量式加速度セン
サである。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. This embodiment is a PWM electrostatic servo type electrostatic capacitance type acceleration sensor intended for two-dimensional acceleration detection.

【0092】図16に本実施例の検出部1300の断面
を、第15図にa−a’の断面構造を示す。
FIG. 16 shows a cross section of the detecting section 1300 of this embodiment, and FIG. 15 shows a cross section of aa '.

【0093】検出部1600は、可動電極1602は、
その左右面に対向配置される固定電極1605,160
6と、上下面に対向配置される固定電極1603,16
04とで構成される。
In the detecting section 1600, the movable electrode 1602 is
Fixed electrodes 1605 and 160 arranged opposite to the left and right surfaces
6 and fixed electrodes 1603, 16 arranged to face the upper and lower surfaces
04 and.

【0094】可動電極1602は、固定ビ−ム1601
に支持され、左右の電極面が櫛歯状を呈する。また、左
右の固定電極1605,1606も、その可動電極対向
面が櫛歯状の形状を呈し、これらの固定電極の櫛歯状電
極面と可動電極の櫛歯状電極面とがそれぞれ微小空隙を
保って噛み合っている。
The movable electrode 1602 is a fixed beam 1601.
And the left and right electrode surfaces are comb-shaped. Further, the left and right fixed electrodes 1605 and 1606 also have comb-shaped surfaces facing the movable electrodes, and the comb-shaped electrode surfaces of these fixed electrodes and the comb-shaped electrode surfaces of the movable electrodes respectively form minute gaps. It keeps and meshes.

【0095】可動電極1602は、上下方向の加速度に
応じて上下方向に移動し、左右方向の加速度に応じて左
右方向に移動する。
The movable electrode 1602 moves in the vertical direction according to the vertical acceleration, and moves in the horizontal direction according to the horizontal acceleration.

【0096】従って、可動電極1602と固定電極16
03間の静電容量と可動電極1602と固定電極160
4間の静電容量の差分が零になるように、また、可動電
極1602と固定電極1605間の静電容量と可動電極
1602と固定電極1606間の静電容量の差分が零に
なるように固定電極1303,1304,1305,1
306に電圧を印加し、可動電極1602に静電気力を
働かせる。この時,上下方向及び左右方向の加速度によ
る慣性力と各固定電極から可動電極1602に働く静電
気力差が釣り合う。従って、固定電極1603から可動
電極1602へ働く静電気力と固定電極1604から可
動電極1302へ働く静電気力の差分を求めることによ
り上下方向の加速度を求めることができる。また,固定
電極1605から可動電極1602へ働く静電気力と固
定電極1606から可動電極1602へ働く静電気力の
差分を求めることにより左右方向の加速度を求めること
ができる。
Therefore, the movable electrode 1602 and the fixed electrode 16
03 capacitance and movable electrode 1602 and fixed electrode 160
4 so that the difference in electrostatic capacitance between them becomes zero, and that the difference between the electrostatic capacitance between movable electrode 1602 and fixed electrode 1605 and the electrostatic capacitance between movable electrode 1602 and fixed electrode 1606 becomes zero. Fixed electrodes 1303, 1304, 1305, 1
A voltage is applied to 306 and an electrostatic force is exerted on the movable electrode 1602. At this time, the inertial force due to the vertical and horizontal accelerations and the electrostatic force difference acting on the movable electrode 1602 from each fixed electrode are balanced. Therefore, the vertical acceleration can be obtained by obtaining the difference between the electrostatic force acting on the movable electrode 1602 from the fixed electrode 1603 and the electrostatic force acting on the movable electrode 1302 from the fixed electrode 1604. Further, the lateral acceleration can be obtained by obtaining the difference between the electrostatic force acting on the movable electrode 1602 from the fixed electrode 1605 and the electrostatic force acting on the movable electrode 1602 from the fixed electrode 1606.

【0097】本実施例によれば、櫛歯状に可動電極・固
定電極を噛み合わせることにより、電極面の有効面積を
広くとり、その分、静電サーボに用いる静電気力を小さ
くできる利点がある。
According to this embodiment, the movable electrode and the fixed electrode are meshed with each other in a comb-like shape, so that the effective area of the electrode surface can be widened and the electrostatic force used for the electrostatic servo can be reduced accordingly. ..

【0098】次に、本発明の第5の実施例を図18によ
り説明する。
Next, a fifth embodiment of the present invention will be described with reference to FIG.

【0099】本実施例は、3次元加速度の検出を意図す
るセンサである。
The present embodiment is a sensor intended to detect three-dimensional acceleration.

【0100】本実施例では、加速度検出位置にセットさ
れる直六面体(立方体)1801と、この立方体180
1の5面に対応する5個の面を十字形配置で一体成形し
て成るフレキシブルプリント基板1800と、3個の加
速度センサ1802,1803,1804とを備える。
ここで用いる加速度センサは、静電容量式,歪ゲージ式
など任意のものを使用すれば良い。
In this embodiment, a rectangular parallelepiped (cube) 1801 set at the acceleration detection position and this cube 180 are used.
The flexible printed board 1800 is formed by integrally molding five surfaces corresponding to the five surfaces in a cross-shaped arrangement, and three acceleration sensors 1802, 1803, 1804.
The acceleration sensor used here may be of any type such as a capacitance type or a strain gauge type.

【0101】フレキシブルプリント基板1800の各面
が立方体1801の対応する面に折り曲げられて接着剤
により固着してある。
Each surface of the flexible printed board 1800 is bent to the corresponding surface of the cube 1801 and fixed by an adhesive.

【0102】フレキシブルプリント基板1800の直交
する3面には、加速度センサ1802,1803,18
04がそれぞれ個々に実装してある。
Acceleration sensors 1802, 1803, 18 are provided on three orthogonal surfaces of the flexible printed circuit board 1800.
04 are individually mounted.

【0103】フレキシブルプリント基板1800は、セ
ラミック,アクリル等のサポート板の表面にFPC樹脂
等を被覆して成り、所定の直交3面に加速度センサ18
02,1803,1804のそれぞれの検出部1802
a,1803a,1804aとその信号処理系となるI
C回路(デバイス)1802b,1803b,1804
bとがプリント配線により電気的に接続されて実装され
ており、残りの面にこれらの加速度センサの信号取出線
や電源供給線に係るリード線がプリント形成してある。
このうち、各加速度センサの検出部1802a,180
3a,1804aは、直交3軸上にセットされるよう予
めプリント基板上に設計してある。
The flexible printed board 1800 is formed by covering the surface of a support plate such as ceramic or acrylic with FPC resin or the like, and the acceleration sensor 18 is provided on three predetermined orthogonal planes.
02, 1803, and 1804 detecting units 1802
a, 1803a, 1804a and I which is the signal processing system thereof
C circuits (devices) 1802b, 1803b, 1804
b is electrically connected by a printed wiring to be mounted, and lead wires related to signal extraction lines and power supply lines of these acceleration sensors are printed on the remaining surface.
Of these, the detection units 1802a and 180 of each acceleration sensor
3a and 1804a are designed in advance on a printed circuit board so as to be set on three orthogonal axes.

【0104】本実施例によれば、フレキシブルプリント
基板1800のすべての面を直角に折り曲げて、その折
り曲げ線を直六面体1801のコーナと位置合わせしつ
つフレキシブルプリント基板1800を接着剤などで固
着すると、自ずと各加速度センサ1802,1803,
1804が直交三軸上に高精度にセットされる。
According to this embodiment, when all the surfaces of the flexible printed circuit board 1800 are bent at right angles and the bending lines are aligned with the corners of the rectangular parallelepiped 1801, the flexible printed circuit board 1800 is fixed with an adhesive or the like. Naturally, the acceleration sensors 1802, 1803
1804 is set on the three orthogonal axes with high precision.

【0105】そして、これらの加速度センサがそれぞ
れ、各自の取付位置における軸方向の加速度を検出する
ことで、精度の良い3次元の加速度検出を可能にする。
Each of these acceleration sensors detects the acceleration in the axial direction at its own mounting position, thereby enabling accurate three-dimensional acceleration detection.

【0106】また、加速度センサは、それぞれ、プリン
ト基板に実装されるので、その設置スペースの合理化を
図り、加速度センサすべてを一つのパッケージで収納可
能なので、ばらの加速度センサを個々にパッケージする
方式に較べて、装置の小形化を図り得る。
Further, since each acceleration sensor is mounted on the printed circuit board, the installation space can be rationalized and all the acceleration sensors can be housed in one package. Therefore, it is possible to package the individual acceleration sensors individually. In comparison, the device can be downsized.

【0107】なお、本実施例では、フレキシブル基板を
5面としたが、3面から6面の間であれば、各加速度セ
ンサの実装と直六面体への精度良い位置決めを可能と
し、また、加速度センサを2個用いれば2次元加速度の
検出も可能とする。
In the present embodiment, the flexible substrate has five surfaces, but if it is between three surfaces and six surfaces, mounting of each acceleration sensor and accurate positioning on the rectangular parallelepiped are possible, and the acceleration Two-dimensional acceleration can be detected by using two sensors.

【0108】[0108]

【発明の効果】以上のように本発明によれば、第1の課
題解決手段から第4の課題解決手段では、多次元加速度
センサの複合化を図ることで、一の検出部で多次元の加
速度を小形,高精度に検出でき、第5の課題解決手段で
は、加速度センサの集積化を図ることができるから、多
次元加速度センサの小形,高精度化を達成できる。
As described above, according to the present invention, in the first problem solving means to the fourth problem solving means, multi-dimensional acceleration sensors are combined to realize multi-dimensional acceleration in one detection unit. Acceleration can be detected in a small size and with high accuracy, and in the fifth problem solving means, the acceleration sensor can be integrated, so that the multidimensional acceleration sensor can be downsized and improved in accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の多次元加速度センサの電極の配置
を示す説明図
FIG. 1 is an explanatory diagram showing an arrangement of electrodes of a multidimensional acceleration sensor according to a first embodiment.

【図2】1次元PWM静電サ−ボ方式加速度センサの構
成を示す説明図
FIG. 2 is an explanatory diagram showing a configuration of a one-dimensional PWM electrostatic servo type acceleration sensor.

【図3】第1実施例の検出部のS1面の断面図FIG. 3 is a sectional view of the S1 surface of the detection unit of the first embodiment.

【図4】第1実施例の静電サーボ制御系の信号処理部の
構成図
FIG. 4 is a configuration diagram of a signal processing unit of the electrostatic servo control system of the first embodiment.

【図5】第1実施例の検出部のS2面の断面図FIG. 5 is a sectional view of the S2 surface of the detection unit of the first embodiment.

【図6】第1実施例の検出部のS3面の断面図FIG. 6 is a cross-sectional view of the S3 surface of the detection unit of the first embodiment.

【図7】第1実施例の静電容量検出器の回路構成図FIG. 7 is a circuit configuration diagram of the electrostatic capacitance detector according to the first embodiment.

【図8】第1実施例の静電容量検出器のタイミングチャ
−ト
FIG. 8 is a timing chart of the capacitance detector of the first embodiment.

【図9】第2実施例の多次元加速度センサの検出部の電
極の配置を示す説明図
FIG. 9 is an explanatory diagram showing an arrangement of electrodes of a detection unit of the multidimensional acceleration sensor of the second embodiment.

【図10】第2実施例の多次元加速度センサの検出部の
断面を示す説明図
FIG. 10 is an explanatory view showing a cross section of a detecting portion of the multidimensional acceleration sensor of the second embodiment.

【図11】図10のa−a’の断面11 is a sectional view taken along the line aa 'in FIG.

【図12】第2実施例の信号処理部の構成を示す説明図FIG. 12 is an explanatory diagram showing a configuration of a signal processing unit according to a second embodiment.

【図13】第3実施例の加速度センサの検出部の電極の
配置を示す説明図
FIG. 13 is an explanatory diagram showing an arrangement of electrodes of a detection unit of the acceleration sensor of the third embodiment.

【図14】第3実施例の加速度センサの検出部の断面を
示す説明図
FIG. 14 is an explanatory diagram showing a cross section of a detection portion of the acceleration sensor of the third embodiment.

【図15】図14の検出部a−a’の断面図FIG. 15 is a cross-sectional view of the detection unit aa ′ of FIG.

【図16】第4実施例の多次元加速度センサの検出部の
断面図
FIG. 16 is a sectional view of a detecting portion of a multidimensional acceleration sensor according to a fourth embodiment.

【図17】図16のa−a’の断面図17 is a cross-sectional view taken along the line aa 'in FIG.

【図18】第5実施例の多次元加速度センサの組立状態
説明図
FIG. 18 is an explanatory diagram of an assembled state of the multidimensional acceleration sensor of the fifth embodiment.

【符号の説明】[Explanation of symbols]

100…可動電極、101,102,103,104,
105,106,107,108,109,110,1
11,112…固定電極、200…検出部、201…可
動電極、202,203…固定電極、204…ビ−ム、
205…容量検出器、206…増幅器、207…パルス
幅変調器、208,209…駆動ゲ−ト、210…低域
フィルタ、300…検出部、401…容量検出器、40
2,403…増幅器、404,405…パルス幅変調
器、406,407…駆動ゲ−ト、408,409…駆
動ゲ−ト、410,411…低域フィルタ、412…加
算器、413…減算器、701…演算増幅器、702…
静電容量、703…トランジスタ、704,705,7
06,707,708,709…サンプルホ−ルド回
路、710,711,712,713,714,71
5,716,717…駆動ゲ−ト、900…可動電極、
901…ビ−ム、902,903,904,905,9
06,907,908,909…固定電極、1000…
検出部、1200…容量検出器、1201,1202,
1203,1204…増幅器,1205,1206,1
207,1208,1209,1210,1211,1
212…駆動ゲ−ト、1213,1214,1215,
1216…パルス幅変調器、1217,1218,12
19,1220…低域フィルタ、1221…演算器、1
300…検出部、1301…ビ−ム、1302…可動電
極、1303…固定電極、1304…固定電極、ビ−ム
…1305、1306…固定電極、1307…可動電
極、1308…固定電極、1600…検出部、1601
…ビ−ム、1602…可動電極、1603,1604,
1605,1606…固定電極、1800…基板、18
01…立方体
100 ... Movable electrodes, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 1
11, 112 ... Fixed electrode, 200 ... Detection part, 201 ... Movable electrode, 202, 203 ... Fixed electrode, 204 ... Beam,
205 ... Capacitance detector, 206 ... Amplifier, 207 ... Pulse width modulator, 208, 209 ... Drive gate, 210 ... Low-pass filter, 300 ... Detection section, 401 ... Capacitance detector, 40
2, 403 ... Amplifier, 404, 405 ... Pulse width modulator, 406, 407 ... Drive gate, 408, 409 ... Drive gate, 410, 411 ... Low-pass filter, 412 ... Adder, 413 ... Subtractor , 701 ... Operational amplifier, 702 ...
Capacitance, 703 ... Transistor, 704, 705, 7
06, 707, 708, 709 ... Sample-hold circuit, 710, 711, 712, 713, 714, 71
5, 716, 717 ... Driving gate, 900 ... Movable electrode,
901 ... beam, 902, 903, 904, 905, 9
06, 907, 908, 909 ... Fixed electrode, 1000 ...
Detection unit 1200 ... Capacitance detector 1201, 1202
1203, 1204 ... Amplifier, 1205, 1206, 1
207, 1208, 1209, 1210, 1211, 1
212 ... Drive gate, 1213, 1214, 1215
1216 ... Pulse width modulator, 1217, 1218, 12
19, 1220 ... Low-pass filter, 1221 ... Operation unit, 1
300 ... Detecting unit, 1301 ... Beam, 1302 ... Movable electrode, 1303 ... Fixed electrode, 1304 ... Fixed electrode, Beam ... 1305, 1306 ... Fixed electrode, 1307 ... Movable electrode, 1308 ... Fixed electrode, 1600 ... Detection Part, 1601
... beam, 1602 ... movable electrode, 1603, 1604,
1605, 1606 ... Fixed electrode, 1800 ... Substrate, 18
01 ... cube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土谷 茂樹 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeki Tsuchiya 4026 Kuji Town, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hiritsu Manufacturing Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 静電容量式の加速度センサにおいて、直
六面体の可動電極の各面に対向して固定電極が配置さ
れ、これらの固定電極から前記可動電極に該可動電極を
前記固定電極で囲まれる空間部中央に浮いた状態で位置
させる静電気力が与えられ、 且つ前記可動電極が多次元の加速度に応答して変位する
と前記可動電極・各固定電極の静電容量の変化をとらえ
て前記可動電極を基準位置(ここで基準位置とは前記固
定電極間の空間部中央である)に戻すための静電気力を
発生させる静電サーボ制御信号を形成して、この静電サ
ーボ制御信号を前記各固定電極に印加する静電サーボ制
御系とを備え、この静電サーボ制御信号或いは各固定電
極・可動電極間の静電容量の変化を示す信号を処理して
多次元の加速度を検出するよう設定して成ることを特徴
とする多次元加速度センサ
1. In a capacitance type acceleration sensor, a fixed electrode is arranged so as to face each surface of a movable electrode of a rectangular parallelepiped, and the movable electrode is surrounded by the fixed electrode from these fixed electrodes. When the movable electrode is displaced in response to a multi-dimensional acceleration, an electrostatic force is applied to float in the center of the space where the movable electrode and each fixed electrode change, and the movable electrode is moved. An electrostatic servo control signal for generating an electrostatic force for returning the electrode to the reference position (here, the reference position is the center of the space between the fixed electrodes) is formed, and the electrostatic servo control signal is generated by Equipped with an electrostatic servo control system for applying to the fixed electrode, set to detect multi-dimensional acceleration by processing this electrostatic servo control signal or a signal indicating the change in electrostatic capacitance between each fixed electrode and movable electrode To be done Multidimensional acceleration sensor, wherein
【請求項2】 請求項1において、前記直六面体の各面
に対向配置される固定電極は、それぞれ2個づつ平行配
置して、3次元空間における加速度及び回転加速度を検
出するよう設定して成ることを特徴とする多次元加速度
センサ。
2. The fixed electrode according to claim 1, wherein two fixed electrodes are arranged so as to face each surface of the rectangular parallelepiped so that two fixed electrodes are arranged in parallel so as to detect acceleration and rotational acceleration in a three-dimensional space. A multi-dimensional acceleration sensor characterized in that
【請求項3】 静電容量式の加速度センサにおいて、加
速度に応答して変位する可動電極と、この可動電極に対
向して縦列,横列にそれぞれ2個づつ配置される固定電
極とを備えて成ることを特徴とする多次元加速度セン
サ。
3. An electrostatic capacitance type acceleration sensor is provided with movable electrodes that are displaced in response to acceleration, and two fixed electrodes that are arranged in a row and a row so as to face the movable electrodes. A multi-dimensional acceleration sensor characterized in that
【請求項4】 静電容量式の加速度センサにおいて、加
速度に応答して変位する2個の可動電極と、これらの可
動電極にそれぞれ対向して配置される複数個の固定電極
とを備えて成ることを特徴とする多次元加速度センサ。
4. A capacitance type acceleration sensor is provided with two movable electrodes that are displaced in response to acceleration, and a plurality of fixed electrodes that are arranged to face these movable electrodes. A multi-dimensional acceleration sensor characterized in that
【請求項5】 静電容量式の加速度センサにおいて、加
速度に対応して上下左右に変位する可動電極と、この可
動電極の上下面にそれぞれ対向して配置される固定電極
とを備え、前記可動電極の左右面と上下面とを、或いは
左右面又は上下面を櫛歯状の電極面とし、一方、固定電
極のうち可動電極の櫛歯状の電極面と対向する電極面を
櫛歯状として前記可動電極の櫛歯状電極と微小空隙を保
ちつつ噛み合うように設定して成ることを特徴とする多
次元加速度センサ。
5. An electrostatic capacitance type acceleration sensor is provided with a movable electrode which is vertically and horizontally displaced in response to acceleration, and fixed electrodes which are arranged to face the upper and lower surfaces of the movable electrode, respectively. The left and right surfaces and the upper and lower surfaces of the electrodes, or the left and right surfaces or the upper and lower surfaces are comb-teeth-shaped electrode surfaces, while the electrode surface of the fixed electrode facing the comb-teeth-shaped electrode surface of the movable electrode is comb-teeth-shaped. A multidimensional acceleration sensor, characterized in that it is set so as to mesh with the comb-teeth-shaped electrode of the movable electrode while maintaining a minute gap.
【請求項6】 直六面体と、この直六面体の3面〜6面
に対応する複数個の面を一体成形して成るフレキシブル
プリント基板と、2〜3個の加速度センサとを備え、前
記フレキシブルプリント基板の各面が前記直六面体の対
応する面に折り曲げられて固着され、且つこのフレキシ
ブル基板の直交する2面〜3面の各面ごとに前記加速度
センサが個々に実装されて成ることを特徴とする多次元
加速度センサ。
6. A flexible printed board comprising a rectangular parallelepiped, a plurality of surfaces corresponding to surfaces 3 to 6 of the rectangular parallelepiped integrally molded, and a couple of acceleration sensors. Each surface of the substrate is bent and fixed to the corresponding surface of the rectangular parallelepiped, and the acceleration sensor is individually mounted on each of the two to three orthogonal surfaces of the flexible substrate. Multi-dimensional acceleration sensor.
JP4149284A 1992-06-09 1992-06-09 Multi-dimensional acceleration sensor Pending JPH05340960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149284A JPH05340960A (en) 1992-06-09 1992-06-09 Multi-dimensional acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149284A JPH05340960A (en) 1992-06-09 1992-06-09 Multi-dimensional acceleration sensor

Publications (1)

Publication Number Publication Date
JPH05340960A true JPH05340960A (en) 1993-12-24

Family

ID=15471835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149284A Pending JPH05340960A (en) 1992-06-09 1992-06-09 Multi-dimensional acceleration sensor

Country Status (1)

Country Link
JP (1) JPH05340960A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085435A (en) * 1994-06-15 1996-01-12 Sensor Gijutsu Kenkyusho:Kk Gas meter
US6876093B2 (en) 2003-09-05 2005-04-05 Denso Corporation Capacitance type dynamic quantity sensor device
JP2007205851A (en) * 2006-02-01 2007-08-16 Seiko Instruments Inc Vibration sensor
JP2009244263A (en) * 2008-03-28 2009-10-22 Honeywell Internatl Inc System and method for acceleration and rotation determination from out-of-plane mems device
JP2009260348A (en) * 2008-04-10 2009-11-05 Honeywell Internatl Inc System and method for acceleration and rotation determination from in-plane and out-of-plane mems device
JP2011169630A (en) * 2010-02-16 2011-09-01 Asahi Kasei Electronics Co Ltd Capacitance type acceleration sensor and capacitance type acceleration detector
JP2012002752A (en) * 2010-06-18 2012-01-05 Denso Corp Capacity type inertial force sensor
CN102809662A (en) * 2011-05-31 2012-12-05 精工爱普生株式会社 Module and electronic apparatus
JP2013036810A (en) * 2011-08-05 2013-02-21 Seiko Epson Corp Sensor module and electronic device
CN103713158A (en) * 2012-10-02 2014-04-09 雅马哈株式会社 Acceleration sensor
US8960000B2 (en) 2011-07-13 2015-02-24 Seiko Epson Corporation Sensor device, and electronic apparatus
US9052220B2 (en) 2011-05-31 2015-06-09 Seiko Epson Corporation Maintaining member, module, and electronic apparatus
US9250260B2 (en) 2011-07-11 2016-02-02 Seiko Epson Corporation Sensor device, and electronic apparatus
US9316499B2 (en) 2011-05-31 2016-04-19 Seiko Epson Corporation Module and electronic apparatus
US9316666B2 (en) 2012-11-27 2016-04-19 Murata Manufacturing Co., Ltd. Acceleration sensor having a capacitor array located in the center of an inertial mass
US9404755B2 (en) 2012-12-27 2016-08-02 Seiko Epson Corporation Sensor having a plurality of mounting boards on which sensor components are mounted, an electronic apparatus having the sensor, and a moving object having the sensor
US9468994B2 (en) 2013-05-24 2016-10-18 Seiko Epson Corporation Sensor unit, method of manufacturing the same, electronic apparatus, and moving object
US9523702B2 (en) 2012-06-08 2016-12-20 Seiko Epson Corporation Sensor unit, electronic device, and moving body
US9702890B2 (en) 2013-03-11 2017-07-11 Seiko Epson Corporation Mounting board, sensor unit, electronic apparatus, and moving body
CN108508234A (en) * 2018-03-05 2018-09-07 清华大学 Orthogonal Electrostatically suspended accelerometer sensitive structure

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085435A (en) * 1994-06-15 1996-01-12 Sensor Gijutsu Kenkyusho:Kk Gas meter
US6876093B2 (en) 2003-09-05 2005-04-05 Denso Corporation Capacitance type dynamic quantity sensor device
JP2007205851A (en) * 2006-02-01 2007-08-16 Seiko Instruments Inc Vibration sensor
JP2009244263A (en) * 2008-03-28 2009-10-22 Honeywell Internatl Inc System and method for acceleration and rotation determination from out-of-plane mems device
JP2009260348A (en) * 2008-04-10 2009-11-05 Honeywell Internatl Inc System and method for acceleration and rotation determination from in-plane and out-of-plane mems device
JP2011169630A (en) * 2010-02-16 2011-09-01 Asahi Kasei Electronics Co Ltd Capacitance type acceleration sensor and capacitance type acceleration detector
JP2012002752A (en) * 2010-06-18 2012-01-05 Denso Corp Capacity type inertial force sensor
CN102809662A (en) * 2011-05-31 2012-12-05 精工爱普生株式会社 Module and electronic apparatus
JP2012251801A (en) * 2011-05-31 2012-12-20 Seiko Epson Corp Module and electronic apparatus
US10113875B2 (en) 2011-05-31 2018-10-30 Seiko Epson Corporation Module and electronic apparatus
US10072954B2 (en) 2011-05-31 2018-09-11 Seiko Epson Corporation Module and electronic apparatus
US9316499B2 (en) 2011-05-31 2016-04-19 Seiko Epson Corporation Module and electronic apparatus
US9052220B2 (en) 2011-05-31 2015-06-09 Seiko Epson Corporation Maintaining member, module, and electronic apparatus
US9243909B2 (en) 2011-05-31 2016-01-26 Seiko Epson Corporation Module and electronic apparatus
US9250260B2 (en) 2011-07-11 2016-02-02 Seiko Epson Corporation Sensor device, and electronic apparatus
US9541397B2 (en) 2011-07-11 2017-01-10 Seiko Epson Corporation Sensor device, and electronic apparatus
US8960000B2 (en) 2011-07-13 2015-02-24 Seiko Epson Corporation Sensor device, and electronic apparatus
US10612948B2 (en) 2011-07-13 2020-04-07 Seiko Epson Corporation Sensor device and electronic apparatus
US11709079B2 (en) 2011-07-13 2023-07-25 Seiko Epson Corporation Sensor device and electronic apparatus
US10107653B2 (en) 2011-07-13 2018-10-23 Seiko Epson Corporation Sensor device and electronic apparatus
US11215484B2 (en) 2011-07-13 2022-01-04 Seiko Epson Corporation Sensor device and electronic apparatus
JP2013036810A (en) * 2011-08-05 2013-02-21 Seiko Epson Corp Sensor module and electronic device
US9523702B2 (en) 2012-06-08 2016-12-20 Seiko Epson Corporation Sensor unit, electronic device, and moving body
CN103713158A (en) * 2012-10-02 2014-04-09 雅马哈株式会社 Acceleration sensor
US9315377B2 (en) 2012-10-02 2016-04-19 Murata Manufacturing Co., Ltd. Acceleration sensor for detecting acceleration in three directions
US9316666B2 (en) 2012-11-27 2016-04-19 Murata Manufacturing Co., Ltd. Acceleration sensor having a capacitor array located in the center of an inertial mass
US9404755B2 (en) 2012-12-27 2016-08-02 Seiko Epson Corporation Sensor having a plurality of mounting boards on which sensor components are mounted, an electronic apparatus having the sensor, and a moving object having the sensor
US9702890B2 (en) 2013-03-11 2017-07-11 Seiko Epson Corporation Mounting board, sensor unit, electronic apparatus, and moving body
US9468994B2 (en) 2013-05-24 2016-10-18 Seiko Epson Corporation Sensor unit, method of manufacturing the same, electronic apparatus, and moving object
CN108508234A (en) * 2018-03-05 2018-09-07 清华大学 Orthogonal Electrostatically suspended accelerometer sensitive structure
CN108508234B (en) * 2018-03-05 2019-09-17 清华大学 Orthogonal Electrostatically suspended accelerometer sensitive structure

Similar Documents

Publication Publication Date Title
JPH05340960A (en) Multi-dimensional acceleration sensor
JP2765316B2 (en) Capacitive three-axis acceleration sensor
US7168317B2 (en) Planar 3-axis inertial measurement unit
US5365799A (en) Sensor for force/acceleration/magnetism using piezoelectric element
JP3311633B2 (en) Sensor unit
US6314823B1 (en) Force detector and acceleration detector and method of manufacturing the same
JP5127464B2 (en) Pendulum in-plane MEMS accelerometer device
US5691471A (en) Acceleration and angular velocity detector
US7197928B2 (en) Solid-state gyroscopes and planar three-axis inertial measurement unit
US20060169041A1 (en) Combined gyroscope and 2-axis accelerometer
GB2178856A (en) Integrated, force balanced accelerometer
US10677672B2 (en) Displacement detection type force-detection structure and displacement detection type force sensor
US20120160029A1 (en) Acceleration sensor
JP2841240B2 (en) Force / acceleration / magnetism detection device
US10802040B2 (en) Acceleration sensor
Li et al. Micromachined accelerometer with area-changed capacitance
US5962788A (en) Transducer
US8505380B2 (en) Out-of plane comb-drive accelerometer
JP2000081448A (en) Method for detecting basic information about moving body and multiple sensor for basic information about moving body
Mukherjee et al. A simple low cost scheme for closed loop operation of MEMS capacitive accelerometer
JPH04278464A (en) Semiconductor acceleration sensor
JPH06258340A (en) Multi-dimensional acceleration detector
JP2010025840A (en) Force detector
JPH0627133A (en) Three dimensional acceleration sensor
JPH11133051A (en) Annular shearing type piezoelectric element and accelerometer using the same