JPH05340861A - Non-destructive measuring device and method of amount of uranium included in radioactive waste product - Google Patents
Non-destructive measuring device and method of amount of uranium included in radioactive waste productInfo
- Publication number
- JPH05340861A JPH05340861A JP17612592A JP17612592A JPH05340861A JP H05340861 A JPH05340861 A JP H05340861A JP 17612592 A JP17612592 A JP 17612592A JP 17612592 A JP17612592 A JP 17612592A JP H05340861 A JPH05340861 A JP H05340861A
- Authority
- JP
- Japan
- Prior art keywords
- gamma ray
- radioactive waste
- container
- detector
- uranium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、容器に収納された放射
性廃棄物に含まれるウラン量を容器の外部から非破壊で
測定する装置及び方法に関する。更に詳しくは、容器の
外部からウランの放出する固有のγ線スペクトルを測定
し、含有ウラン量を定量する非破壊測定装置及び方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for nondestructively measuring the amount of uranium contained in radioactive waste contained in a container from the outside of the container. More specifically, the present invention relates to a nondestructive measuring device and method for measuring the amount of uranium contained in a container by measuring the characteristic γ-ray spectrum of uranium emitted from the outside of the container.
【0002】[0002]
【従来の技術】原子燃料加工施設等のウランを取扱う原
子力施設から発生する放射性廃棄物のうち可燃性のもの
については、焼却減容処理されている。その際に発生す
る焼却灰は通常200Lドラム缶に封入し、保管廃棄物
(Retained Waste)として保管されている。このドラム
缶中の核分裂及び潜在核燃料物質が無断で転用されない
ように管理するため、また臨界事故を引起こさないよう
に管理するため、ウラン含有量を測定しておく必要があ
る。この測定のためにドラム缶を全て開封して焼却灰を
サンプリングして分析する破壊分析を行った場合、分析
結果を得るのに多くの時間と費用を必要とする。このた
め、従来より、容器に収納された放射性廃棄物中の核分
裂性物質の含有量を非破壊で測定する技術が提案されて
いる(特公平3−67239号公報)。この技術では、
放射性廃棄物の焼却灰を収納する缶が中性子減速体から
形成された井戸の開口内に搬送され、この中で非破壊測
定が実施される。この井戸の開口を取り囲む側壁の周囲
にはBF3検出器のような多数の中性子検出器が設けら
れており、またこの井戸の開口の底部付近にはヨウ化ナ
トリウム検出器のようなガンマ線検出器が少なくとも1
個設けられている。2. Description of the Related Art Among radioactive wastes generated from nuclear facilities handling uranium such as nuclear fuel processing facilities, combustible wastes are incinerated and reduced in volume. The incinerated ash generated at that time is usually enclosed in a 200 L drum and stored as a retained waste. It is necessary to measure the uranium content in order to manage the nuclear fission and potential nuclear fuel material in the drum so as not to be diverted without permission and to prevent a criticality accident. When destructive analysis is performed in which all drums are opened and incinerated ash is sampled and analyzed for this measurement, it takes a lot of time and money to obtain the analysis results. For this reason, conventionally, a technique of nondestructively measuring the content of the fissile material in the radioactive waste stored in the container has been proposed (Japanese Patent Publication No. 3-67239). With this technology,
A can containing the incineration ash of radioactive waste is transported into the opening of the well formed from the neutron moderator, and the nondestructive measurement is performed therein. A large number of neutron detectors such as a BF 3 detector are provided around the side wall surrounding the opening of the well, and a gamma ray detector such as a sodium iodide detector is provided near the bottom of the opening of the well. Is at least 1
It is provided individually.
【0003】[0003]
【発明が解決しようとする課題】従って、上記従来の技
術では非破壊測定が可能であるものの、焼却灰を収納す
る缶を受け入れる井戸の構造及び缶を井戸の開口内に搬
送する装置の構造が極めて複雑である。その結果、缶の
容積及び重量も必然的に制限され、200Lドラム缶の
ような大型の容器を使用することは出来ず、また装置の
操作も面倒である不具合があった。本発明の目的は、2
00Lドラム缶のような大型の容器に収納された放射性
廃棄物に含まれるウラン量を簡単な操作で非破壊で測定
する装置及び方法を提供することにある。本発明の別の
目的は、均一な密度に収納された放射性廃棄物の保管場
所まで測定装置を移動して容易に放射性廃棄物に含まれ
るウラン量を非破壊で測定する装置及び方法を提供する
ことにある。本発明の更に別の目的は、非均一な密度に
収納された放射性廃棄物に含まれるウラン量を非破壊で
測定する装置及び方法を提供することにある。Therefore, although the non-destructive measurement is possible with the above conventional technique, the structure of the well that receives the can containing the incinerated ash and the structure of the device that conveys the can into the opening of the well are not improved. It's extremely complicated. As a result, the volume and weight of the can are inevitably limited, a large container such as a 200 L drum can cannot be used, and the operation of the device is troublesome. The purpose of the present invention is 2
An object of the present invention is to provide an apparatus and method for nondestructively measuring the amount of uranium contained in a radioactive waste stored in a large container such as a 00L drum can with a simple operation. Another object of the present invention is to provide an apparatus and a method for easily measuring the amount of uranium contained in radioactive waste in a non-destructive manner by moving the measuring apparatus to a storage location of radioactive waste stored in a uniform density. Especially. Still another object of the present invention is to provide an apparatus and method for nondestructively measuring the amount of uranium contained in radioactive waste stored in a non-uniform density.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、本発明の構成を実施例に対応する図1及び図2に基
づいて説明する。本発明は焼却灰や廃液処理工程から発
生する凝集した沈澱物のように収納状態の密度が均一で
ある放射性廃棄物に含まれるウラン量、又はぼろ布、紙
タオルのように収納状態の密度が非均一である放射性廃
棄物に含まれるウラン量を非破壊で測定する装置及び方
法である。本発明の第1の態様である放射性廃棄物に含
まれるウラン量の非破壊測定装置は、図1に示すよう
に、ウランが含まれる放射性廃棄物を収納した容器10
を定置する手段12と;前記容器10内の放射性廃棄物
から放出されるそれぞれ固有のエネルギのガンマ線を検
出するヨウ化ナトリウム検出器14と;前記検出器14
の検出信号に基づいてガンマ線エネルギの波高分析を行
う多重波高分析器20と;前記放射性廃棄物と同種の校
正用放射性廃棄物を破壊分析してウラン同位体含有量を
求め、かつ前記校正用放射性廃棄物を前記容器10内に
収納してヨウ化ナトリウム検出器14と多重波高分析器
20を用いて前記校正用放射性廃棄物に含まれるU−2
35及びU−238のガンマ線強度を求め、このガンマ
線強度と前記ウラン同位体含有量の関係から作成された
検量線を記憶し、前記分析器20で分析されたガンマ線
エネルギスペクトルの所定の領域のピーク面積から前記
廃棄物に含まれるU−235及びU−238のガンマ線
強度を演算処理し、このガンマ線強度と前記検量線とか
らU−235及びU−238の含有量を決定するデータ
処理手段22と;前記定置手段12により定置された容
器10全体を前記検出器14が臨む位置まで前記検出器
14を接近可能な第1の移動手段16と;この移動手段
16に追従して前記分析器20と前記データ処理手段2
2を移動可能な第2の移動手段26とを備えたことを特
徴とする。In order to achieve the above object, the structure of the present invention will be described with reference to FIGS. 1 and 2 corresponding to the embodiments. INDUSTRIAL APPLICABILITY The present invention has a uniform storage state density such as a coagulated precipitate generated from incineration ash or a waste liquid treatment process, or a storage state density such as a rag cloth or a paper towel. An apparatus and method for nondestructively measuring the amount of uranium contained in non-uniform radioactive waste. As shown in FIG. 1, a non-destructive measuring apparatus for uranium contained in radioactive waste according to a first aspect of the present invention, as shown in FIG. 1, is a container 10 for storing radioactive waste containing uranium.
And a means 12 for locating each of them; a sodium iodide detector 14 for detecting gamma rays of respective unique energies emitted from the radioactive waste in the container 10;
A multi-height analyzer 20 for performing a wave height analysis of gamma ray energy based on a detection signal of γ-ray; a uranium isotope content is obtained by destructive analysis of a calibrating radioactive waste of the same kind as the radioactive waste, and the calibrating radioactive U-2 contained in the radioactive waste for calibration using the sodium iodide detector 14 and the multiple wave height analyzer 20 after storing the waste in the container 10
35 and U-238 gamma ray intensities are obtained, a calibration curve prepared from the relationship between the gamma ray intensities and the uranium isotope content is stored, and the peak of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer 20 is stored. Data processing means 22 for calculating the gamma ray intensities of U-235 and U-238 contained in the waste from the area and determining the contents of U-235 and U-238 from the gamma ray intensity and the calibration curve. A first moving means 16 capable of approaching the detector 14 to the position where the detector 14 faces the entire container 10 placed by the placing means 12, and an analyzer 20 following the moving means 16. The data processing means 2
And a second moving means 26 capable of moving 2.
【0005】本発明の第2の態様である放射性廃棄物に
含まれるウラン量の非破壊測定装置は、図2に示すよう
に、ウランが含まれる放射性廃棄物を収納した容器30
を載せる回転台32と;この回転台32の回転手段34
と;容器30内の放射性廃棄物から放出されるそれぞれ
固有のエネルギのガンマ線を検出するヨウ化ナトリウム
検出器40と;前記検出器40を回転台32に載った容
器30に接近可能な第3の移動手段42と;少なくとも
容器30の高さまで昇降可能な検出器昇降手段44と;
前記回転手段34と前記検出器昇降手段44とを制御す
るコントローラ39と;容器30の回転中及び前記検出
器40の昇降中に前記検出器40から検出される信号に
基づいてガンマ線エネルギの波高分析を行う多重波高分
析器46と;前記放射性廃棄物と同種の校正用放射性廃
棄物を破壊分析してウラン同位体含有量を求め、かつ前
記校正用放射性廃棄物を容器30内に収納して前記ヨウ
化ナトリウム検出器40と多重波高分析器46を用いて
前記校正用放射性廃棄物に含まれるU−235及びU−
238のガンマ線強度を求め、このガンマ線強度と前記
ウラン同位体含有量の関係から作成された検量線を記憶
し、前記分析器46で分析されたガンマ線エネルギスペ
クトルの所定の領域のピーク面積から前記廃棄物に含ま
れるU−235及びU−238のガンマ線強度を演算処
理し、このガンマ線強度と前記検量線とからU−235
及びU−238の含有量を決定するデータ処理手段50
とを備えたことを特徴とする。As shown in FIG. 2, a nondestructive measuring device for the amount of uranium contained in radioactive waste, which is a second aspect of the present invention, is a container 30 containing radioactive waste containing uranium.
A turntable 32 on which the rotating table 32 is mounted;
A; sodium iodide detector 40 for detecting gamma rays of respective unique energies emitted from the radioactive waste in the container 30; a third detector 40 which is accessible to the container 30 mounted on the rotary table 32; Moving means 42; detector elevating means 44 capable of elevating and lowering to at least the height of the container 30;
A controller 39 for controlling the rotating means 34 and the detector elevating means 44; a wave height analysis of gamma ray energy based on a signal detected by the detector 40 while the container 30 is rotating and the detector 40 is ascending and descending. A multi-wave height analyzer 46 for performing a destructive analysis of the calibration radioactive waste of the same kind as the radioactive waste to obtain a uranium isotope content, and storing the calibration radioactive waste in a container 30 to U-235 and U- contained in the radioactive waste for calibration using the sodium iodide detector 40 and the multi-wave height analyzer 46.
The gamma ray intensity of 238 is obtained, a calibration curve prepared from the relationship between the gamma ray intensity and the uranium isotope content is stored, and the discard is made from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer 46. The gamma ray intensities of U-235 and U-238 contained in the object are calculated, and U-235 is calculated from this gamma ray intensity and the calibration curve.
And data processing means 50 for determining the contents of U-238
It is characterized by having and.
【0006】本発明の第3の態様である放射性廃棄物に
含まれるウラン量の非破壊測定装置は、第2の態様に加
えて回転台32に載った容器30にガンマ線を照射する
ガンマ線源36と、このガンマ線源36を少なくとも容
器30の高さまで昇降可能なガンマ線源昇降手段38と
を備え、ヨウ化ナトリウム検出器40をガンマ線源36
に対向する位置に設けてガンマ線源36から照射されて
容器30を透過するガンマ線を検出するようにしたもの
である。The nondestructive measuring apparatus for the amount of uranium contained in radioactive waste according to the third aspect of the present invention is the gamma ray source 36 for irradiating the container 30 mounted on the rotary table 32 with gamma rays in addition to the second aspect. And a gamma-ray source raising / lowering means 38 capable of raising / lowering the gamma-ray source 36 to at least the height of the container 30.
It is provided at a position opposite to and detects the gamma rays emitted from the gamma ray source 36 and transmitted through the container 30.
【0007】本発明の第4の態様である放射性廃棄物に
含まれるウラン量の非破壊測定方法は、図1に示すよう
に、測定対象であるウラン含有放射性廃棄物の破壊分析
値に基づいてウラン同位体含有量が既知の校正用放射性
廃棄物を調製する工程4aと;この校正用放射性廃棄物
を容器10に収納する工程4bと;この容器10近傍の
容器10全体を臨む所定の位置でガンマ線検出器14に
より容器10内の校正用放射性廃棄物から放出されるそ
れぞれ固有のエネルギのガンマ線を検出する工程4c
と;検出器14の検出信号に基づいて多重波高分析器2
0によりガンマ線エネルギの波高分析を行う工程4d
と;前記分析器20で分析されたガンマ線エネルギスペ
クトルの所定の領域のピーク面積からデータ処理手段2
2により前記校正用放射性廃棄物に含まれるU−235
及びU−238のガンマ線強度を求める工程4eと;前
記ガンマ線強度と前記ウラン破壊分析値から検量線を作
成する工程4fと;ウラン同位体含有量を測定しようと
する放射性廃棄物を容器10に収納する工程4gと;前
記工程4gの容器10近傍のこの容器10全体を臨む所
定の位置にヨウ化ナトリム検出器14を移動してこの検
出器14により前記工程4gの容器10に収納した測定
用放射性廃棄物から放出されるそれぞれ固有のエネルギ
のガンマ線を検出する工程4hと;ヨウ化ナトリウム検
出器14の検出信号に基づいて前記分析器20によりガ
ンマ線エネルギの波高分析を行う工程4iと;前記分析
器20で分析されたガンマ線エネルギスペクトルの所定
の領域のピーク面積から前記データ処理手段22により
前記測定用放射性廃棄物に含まれるU−235及びU−
238のガンマ線強度を求める工程4jと;前記工程4
jのガンマ線強度と前記工程4fの検量線とを比較して
前記測定用放射性廃棄物のU−235及びU−238の
含有量を求める工程4kとを含むことを特徴とする。The nondestructive measurement method of the amount of uranium contained in the radioactive waste according to the fourth aspect of the present invention is based on the destructive analysis value of the uranium-containing radioactive waste to be measured as shown in FIG. Step 4a of preparing a calibration radioactive waste having a known uranium isotope content; Step 4b of storing this calibration radioactive waste in a container 10; At a predetermined position facing the entire container 10 in the vicinity of this container 10. Step 4c of detecting by the gamma ray detector 14 the gamma rays of respective unique energies emitted from the calibration radioactive waste in the container 10.
And; based on the detection signal of the detector 14, the multiple wave height analyzer 2
Step 4d of performing crest analysis of gamma ray energy by 0
Data processing means 2 from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer 20.
U-235 contained in the radioactive waste for calibration according to 2.
And step 4e of determining the gamma ray intensity of U-238; step 4f of creating a calibration curve from the gamma ray intensity and the uranium destructive analysis value; and storing radioactive waste whose uranium isotope content is to be measured in the container 10. Step 4g for carrying out; and the radioactive radioactive substance for measurement stored in the container 10 of the step 4g by the detector 14 by moving the sodium iodide detector 14 to a predetermined position near the container 10 of the step 4g and facing the entire container 10. A step 4h of detecting gamma rays of respective peculiar energies emitted from the waste; a step 4i of performing crest analysis of gamma ray energy by the analyzer 20 based on a detection signal of the sodium iodide detector 14; From the peak area of a predetermined region of the gamma ray energy spectrum analyzed in step 20, the measuring radioactivity is measured by the data processing means 22. U-235 and contained in the wastes U-
Step 4j for determining the gamma ray intensity of 238;
and a step 4k for determining the contents of U-235 and U-238 in the radioactive waste for measurement by comparing the gamma ray intensity of j with the calibration curve of step 4f.
【0008】本発明の第5の態様である放射性廃棄物に
含まれるウラン量の非破壊測定方法は、図2に示すよう
に、測定対象であるウラン含有放射性廃棄物の破壊分析
値に基づいてウラン同位体含有量が既知の校正用放射性
廃棄物を調製する工程5aと;この校正用放射性廃棄物
を容器30に収納する工程5bと;容器30を回転台3
2に載せる工程5cと;回転台32に載った容器30近
傍の所定の位置で容器30内の校正用放射性廃棄物から
放出されるそれぞれ固有のエネルギのガンマ線をガンマ
線検出器40により検出する工程5dと;前記検出器4
0の検出信号に基づいて多重波高分析器46によりガン
マ線エネルギの波高分析を行う工程5eと;前記分析器
46で分析されたガンマ線エネルギスペクトルの所定の
領域のピーク面積からデータ処理手段50により前記校
正用放射性廃棄物に含まれるU−235及びU−238
のガンマ線強度を求める工程5fと;前記ガンマ線強度
と前記ウラン破壊分析値から検量線を作成する工程5g
と;ウランを含有しかつ前記校正用放射性廃棄物と同種
の測定用放射性廃棄物を容器30に収納する工程5h
と;前記工程5hの容器30を回転台32に載せ、かつ
前記工程5dから前記工程5eの操作を行う工程5i
と;前記分析器46で分析されたガンマ線エネルギスペ
クトルの所定の領域のピーク面積からデータ処理手段5
0により前記測定用放射性廃棄物に含まれるU−235
及びU−238のガンマ線強度を求める工程5jと;前
記工程5jのガンマ線強度と前記工程5gの検量線から
前記測定用放射性廃棄物のU−235及びU−238の
含有量を求める工程5kとを含むことを特徴とする。The nondestructive measurement method for the amount of uranium contained in radioactive waste, which is the fifth aspect of the present invention, is based on the destructive analysis value of the uranium-containing radioactive waste to be measured, as shown in FIG. Step 5a for preparing a calibration radioactive waste having a known uranium isotope content; Step 5b for storing the calibration radioactive waste in a container 30;
Step 5c of placing on the No. 2; Step 5d of detecting by the gamma ray detector 40 the gamma rays of the specific energy emitted from the calibration radioactive waste in the container 30 at a predetermined position near the container 30 placed on the rotating table 32. And the detector 4
Step 5e of performing wave height analysis of gamma ray energy by the multiple wave height analyzer 46 based on the detection signal of 0; and from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer 46, the data processing means 50 performs the calibration. -235 and U-238 included in radioactive waste for use
5f for obtaining the gamma ray intensity of; and 5g for creating a calibration curve from the gamma ray intensity and the uranium breakdown analysis value
And; step 5h of storing uranium-containing measuring radioactive waste of the same type as the calibration radioactive waste in the container 30.
And a step 5i of placing the container 30 of the step 5h on the turntable 32 and performing the steps 5d to 5e.
Data processing means 5 from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer 46.
U-235 included in the radioactive waste for measurement according to 0
And a step 5j of obtaining the gamma ray intensity of U-238; and a step 5k of obtaining the contents of U-235 and U-238 of the radioactive waste for measurement from the gamma ray intensity of the step 5j and the calibration curve of the step 5g. It is characterized by including.
【0009】本発明の第6の態様である放射性廃棄物に
含まれるウラン量の非破壊測定方法は、図2に示すよう
に、回転台32に空の容器30を載せる工程6aと;回
転台32に載った前記空の容器30にガンマ線をガンマ
線源36により照射する工程6bと;回転台32に載っ
た前記空の容器30近傍の所定の位置でガンマ線源36
より照射され前記空の容器30を透過してくる固有のエ
ネルギのガンマ線をガンマ線検出器40により検出する
工程6cと;前記検出器40の検出信号に基づいて多重
波高分析器46によりガンマ線エネルギの波高分析を行
う工程6dと;前記分析器46で分析されたガンマ線エ
ネルギスペクトルのピーク面積からデータ処理手段50
により前記空の容器30に対するガンマ線強度を求める
工程6eと;測定対象であるウラン含有放射性廃棄物の
破壊分析値に基づいてウラン同位体含有量が既知の校正
用放射性廃棄物を調製する工程6fと;前記校正用放射
性廃棄物を前記空の容器30に収納する工程6gと;こ
の工程6gの容器30を回転台32に載せる工程6h
と;この回転台32に載った容器30近傍の所定の位置
でこの容器30内の校正用放射性廃棄物から放出される
それぞれ固有のエネルギのガンマ線をガンマ線検出器4
0により検出する工程6iと;前記検出器40の検出信
号に基づいて多重波高分析器46によりガンマ線エネル
ギの波高分析を行う工程6jと;前記分析器46で分析
されたガンマ線エネルギスペクトルの所定の領域のピー
ク面積からデータ処理手段50により前記校正用放射性
廃棄物に含まれるU−235及びU−238のガンマ線
強度を求める工程6kと;この工程6kのガンマ線強度
と前記ウラン破壊分析値から検量線を作成する工程6L
と;回転台32に測定用放射性廃棄物を収納した容器3
0を載せる工程6mと;この回転台32に載った容器3
0にガンマ線をガンマ線源36により照射する工程6n
と;前記回転台32に載った容器30近傍の所定の位置
で前記ガンマ線源36より照射され容器30を透過して
くる固有のエネルギのガンマ線及び容器30から放出さ
れるそれぞれ固有のエネルギのガンマ線をガンマ線検出
器40により検出する工程6oと;前記検出器40の検
出信号に基づいて多重波高分析器46によりガンマ線エ
ネルギの波高分析を行う工程6pと;前記分析器46で
分析されたガンマ線エネルギスペクトルの所定の領域の
ピーク面積から前記データ処理手段50により前記測定
用放射性廃棄物の透過ガンマ線強度及びU−235及び
U−238のガンマ線強度を求める工程6qと;前記工
程6eのガンマ線強度と前記工程6qの透過ガンマ線強
度から前記測定用放射性廃棄物の自己吸収係数を算出
し、この自己吸収係数により前記U−235及びU−2
38のガンマ線強度を補正する工程6rと;この工程6
rの補正されたガンマ線強度と前記工程6Lの検量線か
ら前記測定用放射性廃棄物のU−235及びU−238
の含有量を求める工程6sを含むことを特徴とする。The nondestructive measurement method of the amount of uranium contained in the radioactive waste, which is the sixth aspect of the present invention, comprises a step 6a of placing an empty container 30 on the rotary table 32 as shown in FIG. Step 6b of irradiating the empty container 30 mounted on 32 with gamma rays from the gamma ray source 36; and gamma ray source 36 at a predetermined position near the empty container 30 mounted on the turntable 32.
Step 6c of detecting the gamma ray of the specific energy which is further irradiated and transmitted through the empty container 30 by the gamma ray detector 40; and the wave height of the gamma ray energy by the multiple wave height analyzer 46 based on the detection signal of the detector 40. Analysis step 6d; data processing means 50 based on the peak area of the gamma ray energy spectrum analyzed by the analyzer 46.
A step 6e for obtaining the gamma ray intensity for the empty container 30 by the following: a step 6f for preparing a calibration radioactive waste having a known uranium isotope content based on the destructive analysis value of the uranium-containing radioactive waste to be measured. A step 6g of storing the calibration radioactive waste in the empty container 30; and a step 6h of mounting the container 30 of the step 6g on the turntable 32.
The gamma ray detector 4 detects the gamma rays of specific energy emitted from the calibration radioactive waste in the container 30 at a predetermined position near the container 30 mounted on the turntable 32.
0 for detecting 6; step 6j for performing wave height analysis of gamma ray energy by the multiple wave height analyzer 46 based on the detection signal of the detector 40; and a predetermined region of the gamma ray energy spectrum analyzed by the analyzer 46. Step 6k for determining the gamma ray intensity of U-235 and U-238 contained in the calibration radioactive waste by the data processing means 50 from the peak area of the above; and a calibration curve from the gamma ray intensity of this step 6k and the uranium destruction analysis value. Process 6L to create
And; a container 3 in which the radioactive waste for measurement is stored on the turntable 32.
Step 6m for placing 0; container 3 placed on this turntable 32
Step 6n of irradiating 0 with gamma rays by the gamma ray source 36
And gamma rays of specific energy emitted from the gamma ray source 36 and transmitted through the container 30 at predetermined positions near the container 30 placed on the rotary table 32 and gamma rays of specific energy emitted from the container 30. Step 6o of detecting by the gamma ray detector 40; Step 6p of performing wave height analysis of gamma ray energy by the multiple wave height analyzer 46 based on the detection signal of the detector 40; and of the gamma ray energy spectrum analyzed by the analyzer 46. Step 6q for obtaining the transmitted gamma ray intensity of the radioactive waste for measurement and the gamma ray intensity of U-235 and U-238 from the peak area of a predetermined region by the data processing means 50; the gamma ray intensity of the step 6e and the step 6q. Calculate the self-absorption coefficient of the radioactive waste for measurement from the transmitted gamma-ray intensity of The U-235 and U-2 by
Step 6r for correcting the gamma ray intensity of 38; and this Step 6
From the corrected gamma-ray intensity of r and the calibration curve of step 6L, U-235 and U-238 of the radioactive waste for measurement were measured.
It is characterized by including a step 6s for determining the content of
【0010】[0010]
【作用】焼却灰のように収納状態の密度が均一である放
射性廃棄物のウラン量を非破壊で測定する場合及びぼろ
布、紙タオルのように収納状態の密度が非均一である放
射性廃棄物のウラン量を非破壊で測定する場合の何れの
場合においても、先ず放射性廃棄物の破壊測定で得られ
たウラン分析値に基づいてウラン含有量が既知の校正用
放射性廃棄物を調製し、この放射性廃棄物に本発明の非
破壊測定方法を適用して検量線を作成する。図1に示す
ように、ドラム缶10近傍のドラム缶10全体を臨む所
定の位置にそれぞれヨウ化ナトリウムからなるガンマ線
検出器14を設置し、検出器14を使用してドラム缶1
0内の測定用放射性廃棄物から放出されるそれぞれ固有
のエネルギのガンマ線を検出する。ガンマ線検出器14
が検出した検出信号を多重波高分析器20に送り、ここ
でガンマ線エネルギの波高分析を行う。多重波高分析器
20で分析されたガンマ線エネルギスペクトルの所定の
領域のピーク面積からデータ処理手段22により測定用
放射性廃棄物に含まれるU−235及びU−238のガ
ンマ線強度を求め、このガンマ線強度と前記検量線とを
比較して測定用放射性廃棄物のU−235及びU−23
8の含有量を求める。図2に示すように、ドラム缶30
を回転台32に載せ、放射性廃棄物が焼却灰のように密
度が均一の場合にはガンマ線源を用いずに、反対に放射
性廃棄物がぼろ布のような密度が低くかつ非均一の場合
には、回転台32を回転させながらドラム缶30にガン
マ線を137Csガンマ線源36により照射する。回転台
32に載ったドラム缶30近傍の所定の位置でドラム缶
30を透過してくるそれぞれ固有のエネルギのガンマ線
をガンマ線検出器40により検出する。[Function] Non-destructive measurement of the amount of uranium in radioactive waste, such as incineration ash, which has a uniform density in the stored state, and radioactive waste, such as rag cloth and paper towel, which has a non-uniform density in the stored state In any case of non-destructive measurement of uranium content, first, a calibration radioactive waste with a known uranium content is prepared based on the uranium analysis value obtained by the destructive measurement of radioactive waste. A calibration curve is created by applying the nondestructive measurement method of the present invention to radioactive waste. As shown in FIG. 1, gamma ray detectors 14 made of sodium iodide are installed at predetermined positions in the vicinity of the drum can 10 so as to face the entire drum can 10.
Each unique energy gamma ray emitted from the measuring radioactive waste within 0 is detected. Gamma ray detector 14
The detection signal detected by is sent to the multiple wave height analyzer 20, where the wave height analysis of gamma ray energy is performed. The gamma ray intensity of U-235 and U-238 contained in the radioactive waste for measurement is obtained by the data processing means 22 from the peak area of the predetermined region of the gamma ray energy spectrum analyzed by the multiple wave height analyzer 20, and this gamma ray intensity U-235 and U-23 of radioactive waste for measurement by comparing with the calibration curve
Determine the content of 8. As shown in FIG.
When the radioactive waste has a uniform density such as incinerated ash and does not use a gamma ray source, on the contrary, when the radioactive waste has a low density like a rag and is non-uniform, Irradiates the drum 30 with gamma rays from a 137 Cs gamma ray source 36 while rotating the turntable 32. The gamma ray of the specific energy transmitted through the drum can 30 is detected by the gamma ray detector 40 at a predetermined position near the drum can 30 placed on the rotary table 32.
【0011】次に本発明の第1の実施例の装置を図面に
基づいて説明する。図1に示すように、12は焼却灰を
収納する200Lドラム缶10を定置する基台である。
ドラム缶10の前方にはドラム缶10内の放射性廃棄物
から放出されるそれぞれ固有のエネルギのガンマ線を検
出するヨウ化ナトリウム検出器14が配置されている。
この検出器14は第1の移動手段である第1の台車16
に載置されており、基台12に定置されたドラム缶10
全体を検出器14が臨む位置まで接近できるようになっ
ている。検出器14の出力は増幅器18を介して多重波
高分析器20に接続され、多重波高分析器20の出力は
データ処理手段のコンピュータ22に接続される。この
コンピュータ22にはガンマ線強度とウラン含有量が既
知の標準から得られた検量線がメモリに記憶されてい
る。コンピュータ22にはプリンタ24が接続される。
増幅器18、多重波高分析器20、コンピュータ22及
びプリンタ24はコンソール又はラックのような収納具
(図示せず)に収納された後、第2の移動手段である第
2の台車26に載置され、第1の台車16に追従して適
切な場所に移動する。Next, an apparatus according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, reference numeral 12 is a base on which a 200-liter drum 10 containing incinerated ash is placed.
A sodium iodide detector 14 is arranged in front of the drum 10 to detect gamma rays of specific energy emitted from the radioactive waste in the drum 10.
The detector 14 is a first carriage 16 which is a first moving means.
Drum can 10 mounted on the base 12 and fixed on the base 12.
The whole can be approached to the position where the detector 14 faces. The output of the detector 14 is connected to a multiple wave height analyzer 20 via an amplifier 18, and the output of the multiple wave height analyzer 20 is connected to a computer 22 of the data processing means. In this computer 22, a calibration curve obtained from a standard whose gamma ray intensity and uranium content are known is stored in a memory. A printer 24 is connected to the computer 22.
The amplifier 18, the multi-wave height analyzer 20, the computer 22, and the printer 24 are stored in a storage device (not shown) such as a console or a rack, and then mounted on a second carriage 26 which is a second moving means. , Follows the first carriage 16 and moves to an appropriate place.
【0012】このように構成された第1の実施例の装置
を用いて以下のように放射性廃棄物に含まれるウラン量
を非破壊で測定した。先ず、放射性廃棄物の破壊測定で
得られたウラン分析値に基づいてウラン含有量が既知の
5種類の校正用放射性廃棄物である焼却灰を調製し、こ
れら5種類の焼却灰をそれぞれ別々のドラム缶10に収
納した。ドラム缶10近傍のドラム缶10全体を臨む所
定の位置、即ち図3に示すように、ドラム缶10の中心
線から80cm離れた位置にガンマ線検出器14を設置
し、検出器14を使用してドラム缶10内の校正用放射
性廃棄物の焼却灰から放出されるそれぞれ固有のエネル
ギのガンマ線を検出した。ガンマ線検出器14が検出し
た検出信号を増幅器18で増幅して多重波高分析器20
に送り、ここでガンマ線エネルギの波高分析を行った。
コンピュータ22は、図4に示すように、多重波高分析
器20で分析されたU−235のガンマ線エネルギスペ
クトル(185KeV)領域S1のピーク面積(斜線
部)とU−238に対応するPa−234mのガンマ線
エネルギスペクトル(1001KeV)領域S2のピー
ク面積(斜線部)とから校正用放射性廃棄物の焼却灰に
含まれるU−235及びU−238のガンマ線強度を求
め、このガンマ線強度と前記ウラン分析値の関係から図
5のAで示す検量線及び図6のCで示す検量線をそれぞ
れ作成した。これらの検量線のガンマ線強度とウラン分
析値の関係はコンピュータ22のメモリに記憶される。
U−238の崩壊では、直接放出されるガンマ線として
約50keVのガンマ線があるが、このガンマ線はエネ
ルギが低く、物質による吸収、減衰が著しいため、測定
には不適当である。従って、U−238のガンマ線強度
を求めるためには、次のU−238と永年放射平衡にあ
るPa−234mの放出する1001keVのガンマ線
強度を測定対象として採用した。 但し、上記放射平衡式において、( )内は半減期を示
す。The amount of uranium contained in the radioactive waste was measured non-destructively as follows using the apparatus of the first embodiment thus constructed. First, based on the uranium analysis values obtained by destructive measurement of radioactive waste, incineration ash that is five types of calibration radioactive waste with a known uranium content is prepared, and these five types of incineration ash are separated. It was stored in a drum 10. A predetermined position facing the entire drum can 10 near the drum can 10, that is, as shown in FIG. 3, a gamma ray detector 14 is installed at a position 80 cm away from the center line of the drum can 10. Gamma rays of specific energy emitted from the incineration ash of the radioactive waste for calibration were detected. The detection signal detected by the gamma ray detector 14 is amplified by the amplifier 18 and the multi-wave height analyzer 20
And the wave height analysis of the gamma ray energy was performed here.
As shown in FIG. 4, the computer 22 displays the peak area (hatched portion) of the gamma ray energy spectrum (185 KeV) region S1 of U-235 analyzed by the multiple wave height analyzer 20 and the Pa-234 m corresponding to U-238. The gamma ray intensity of U-235 and U-238 contained in the incineration ash of the radioactive waste for calibration is obtained from the peak area (hatched portion) of the gamma ray energy spectrum (1001 KeV) region S2, and the gamma ray intensity and the uranium analysis value From the relationship, a calibration curve indicated by A in FIG. 5 and a calibration curve indicated by C in FIG. 6 were created. The relationship between the gamma ray intensity of these calibration curves and the uranium analysis value is stored in the memory of the computer 22.
In the decay of U-238, there is a gamma ray of about 50 keV that is directly emitted, but this gamma ray is unsuitable for measurement because it has low energy and is significantly absorbed and attenuated by a substance. Therefore, in order to obtain the gamma ray intensity of U-238, the gamma ray intensity of 1001 keV emitted by Pa-234m that is in permanent radiation equilibrium with the following U-238 was adopted as the measurement target. However, in the above radiation balance formula, the half-life is shown in parentheses.
【0013】次に、前記校正用焼却灰と同種の測定用焼
却灰をドラム缶10に収納した。以後の測定操作は前記
の校正用焼却灰の場合と同じ測定操作を繰り返して、コ
ンピュータ22により測定用焼却灰に含まれるU−23
5及びU−238のガンマ線強度を求め、このガンマ線
強度とメモリに記憶されている前記検量線とから前記測
定用焼却灰のU−235及びU−238の含有量を求
め、プリンタ24に印刷した。Next, the incineration ash for measurement of the same kind as the incineration ash for calibration was stored in the drum can 10. For the subsequent measurement operation, the same measurement operation as in the case of the above-mentioned calibration incineration ash is repeated, and the U-23 contained in the measurement incineration ash by the computer 22 is repeated.
5 and U-238 gamma ray intensities were obtained, the contents of U-235 and U-238 in the measurement incineration ash were obtained from the gamma ray intensities and the calibration curve stored in the memory, and printed on the printer 24. ..
【0014】次に本発明の第2の実施例の装置を図面に
基づいて説明する。先ず、図2に示すように、32はウ
ランを含まれる放射性廃棄物として、焼却灰を収納する
200Lドラム缶30を定置する回転台である。この回
転台32はモータのような回転手段34によって回転可
能に構成されている。ドラム缶30の前方にはドラム缶
30内の放射性廃棄物から放出されるそれぞれ固有のエ
ネルギのガンマ線を検出するヨウ化ナトリウム検出器4
0が配置されている。ヨウ化ナトリウム検出器40はモ
ータを含む検出器移動手段42とモータを含む検出器昇
降手段44とにより水平及び上下動する。検出器40は
移動手段42によって回転台32に載った容器30に接
近可能に構成され、かつ、検出器昇降手段44によって
少なくともドラム缶30の高さまで昇降可能となる。3
9はコントローラを示し、これは回転手段34とと検出
器昇降手段44とをそれぞれ制御する。ドラム缶30の
回転中又は検出器40の昇降中に検出器40から検出さ
れる信号に基づいてガンマ線エネルギの波高分析を行う
多重波高分析器46が増幅器48を介して検出器40の
出力に接続される。多重波高分析器46の出力はデータ
処理手段のコンピュータ50に接続される。コンピュー
タ50にはガンマ線強度とウラン含有量が既知の標準か
ら得られた検量線がメモリに記憶されている。コンピュ
ータ50にはプリンタ52が接続される。Next, an apparatus according to a second embodiment of the present invention will be described with reference to the drawings. First, as shown in FIG. 2, reference numeral 32 is a rotary table on which a 200-liter drum 30 for storing incineration ash as radioactive waste containing uranium is placed. The turntable 32 is configured to be rotatable by a rotation means 34 such as a motor. In front of the drum 30 is a sodium iodide detector 4 for detecting gamma rays of specific energy emitted from radioactive waste in the drum 30.
0 is placed. The sodium iodide detector 40 moves horizontally and vertically by a detector moving means 42 including a motor and a detector elevating means 44 including a motor. The detector 40 is configured to be accessible to the container 30 placed on the rotary table 32 by the moving means 42, and can be raised and lowered to at least the height of the drum can 30 by the detector raising and lowering means 44. Three
Reference numeral 9 denotes a controller, which controls the rotating means 34 and the detector elevating means 44, respectively. A multiple wave height analyzer 46, which performs wave height analysis of gamma ray energy based on a signal detected from the detector 40 while the drum 30 is rotating or when the detector 40 is moving up and down, is connected to the output of the detector 40 via an amplifier 48. It The output of the multiple wave height analyzer 46 is connected to the computer 50 of the data processing means. In the computer 50, a calibration curve obtained from a standard whose gamma ray intensity and uranium content are known is stored in a memory. A printer 52 is connected to the computer 50.
【0015】このように構成された第2の実施例の装置
を用いて以下のように放射性廃棄物に含まれるウラン量
を非破壊で測定した。先ず、放射性廃棄物の破壊測定で
得られたウラン分析値に基づいてウラン含有量が既知の
5種類の校正用放射性廃棄物である焼却灰を調製し、こ
れらの校正用放射性廃棄物をそれぞれ別々のドラム缶3
0に収納した。ドラム缶30を回転台32に載せ、回転
台32を10rpmの回転速度で回転させながら検出器
40を使用してドラム缶30内の校正用放射性廃棄物の
焼却灰から放出されるそれぞれ固有のエネルギのガンマ
線を検出した。以後は第1の実施例の場合と同様な操作
を行って図5のBで示す検量線及び図6のDで示す検量
線をそれぞれ作成した。次に、測定用放射性廃棄物の焼
却灰をドラム缶30に収納する。以後の測定操作は前記
の校正用放射性廃棄物の場合と同じ測定操作を繰り返し
て、コンピュータ50により測定用放射性廃棄物に含ま
れるU−235及びU−238のガンマ線強度を求め、
このガンマ線強度とメモリに記憶されている前記検量線
とから前記測定用放射性廃棄物のU−235及びU−2
38の含有量を求め、プリンタ52に印刷した。The amount of uranium contained in the radioactive waste was measured non-destructively as follows using the apparatus of the second embodiment thus constructed. First, based on the uranium analysis values obtained by destructive measurement of radioactive waste, incinerator ash, which is five kinds of calibration radioactive waste with known uranium content, was prepared, and these calibration radioactive wastes were separately separated. Drum can 3
Stored at 0. The drum can 30 is placed on the rotary table 32, and the detector 40 is used while rotating the rotary table 32 at a rotation speed of 10 rpm. The gamma rays of the specific energy emitted from the incineration ash of the radioactive radioactive waste in the drum can 30 are detected. Was detected. Thereafter, the same operation as in the case of the first embodiment was performed to prepare the calibration curve shown by B in FIG. 5 and the calibration curve shown by D in FIG. Next, the incineration ash of the radioactive waste for measurement is stored in the drum 30. For the subsequent measurement operation, the same measurement operation as in the case of the radioactive waste for calibration is repeated, and the gamma ray intensity of U-235 and U-238 contained in the radioactive waste for measurement is calculated by the computer 50.
From this gamma ray intensity and the calibration curve stored in the memory, U-235 and U-2 of the radioactive waste for measurement are measured.
The content of 38 was determined and printed on the printer 52.
【0016】[0016]
【発明の効果】以上述べたように、本発明は次の優れた
効果を奏する。 従来例のように、多数の中性子検出器を必要とせ
ず、一つのヨウ化ナトリウム検出器を備えればよいの
で、装置の構造が簡単であり、従って放射性廃棄物を収
納する容器の容積及び重量に制限を受けない。 放射性廃棄物を収納する容器を定置するか、あるい
は回転させるだけで測定が可能であり、かつ検出器、分
析器、データ処理手段、ガンマ線源等を含む測定手段は
何れも小型で移動が容易であるため、200Lドラム缶
のような大型の容器に収納された放射性廃棄物でも簡単
な操作で測定できる。 ガンマ線源を併用することにより、容器に収納され
る低密度の放射性廃棄物の充填密度に制約されることな
く、広範囲の種類の放射性廃棄物を精度よく測定でき
る。As described above, the present invention has the following excellent effects. Unlike the conventional example, a large number of neutron detectors are not required, and one sodium iodide detector may be provided, so that the structure of the device is simple, and therefore the volume and weight of the container for storing radioactive waste. Not restricted by. Measurement is possible only by placing the container for storing radioactive waste or rotating it, and the measuring means including the detector, analyzer, data processing means, gamma ray source, etc. are all small and easy to move. Therefore, radioactive waste stored in a large container such as a 200 L drum can can be measured with a simple operation. By using the gamma ray source together, a wide range of types of radioactive waste can be accurately measured without being restricted by the packing density of the low-density radioactive waste stored in the container.
【図1】本発明の一実施例である非破壊測定装置の構成
図。FIG. 1 is a configuration diagram of a nondestructive measurement device that is an embodiment of the present invention.
【図2】本発明の別の実施例である非破壊測定装置の構
成図。FIG. 2 is a configuration diagram of a nondestructive measurement device that is another embodiment of the present invention.
【図3】その放射性廃棄物を収納するドラム缶とガンマ
線検出器との位置関係を示す図。FIG. 3 is a diagram showing a positional relationship between a drum that stores the radioactive waste and a gamma ray detector.
【図4】そのヨウ化ナトリウム検出器で検出されたガン
マ線エネルギスペクトルを示す図。FIG. 4 is a diagram showing a gamma ray energy spectrum detected by the sodium iodide detector.
【図5】U−235の検量線を示す図。FIG. 5 is a view showing a calibration curve of U-235.
【図6】U−238の検量線を示す図。FIG. 6 is a diagram showing a calibration curve of U-238.
10,30 容器 12 容器定置手段 14,40 ヨウ化ナトリウム検出器 16 第1の移動手段 20,46 多重波高分析器 22,50 データ処理手段 26 第2の移動手段 32 回転台 34 回転手段 36 ガンマ線源 38 ガンマ線昇降手段 42 第3の移動手段 44 検出器昇降手段 10, 30 container 12 container stationary means 14, 40 sodium iodide detector 16 first moving means 20, 46 multiple wave height analyzer 22, 50 data processing means 26 second moving means 32 rotary table 34 rotating means 36 gamma ray source 38 gamma ray elevating means 42 third moving means 44 detector elevating means
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年10月6日[Submission date] October 6, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】次に本発明の第2の実施例の装置を図面に
基づいて説明する。先ず、図2に示すように、32は回
転台であって、この回転台32は放射性廃棄物としてウ
ランを含む焼却灰を収納する200Lドラム缶30を定
置する。この回転台32はモータのような回転手段34
によって回転可能に構成されている。ドラム缶30の前
方にはドラム缶30内の放射性廃棄物から放出されるそ
れぞれ固有のエネルギのガンマ線を検出するヨウ化ナト
リウム検出器40が配置されている。ヨウ化ナトリウム
検出器40は検出器移動手段42とモータを含む検出器
昇降手段44とにより水平及び上下動する。検出器40
は移動手段42によって回転台32に載った容器30に
接近可能に構成され、かつ、検出器昇降手段44によっ
て少なくともドラム缶30の高さまで昇降可能となる。
39はコントローラを示し、これは回転手段34と検出
器昇降手段44とをそれぞれ制御する。ドラム缶30の
回転中及び検出器40の昇降中に検出器40から検出さ
れる信号に基づいてガンマ線エネルギの波高分析を行う
多重波高分析器46が増幅器48を介して検出器40の
出力に接続される。多重波高分析器46の出力はデータ
処理手段のコンピュータ50に接続される。コンピュー
タ50にはガンマ線強度とウラン含有量が既知の標準か
ら得られた検量線がメモリに記憶されている。コンピュ
ータ50にはプリンタ52が接続される。Next, an apparatus according to a second embodiment of the present invention will be described with reference to the drawings. First, as shown in FIG. 2, reference numeral 32 denotes a turntable on which a 200-liter drum 30 for storing incineration ash containing uranium as radioactive waste is placed. The rotating table 32 is a rotating means 34 such as a motor.
It is configured to be rotatable. A sodium iodide detector 40 is arranged in front of the drum 30 to detect gamma rays of specific energy emitted from radioactive waste in the drum 30. The sodium iodide detector 40 is horizontally and vertically moved by a detector moving means 42 and a detector elevating means 44 including a motor. Detector 40
Is configured to be accessible to the container 30 placed on the rotary table 32 by the moving means 42, and can be raised and lowered to at least the height of the drum can 30 by the detector raising and lowering means 44.
Reference numeral 39 denotes a controller, which controls the rotating means 34 and the detector elevating means 44, respectively. A multiple wave height analyzer 46, which performs wave height analysis of gamma ray energy based on a signal detected by the detector 40 while the drum 30 is rotating and when the detector 40 is moving up and down, is connected to the output of the detector 40 via an amplifier 48. It The output of the multiple wave height analyzer 46 is connected to the computer 50 of the data processing means. In the computer 50, a calibration curve obtained from a standard whose gamma ray intensity and uranium content are known is stored in a memory. A printer 52 is connected to the computer 50.
Claims (6)
た容器(10)を定置する手段(12)と、 前記容器(10)内の放射性廃棄物から放出されるそれぞれ
固有のエネルギのガンマ線を検出するヨウ化ナトリウム
検出器(14)と、 前記検出器(14)の検出信号に基づいてガンマ線エネルギ
の波高分析を行う多重波高分析器(20)と、 前記放射性廃棄物と同種の校正用放射性廃棄物を破壊分
析してウラン同位体含有量を求め、かつ前記校正用放射
性廃棄物を前記容器(10)内に収納して前記ヨウ化ナトリ
ウム検出器(14)と前記多重波高分析器(20)を用いて前記
校正用放射性廃棄物に含まれるU−235及びU−23
8のガンマ線強度を求め、このガンマ線強度と前記ウラ
ン同位体含有量の関係から作成された検量線を記憶し、
前記分析器(20)で分析されたガンマ線エネルギスペクト
ルの所定の領域のピーク面積から前記廃棄物に含まれる
U−235及びU−238のガンマ線強度を演算処理
し、このガンマ線強度と前記検量線とからU−235及
びU−238の含有量を決定するデータ処理手段(22)
と、 前記定置手段(12)により定置された容器(10)全体を前記
検出器(14)が臨む位置まで前記検出器(14)を接近可能な
第1の移動手段(16)と、 前記移動手段(16)に追従して前記分析器(20)と前記デー
タ処理手段(22)を移動可能な第2の移動手段(26)とを備
えた放射性廃棄物に含まれるウラン量の非破壊測定装
置。1. A means (12) for placing a container (10) accommodating radioactive waste containing uranium, and detecting the gamma ray of each unique energy emitted from the radioactive waste in the container (10). Sodium iodide detector (14), a multiple wave height analyzer (20) for performing wave height analysis of gamma ray energy based on the detection signal of the detector (14), and a radioactive waste for calibration of the same kind as the radioactive waste. Destructive analysis of the substance to determine the uranium isotope content, and the radioactive radioactive waste for calibration is stored in the container (10), the sodium iodide detector (14) and the multiple wave height analyzer (20) U-235 and U-23 contained in the radioactive waste for calibration using
The gamma ray intensity of 8 was obtained, and the calibration curve prepared from the relationship between the gamma ray intensity and the uranium isotope content was stored,
The gamma ray intensity of U-235 and U-238 contained in the waste is arithmetically processed from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer (20), and the gamma ray intensity and the calibration curve are calculated. Processing means (22) for determining the contents of U-235 and U-238 from
A first moving means (16) capable of approaching the detector (14) to a position where the detector (14) faces the entire container (10) placed by the placing means (12); Non-destructive measurement of the amount of uranium contained in radioactive waste provided with a second moving means (26) capable of moving the analyzer (20) and the data processing means (22) following the means (16) apparatus.
た容器(30)を載せる回転台(32)と、 前記回転台(32)の回転手段(34)と、 前記容器(30)内の放射性廃棄物から放出されるそれぞれ
固有のエネルギのガンマ線を検出するヨウ化ナトリウム
検出器(40)と、 前記検出器(40)を前記回転台(32)に載った容器(30)に接
近可能な第3の移動手段(42)と、 少なくとも前記容器(30)の高さまで昇降可能な検出器昇
降手段(44)と、 前記回転手段(34)と前記検出器昇降手段(44)とを制御す
るコントローラ(39)と、 前記容器(30)の回転中及び前記検出器(40)の昇降中に前
記検出器(40)から検出される信号に基づいてガンマ線エ
ネルギの波高分析を行う多重波高分析器(46)と、 前記放射性廃棄物と同種の校正用放射性廃棄物を破壊分
析してウラン同位体含有量を求め、かつ前記校正用放射
性廃棄物を前記容器(30)内に収納して前記ヨウ化ナトリ
ウム検出器(40)と前記多重波高分析器(46)を用いて前記
校正用放射性廃棄物に含まれるU−235及びU−23
8のガンマ線強度を求め、このガンマ線強度と前記ウラ
ン同位体含有量の関係から作成された検量線を記憶し、
前記分析器(46)で分析されたガンマ線エネルギスペクト
ルの所定の領域のピーク面積から前記廃棄物に含まれる
U−235及びU−238のガンマ線強度を演算処理
し、このガンマ線強度と前記検量線とからU−235及
びU−238の含有量を決定するデータ処理手段(50)と
を備えた放射性廃棄物に含まれるウラン量の非破壊測定
装置。2. A rotating table (32) on which a container (30) containing radioactive waste containing uranium is placed, a rotating means (34) of the rotating table (32), and a radioactive material inside the container (30). A sodium iodide detector (40) that detects gamma rays of each unique energy emitted from waste, and a detector (40) that is accessible to a container (30) mounted on the rotary table (32). 3 moving means (42), a detector raising / lowering means (44) capable of raising / lowering to at least the height of the container (30), a controller for controlling the rotating means (34) and the detector raising / lowering means (44) (39) and a multiple wave height analyzer for performing wave height analysis of gamma ray energy based on a signal detected from the detector (40) during rotation of the container (30) and ascending / descending of the detector (40) ( 46), destructive analysis of the calibration radioactive waste of the same type as the radioactive waste to obtain the uranium isotope content, and the calibration radiation. Waste the container (30) wherein a sodium iodide detector is housed in (40) and the multichannel pulse height analyzer U-235 contained in the calibration radioactive waste using (46) and U-23
The gamma ray intensity of 8 was obtained, and the calibration curve prepared from the relationship between the gamma ray intensity and the uranium isotope content was stored,
The gamma ray intensity of U-235 and U-238 contained in the waste is calculated from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer (46), and the gamma ray intensity and the calibration curve are calculated. To U-235 and U-238, the data processing means (50) for determining the contents of the uranium contained in the radioactive waste.
た容器(30)を載せる回転台(32)と、 前記回転台(32)の回転手段(34)と、 前記回転台(32)に載った容器(30)にガンマ線を照射する
ガンマ線源(36)と、 前記ガンマ線源(36)を少なくとも前記容器(30)の高さま
で昇降可能なガンマ線源昇降手段(38)と、 前記ガンマ線源(36)に対向する位置に設けられ前記ガン
マ線源(36)から照射されて前記容器(30)を透過するガン
マ線を検出するヨウ化ナトリウム検出器(40)と、 前記検出器(40)を前記回転台(32)に載った容器(30)に接
近可能な第3の移動手段(42)と、 前記ガンマ線源昇降手段(38)に同期して少なくとも前記
容器(30)の高さまで昇降可能な検出器昇降手段(44)と、 前記回転手段(34)と前記ガンマ線源昇降手段(38)と前記
検出器昇降手段(44)とを制御するコントローラ(39)と、 前記容器(30)の回転中及び前記検出器(40)の昇降中に前
記検出器(40)から検出される信号に基づいてガンマ線エ
ネルギの波高分析を行う多重波高分析器(46)と、 前記放射性廃棄物と同種の校正用放射性廃棄物を破壊分
析してウラン同位体含有量を求め、かつ前記校正用放射
性廃棄物を前記容器(30)内に収納して前記ヨウ化ナトリ
ウム検出器(40)と前記多重波高分析器(46)を用いて前記
校正用放射性廃棄物に含まれるU−235及びU−23
8のガンマ線強度を求め、このガンマ線強度と前記ウラ
ン同位体含有量の関係から作成された検量線を記憶し、
前記分析器(46)で分析されたガンマ線エネルギスペクト
ルの所定の領域のピーク面積から前記廃棄物に含まれる
U−235及びU−238のガンマ線強度を演算処理
し、このガンマ線強度と前記検量線とからU−235及
びU−238の含有量を決定するデータ処理手段(50)と
を備えた放射性廃棄物に含まれるウラン量の非破壊測定
装置。3. A turntable (32) on which a container (30) containing radioactive waste containing uranium is placed, a rotating means (34) of the turntable (32), and a turntable (32). Gamma ray source (36) for irradiating the container (30) with gamma rays, gamma ray source elevating means (38) capable of elevating and lowering the gamma ray source (36) to at least the height of the container (30), and the gamma ray source (36 ), A sodium iodide detector (40) for detecting gamma rays emitted from the gamma ray source (36) and transmitted through the container (30), and the detector (40) on the rotary table. A third moving means (42) accessible to the container (30) mounted on the (32) and a detector capable of moving up and down at least to the height of the container (30) in synchronization with the gamma ray source lifting means (38). An elevating means (44), a controller (39) for controlling the rotating means (34), the gamma ray source elevating means (38) and the detector elevating means (44), Multiple wave height analyzer (46) for performing wave height analysis of gamma ray energy based on a signal detected from the detector (40) while rotating the container (30) and moving up and down the detector (40), The uranium isotope content is obtained by destructive analysis of the calibration radioactive waste of the same type as the radioactive waste, and the calibration radioactive waste is stored in the container (30) and the sodium iodide detector (40 ) And U-235 and U-23 contained in the calibration radioactive waste by using the multiple wave height analyzer (46).
The gamma ray intensity of 8 was obtained, and the calibration curve prepared from the relationship between the gamma ray intensity and the uranium isotope content was stored,
The gamma ray intensity of U-235 and U-238 contained in the waste is calculated from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer (46), and the gamma ray intensity and the calibration curve are calculated. To U-235 and U-238, the data processing means (50) for determining the contents of the uranium contained in the radioactive waste.
廃棄物の破壊分析値に基づいてウラン同位体含有量が既
知の校正用放射性廃棄物を調製し、(4b) 前記校正用放
射性廃棄物を容器(10)に収納し、(4c) 前記容器(10)近
傍の前記容器(10)全体を臨む所定の位置でガンマ線検出
器(14)により前記容器(10)内の校正用放射性廃棄物から
放出されるそれぞれ固有のエネルギのガンマ線を検出
し、(4d) 前記検出器(14)の検出信号に基づいて多重波
高分析器(20)によりガンマ線エネルギの波高分析を行
い、(4e) 前記分析器(20)で分析されたガンマ線エネル
ギスペクトルの所定の領域のピーク面積からデータ処理
手段(22)により前記校正用放射性廃棄物に含まれるU−
235及びU−238のガンマ線強度を求め、(4f) 前
記ガンマ線強度と前記ウラン破壊分析値から検量線を作
成し、(4g) ウラン同位体含有量を測定しようとする放
射性廃棄物を容器(10)に収納し、(4h) 前記(4g)の容器
(10)近傍のこの容器(10)全体を臨む所定の位置にヨウ化
ナトリム検出器(14)を移動してこの検出器(14)により前
記(4g)の容器(10)に収納した測定用放射性廃棄物から放
出されるそれぞれ固有のエネルギのガンマ線を検出し、
(4i) 前記ヨウ化ナトリウム検出器(14)の検出信号に基
づいて前記分析器(20)によりガンマ線エネルギの波高分
析を行い、(4j) 前記分析器(20)で分析されたガンマ線
エネルギスペクトルの所定の領域のピーク面積から前記
データ処理手段(22)により前記測定用放射性廃棄物に含
まれるU−235及びU−238のガンマ線強度を求
め、(4k) 前記(4j)のガンマ線強度と前記(4f)の検量線
とを比較して前記測定用放射性廃棄物のU−235及び
U−238の含有量を求める放射性廃棄物に含まれるウ
ラン量の非破壊測定方法。4. (4a) A calibration radioactive waste having a known uranium isotope content is prepared based on the destructive analysis value of the uranium-containing radioactive waste to be measured, and (4b) the calibration radioactive waste. In a container (10), (4c) the radioactive waste for calibration in the container (10) by a gamma ray detector (14) at a predetermined position facing the entire container (10) in the vicinity of the container (10). Γ-rays of each unique energy emitted from, is detected, (4d) the wave height analysis of the gamma-ray energy by the multiple wave height analyzer (20) based on the detection signal of the detector (14), (4e) the analysis U- contained in the radioactive waste for calibration by the data processing means (22) from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the instrument (20).
The gamma ray intensities of 235 and U-238 are obtained, (4f) a calibration curve is prepared from the gamma ray intensities and the uranium destructive analysis values, and (4g) the radioactive waste whose uranium isotope content is to be measured is stored in a container (10 ), (4h) the container of (4g)
(10) For measurement in which the sodium iodide detector (14) is moved to a predetermined position facing the entire container (10) in the vicinity and stored in the container (10) of (4g) by this detector (14) Detects each unique energy gamma ray emitted from radioactive waste,
(4i) the crest analysis of gamma ray energy by the analyzer (20) based on the detection signal of the sodium iodide detector (14), (4j) the gamma ray energy spectrum analyzed by the analyzer (20). The gamma ray intensity of U-235 and U-238 contained in the radioactive waste for measurement is obtained from the peak area of a predetermined region by the data processing means (22), and (4k) the gamma ray intensity of (4j) and the ( A method for nondestructive measurement of the amount of uranium contained in radioactive waste by comparing the calibration curve of 4f) with the U-235 and U-238 contents of the radioactive waste for measurement.
廃棄物の破壊分析値に基づいてウラン同位体含有量が既
知の校正用放射性廃棄物を調製し、(5b) 前記校正用放
射性廃棄物を容器(30)に収納し、(5c) 前記容器(30)を
回転台(32)に載せ、(5d) 前記回転台(32)に載った容器
(30)近傍の所定の位置で前記容器(30)内の校正用放射性
廃棄物から放出されるそれぞれ固有のエネルギのガンマ
線をガンマ線検出器(40)により検出し、(5e) 前記検出
器(40)の検出信号に基づいて多重波高分析器(46)により
ガンマ線エネルギの波高分析を行い、(5f) 前記分析器
(46)で分析されたガンマ線エネルギスペクトルの所定の
領域のピーク面積からデータ処理手段(50)により前記校
正用放射性廃棄物に含まれるU−235及びU−238
のガンマ線強度を求め、(5g) 前記ガンマ線強度と前記
ウラン破壊分析値から検量線を作成し、(5h) ウランを
含有しかつ前記校正用放射性廃棄物と同種の測定用放射
性廃棄物を容器(30)に収納し、(5i) 前記(5h)の容器(3
0)を前記回転台(32)に載せ、かつ前記(5d)から前記(5e)
の操作を行い、(5j) 前記分析器(46)で分析されたガン
マ線エネルギスペクトルの所定の領域のピーク面積から
前記データ処理手段(50)により前記測定用放射性廃棄物
に含まれるU−235及びU−238のガンマ線強度を
求め、(5k) 前記(5j)のガンマ線強度と前記(5g)の検量
線から前記測定用放射性廃棄物のU−235及びU−2
38の含有量を求める放射性廃棄物に含まれるウラン量
の非破壊測定方法。5. (5a) A calibration radioactive waste having a known uranium isotope content is prepared based on the destructive analysis value of the uranium-containing radioactive waste to be measured, and (5b) the calibration radioactive waste. Stored in a container (30), (5c) the container (30) is placed on a turntable (32), (5d) the container placed on the turntable (32)
(30) The gamma ray of each unique energy emitted from the calibration radioactive waste in the container (30) at a predetermined position in the vicinity is detected by a gamma ray detector (40), and (5e) the detector (40 ), The wave height analysis of the gamma ray energy is performed by the multiple wave height analyzer (46) based on the detection signal of (5f) the analyzer.
U-235 and U-238 contained in the calibration radioactive waste by the data processing means (50) from the peak area of the predetermined region of the gamma ray energy spectrum analyzed in (46).
(5g) A calibration curve is prepared from the gamma ray intensity and the uranium breakdown analysis value, and (5h) a radioactive waste for measurement that contains uranium and is of the same type as the radioactive waste for calibration is stored in a container ( (5i) The container (3)
0) is placed on the rotary table (32), and the (5d) to the (5e)
(5j) U-235 contained in the radioactive waste for measurement by the data processing means (50) from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer (46), and The gamma ray intensity of U-238 was determined, and (5k) U-235 and U-2 of the radioactive waste for measurement were determined from the gamma ray intensity of (5j) and the calibration curve of (5g).
A method for nondestructively measuring the amount of uranium contained in radioactive waste for determining the content of 38.
せ、(6b) 前記回転台(32)に載った空の容器(30)にガン
マ線をガンマ線源(36)により照射し、(6c) 前記回転台
(32)に載った空の容器(30)近傍の所定の位置で前記ガン
マ線源(36)より照射され前記空の容器(30)を透過してく
る固有のエネルギのガンマ線をガンマ線検出器(40)によ
り検出し、(6d) 前記検出器(40)の検出信号に基づいて
多重波高分析器(46)によりガンマ線エネルギの波高分析
を行い、(6e) 前記分析器(46)で分析されたガンマ線エ
ネルギスペクトルのピーク面積からデータ処理手段(50)
により前記空の容器(30)に対するガンマ線強度を求め、
(6f) 測定対象であるウラン含有放射性廃棄物の破壊分
析値に基づいてウラン同位体含有量が既知の校正用放射
性廃棄物を調製し、(6g) 前記校正用放射性廃棄物を容
器(30)に収納し、(6h) 前記(6g)の容器(30)を回転台(3
2)に載せ、(6i) 前記(6h)の回転台(32)に載った容器(3
0)近傍の所定の位置で前記容器(30)内の校正用放射性廃
棄物から放出されるそれぞれ固有のエネルギのガンマ線
をガンマ線検出器(40)により検出し、(6j) 前記検出器
(40)の検出信号に基づいて多重波高分析器(46)によりガ
ンマ線エネルギの波高分析を行い、(6k) 前記分析器(4
6)で分析されたガンマ線エネルギスペクトルの所定の領
域のピーク面積からデータ処理手段(50)により前記校正
用放射性廃棄物に含まれるU−235及びU−238の
ガンマ線強度を求め、(6L) 前記(6k)のガンマ線強度と
前記ウラン破壊分析値から検量線を作成し、(6m) 前記
回転台(32)に測定用放射性廃棄物を収納した容器(30)を
載せ、(6n) 前記回転台(32)に載った前記(6m)の容器(3
0)にガンマ線をガンマ線源(36)により照射し、(6o) 前
記回転台(32)に載った容器(30)近傍の所定の位置で前記
ガンマ線源(36)より照射され前記容器(30)を透過してく
る固有のエネルギのガンマ線及び前記容器(30)から放出
されるそれぞれ固有のエネルギのガンマ線をガンマ線検
出器(40)により検出し、(6p) 前記検出器(40)の検出信
号に基づいて多重波高分析器(46)によりガンマ線エネル
ギの波高分析を行い、(6q) 前記分析器(46)で分析され
たガンマ線エネルギスペクトルの所定の領域のピーク面
積から前記データ処理手段(50)により前記測定用放射性
廃棄物の透過ガンマ線強度及びU−235及びU−23
8のガンマ線強度を求め、(6r) 前記(6e)のガンマ線強
度と前記(6q)の透過ガンマ線強度から前記測定用放射性
廃棄物の自己吸収係数を算出し、この自己吸収係数によ
り前記U−235及びU−238のガンマ線強度を補正
し、(6s) 前記(6r)の補正されたガンマ線強度と前記(6
L)の検量線から前記測定用放射性廃棄物のU−235及
びU−238の含有量を求める放射性廃棄物に含まれる
ウラン量の非破壊測定方法。6. (6a) An empty container (30) is placed on the turntable (32), and (6b) Gamma rays are applied to the empty container (30) placed on the turntable (32) by a gamma ray source (36). Irradiate (6c) the rotating table
The gamma ray detector (40) detects gamma rays of specific energy which are emitted from the gamma ray source (36) at a predetermined position near the empty vessel (30) mounted on (32) and which are transmitted through the empty vessel (30). (6d) the wave height analysis of the gamma ray energy by the multiple wave height analyzer (46) based on the detection signal of the detector (40), (6e) the gamma rays analyzed by the analyzer (46). Data processing means from peak area of energy spectrum (50)
Determine the gamma ray intensity for the empty container (30) by
(6f) Prepare a calibration radioactive waste with known uranium isotope content based on the destructive analysis value of the uranium-containing radioactive waste to be measured, (6g) the calibration radioactive waste in a container (30) (6h) The container (30) from (6g) was rotated (3
(6i) The container (3) placed on the rotating table (32) in (6h) above.
0) γ-rays of specific energy emitted from the calibration radioactive waste in the container (30) at a predetermined position in the vicinity are detected by a gamma-ray detector (40), (6j) the detector
Based on the detection signal of (40), the wave height analysis of gamma ray energy is performed by the multiple wave height analyzer (46), and (6k) the analyzer (4
From the peak area of a predetermined region of the gamma ray energy spectrum analyzed in 6), the gamma ray intensity of U-235 and U-238 contained in the calibration radioactive waste is obtained by the data processing means (50), and (6L) (6k) to create a calibration curve from the gamma ray intensity and the uranium destruction analysis value, (6m) the container (30) containing the radioactive waste for measurement on the rotary table (32), (6n) the rotary table (32) above (6m) container (3
(0) gamma ray is irradiated from the gamma ray source (36), and (6o) the container (30) is irradiated from the gamma ray source (36) at a predetermined position near the container (30) mounted on the rotary table (32). Gamma rays of specific energy transmitted through and gamma rays of specific energy emitted from the container (30) are detected by a gamma ray detector (40), and (6p) the detection signal of the detector (40) is detected. Based on the wave height analysis of the gamma ray energy by the multiple wave height analyzer (46), (6q) by the data processing means (50) from the peak area of a predetermined region of the gamma ray energy spectrum analyzed by the analyzer (46). Transmitted gamma ray intensity and U-235 and U-23 of the radioactive waste for measurement
(6r) The gamma ray intensity of (6r) is calculated from the gamma ray intensity of (6e) and the transmitted gamma ray intensity of (6q), and the self-absorption coefficient of the radioactive waste for measurement is calculated. And (6s) the corrected gamma ray intensity of (6r) and (6s)
A nondestructive measurement method of the amount of uranium contained in the radioactive waste, wherein the contents of U-235 and U-238 in the radioactive waste for measurement are determined from the calibration curve of L).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17612592A JPH05340861A (en) | 1992-06-10 | 1992-06-10 | Non-destructive measuring device and method of amount of uranium included in radioactive waste product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17612592A JPH05340861A (en) | 1992-06-10 | 1992-06-10 | Non-destructive measuring device and method of amount of uranium included in radioactive waste product |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05340861A true JPH05340861A (en) | 1993-12-24 |
Family
ID=16008114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17612592A Pending JPH05340861A (en) | 1992-06-10 | 1992-06-10 | Non-destructive measuring device and method of amount of uranium included in radioactive waste product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05340861A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002055196A (en) * | 2000-08-09 | 2002-02-20 | Toshiba Corp | Method for disposal of radioactive waste |
EP1548464A1 (en) * | 2003-12-23 | 2005-06-29 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method for quantitative analysis of uranium in nuclear fuel containers |
WO2006005905A2 (en) * | 2004-07-08 | 2006-01-19 | British Nuclear Fuels Plc | Method for the handling and minimisation of waste |
JP2007218663A (en) * | 2006-02-15 | 2007-08-30 | Japan Atomic Energy Agency | Device and method for searching for existing location of fissionable material in radioactive waste |
JP2013506122A (en) * | 2009-09-28 | 2013-02-21 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for determining the isotope ratio of fissile material contained in a fission chamber |
US9880290B2 (en) | 2012-05-03 | 2018-01-30 | Kepco Nuclear Fuel Co., Ltd. | Method of measuring radioactive material of ingot using HPGe gamma scintillator |
US9880289B2 (en) | 2012-05-03 | 2018-01-30 | Kepco Nuclear Fuel Co., Ltd. | Method of measuring radioactive material of ingot using NaI gamma scintillator |
CN110554148A (en) * | 2019-09-23 | 2019-12-10 | 核工业理化工程研究院 | Sample scanning device for nondestructive measurement of materials |
JP2024030112A (en) * | 2022-08-23 | 2024-03-07 | 株式会社スリー・アール | Uranium radiation measurement method |
-
1992
- 1992-06-10 JP JP17612592A patent/JPH05340861A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002055196A (en) * | 2000-08-09 | 2002-02-20 | Toshiba Corp | Method for disposal of radioactive waste |
JP4533514B2 (en) * | 2000-08-09 | 2010-09-01 | 株式会社東芝 | Radioactive waste disposal method |
EP1548464A1 (en) * | 2003-12-23 | 2005-06-29 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method for quantitative analysis of uranium in nuclear fuel containers |
WO2006005905A2 (en) * | 2004-07-08 | 2006-01-19 | British Nuclear Fuels Plc | Method for the handling and minimisation of waste |
WO2006005905A3 (en) * | 2004-07-08 | 2006-04-27 | British Nuclear Fuels Plc | Method for the handling and minimisation of waste |
JP2007218663A (en) * | 2006-02-15 | 2007-08-30 | Japan Atomic Energy Agency | Device and method for searching for existing location of fissionable material in radioactive waste |
JP2013506122A (en) * | 2009-09-28 | 2013-02-21 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for determining the isotope ratio of fissile material contained in a fission chamber |
US9880290B2 (en) | 2012-05-03 | 2018-01-30 | Kepco Nuclear Fuel Co., Ltd. | Method of measuring radioactive material of ingot using HPGe gamma scintillator |
US9880289B2 (en) | 2012-05-03 | 2018-01-30 | Kepco Nuclear Fuel Co., Ltd. | Method of measuring radioactive material of ingot using NaI gamma scintillator |
CN110554148A (en) * | 2019-09-23 | 2019-12-10 | 核工业理化工程研究院 | Sample scanning device for nondestructive measurement of materials |
CN110554148B (en) * | 2019-09-23 | 2024-03-29 | 核工业理化工程研究院 | Sample scanning device for nondestructive measurement of materials |
JP2024030112A (en) * | 2022-08-23 | 2024-03-07 | 株式会社スリー・アール | Uranium radiation measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4897550A (en) | Apparatus for the characterization of fissile material having at least one neutron radiation detector located in a gamma radiation detection scintillator | |
JPH05340861A (en) | Non-destructive measuring device and method of amount of uranium included in radioactive waste product | |
JP3225127B2 (en) | Radioactivity concentration measuring device for radioactive waste storage containers | |
CA1257407A (en) | Characterization system for radioactive wastes | |
JP2020094906A (en) | Nuclear material quantity measuring apparatus and nuclear material quantity measuring method | |
JPH07159541A (en) | Radioactivity concentration measuring apparatus for radioactive waste container | |
JPH10123070A (en) | Hydrogen content analyzer | |
JPS6168576A (en) | Method and device for detecting radiation from sample | |
JPH07209493A (en) | Selecting device of radioactive waste and selecting method thereof | |
JPH02222886A (en) | Measurement of concentration distribution of nuclear fuel substance and apparatus therefor | |
JP2978106B2 (en) | Active neutron measurement method and apparatus | |
JP3581413B2 (en) | Non-destructive radiometric collimator measurement method for solidified radioactive waste in drums | |
KR910007717B1 (en) | Method and apparatus to determine the activity volume and to estimate the plutonium mass contained in waste | |
JP2736199B2 (en) | Measurement method for filling boundary of radioactive material filled container | |
JPS6214081A (en) | Device and method of measuring gamma ray from radioactive waste vessel | |
JPH04235379A (en) | Measuring method of radioactivity | |
JP3012891B2 (en) | Identification of waste drum contents by active neutron method | |
JP2978103B2 (en) | Active neutron measurement method and apparatus | |
JP2624480B2 (en) | Radioactivity measurement device | |
JPH0511063A (en) | Method for measuring radioactivity of crushed body | |
JPH0684989B2 (en) | Radioactivity concentration measuring device | |
JPH09257937A (en) | Radioactive quantity measuring method for radioactive solidified waste | |
JPS6128954B2 (en) | ||
JPH10260125A (en) | Method and instrument for measuring density of material enclosed in container and kind discriminating device | |
JPH0616101B2 (en) | ▲ Up 2 ▼ Up 3 ▼ Up 9 Quantitative Pu measurement system by gamma ray mirror symmetry measurement |