JPH0511063A - Method for measuring radioactivity of crushed body - Google Patents

Method for measuring radioactivity of crushed body

Info

Publication number
JPH0511063A
JPH0511063A JP16421591A JP16421591A JPH0511063A JP H0511063 A JPH0511063 A JP H0511063A JP 16421591 A JP16421591 A JP 16421591A JP 16421591 A JP16421591 A JP 16421591A JP H0511063 A JPH0511063 A JP H0511063A
Authority
JP
Japan
Prior art keywords
nuclide
crushed body
spectrum
radiation
radioactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16421591A
Other languages
Japanese (ja)
Inventor
Masahiro Kondo
正弘 近藤
Hiroshi Kitaguchi
博司 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16421591A priority Critical patent/JPH0511063A/en
Publication of JPH0511063A publication Critical patent/JPH0511063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to correct the measured value of the radioactivity of the determined nuclide accurately by performing spectrum stripping correction by using the measured radiation spectrum of crushed body and the response function of a natural nuclide. CONSTITUTION:The amount of gamma rays in a crushed body 1 in concrete, which is generated by a large amount, is detected, and the spectrum of the gamma rays is obtained. The gamma-ray nuclide in the crushed body is identified by using the spectrum. The gamma rays are cast on the crushed body, and the permeability of the gamma rays in the crushed body 8 is measured. The gamma-ray attenuation factor and the density can be computed 7 based on the permeability. Then, the natural nuclide is identified. The response function of a detector 6 is measured based on the characteristics of the detector and the density of the crushed body. Based on the spectrum after spectrum stripping 3 by which the function is subtracted from the measured gamma-ray spectrum, the photoelectric peak area of the determined nuclide is computed 4. The area is divided by the gamma-ray attenuation factor of the photoelectric peak of the determined nuclide in the crushed body, and the net peak area is obtained. In this way, a Compton scattering line is identified and subtracted, and the highly accurate, quick measurement can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒径状態の固体廃棄物
の放射能を測定する方法に係り、特に、大量に存在する
粒径状態の固体廃棄物の放射能強度を高精度、かつ、迅
速に測定するのに好適な放射能測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the radioactivity of solid waste in the particle size state, and more particularly, to the radioactivity intensity of the solid waste in the particle size state which exists in a large amount with high accuracy and The present invention relates to a radioactivity measuring method suitable for rapid measurement.

【0002】[0002]

【従来の技術】原子力発電所の廃炉解体に伴って、極低
放射能レベルのコンクリート等が大量に発生する。この
コンクリートの放射能強度を短時間で定量する必要があ
る。
2. Description of the Related Art With the demolition of a nuclear power plant, a large amount of extremely low levels of concrete and the like are generated. It is necessary to quantify the radioactivity intensity of this concrete in a short time.

【0003】従来、極低レベルの放射能を迅速に測定す
る装置として、特開平2−263188 号公報がある。この放
射能測定システムは、コンクリートを粉砕機により粒径
状態のコンクリート(破砕コンクリート)にする。そし
て、円筒上の容器の中に放射線検出器を配置し、その放
射線検出器の周囲に破砕したコンクリートを流して、破
砕コンクリートの体の放射能を測定するようになってい
た。また、破砕コンクリートの粒径をTVカメラで撮影
し、画像処理で破砕コンクリートの放射線減衰量を定量
することで放射能減衰補正を実施するようになってい
た。
Conventionally, Japanese Patent Laid-Open No. 2-263188 discloses an apparatus for rapidly measuring extremely low level radioactivity. In this radioactivity measurement system, concrete is crushed into concrete in a particle size state (crushed concrete). Then, a radiation detector is arranged in a cylindrical container, and the crushed concrete is poured around the radiation detector to measure the radioactivity of the crushed concrete body. In addition, the particle diameter of the crushed concrete is photographed by a TV camera, and the radiation attenuation amount of the crushed concrete is quantified by image processing to correct the radiation attenuation.

【0004】[0004]

【発明が解決しようとする課題】しかし、特開平2−263
188 号公報に示された従来技術は、破砕コンクリート自
体に存在する天然放射性核種による放射線スペクトルの
歪の影響について考慮がなされていないことである。破
砕コンクリート中には40K、238U 崩壊系列核種及び
232Th 崩壊系列核種の天然放射性核種が存在する。即
ち、放射線検出器で測定する放射線スペクトルは、定量
核種以外に上記の天然核種も同時に測定され、定量核種
の光電ピーク形状及び面積が変動し、定量核種の放射能
定量値の誤差が大きくなると云う問題があった。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-263
The conventional technique disclosed in Japanese Patent No. 188 does not take into consideration the influence of the distortion of the radiation spectrum due to the natural radionuclide existing in the crushed concrete itself. 40 K, 238 U decay series nuclides and
There are natural radionuclides of the 232 Th decay series. That is, the radiation spectrum measured by the radiation detector is that the above-mentioned natural nuclides are also simultaneously measured in addition to the quantitative nuclides, and the photoelectric peak shape and area of the quantitative nuclides are changed, and the error of the radioactivity quantitative value of the quantitative nuclide becomes large. There was a problem.

【0005】本発明の目的は、原子力発電所の廃炉解体
に伴って、大量に発生する極低放射能レベルのコンクリ
ートの放射能強度を高精度かつ迅速に測定できる放射能
測定方法を提供することにある。
An object of the present invention is to provide a radioactivity measuring method capable of highly accurately and promptly measuring the radioactivity intensity of a very large amount of concrete having a very low radioactivity level, which is produced in large quantities in accordance with the demolition of a decommissioned nuclear power plant. Especially.

【0006】[0006]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明では、測定放射線スペクトルの定量光電ピ
ーク面積を定量光電ピークより高いエネルギをもつ光電
ピーク面積で補正する手段と定量光電ピークの放射線エ
ネルギに相当する破砕体中での放射線減衰量から定量光
電ピーク面積を補正する手段を設ける。
In order to achieve the above-mentioned object, in the present invention, a means for correcting the quantitative photoelectric peak area of a measured radiation spectrum with a photoelectric peak area having higher energy than the quantitative photoelectric peak, and a quantitative photoelectric peak. Means is provided for correcting the quantitative photoelectric peak area from the amount of radiation attenuation in the crushed body corresponding to the radiation energy of.

【0007】[0007]

【作用】測定対象である破砕コンクリートには、定量核
種以外に40K、238U 崩壊系列核種及び232Th 崩壊系
列核種の天然放射性核種が存在する。破砕コンクリート
の場合、放射線検出器で測定できるにはγ線のみであ
る。何故ならば、α線及びβ線は破砕コンクリート内で
ほとんど自己吸収するからである。また、γ線エネルギ
が0.3〜5MeV 程度の範囲で、破砕コンクリート程
度の密度に対するγ線の相互作用はコンプトン散乱であ
る。従って、破砕コンクリートの正確な放射能値を得る
には、コンクリートのγ線スペクトルを測定し、コンプ
トン散乱の影響を把握する必要がる。コンプトン散乱に
は、放射線検出器内で起こるコンプトン散乱と被検体、
即ち、コンクリート内で起こるコンプトン散乱がある。
前者の場合、検出器の特性として取扱うことが可能であ
り予め求めて置くことができる。後者の場合は、破砕コ
ンクリートの密度分布によって変化するので、破砕コン
クリートの密度分布測定が必須となる。γ線スペクトル
に於いて、定量核種の光電ピーク(定量核種のγ線エネ
ルギに相当)より高いエネルギをもつ天然核種が存在す
ると、天然核種のコンプトン散乱線が定量核種の光電ピ
ークエリアに入り光電ピークの形状及び面積が変化す
る。この影響を補正するために、上記天然核種の放射能
強度を求め、破砕コンクリートの密度分布情報を用い
て、定量核種の光電ピークエリアに入るコンプトン散乱
線を同定し、定量核種の光電ピークから差し引く手法を
用いることで正確な定量核種の光電ピーク面積を求める
ことができる。
[Function] In addition to quantitative nuclides, 40 K, 238 U decay series nuclides and 232 Th decay series nuclide natural radionuclides are present in the crushed concrete to be measured. In the case of crushed concrete, only gamma rays can be measured by the radiation detector. This is because α rays and β rays are almost self-absorbed in crushed concrete. Further, in the range of the gamma ray energy of about 0.3 to 5 MeV, the interaction of gamma rays with the density of crushed concrete is Compton scattering. Therefore, in order to obtain an accurate radioactivity value of crushed concrete, it is necessary to measure the γ-ray spectrum of concrete and grasp the influence of Compton scattering. Compton scattering includes Compton scattering that occurs in the radiation detector and the subject,
That is, there is Compton scattering that occurs in concrete.
In the former case, it can be treated as a characteristic of the detector and can be obtained and set in advance. In the latter case, it is necessary to measure the density distribution of the crushed concrete because it changes depending on the density distribution of the crushed concrete. In the γ-ray spectrum, if a natural nuclide having an energy higher than the photon peak of the quantitative nuclide (corresponding to the γ-ray energy of the quantitative nuclide) exists, the Compton scattered line of the natural nuclide enters the photon peak area of the quantitative nuclide. Shape and area change. In order to correct this effect, the radioactivity intensity of the above-mentioned natural nuclide is obtained, and by using the density distribution information of the crushed concrete, the Compton scattered line that enters the photoelectric peak area of the quantitative nuclide is identified and subtracted from the photoelectric peak of the quantitative nuclide. By using the method, it is possible to accurately determine the photopeak area of the quantitative nuclide.

【0008】また、γ線も破砕コンクリート内で自己吸
収する。この自己吸収補正をするために、定量核種の光
電ピークの放射線エネルギに相当する破砕コンクリート
中でのγ線減衰量(自己吸収量)を測定し、定量核種の
光電ピーク面積をγ線減衰量で除算することで、定量核
種の光電ピーク面積を正確に定量することができる。
Also, γ-rays are self-absorbed in the crushed concrete. In order to correct this self-absorption, the γ-ray attenuation amount (self-absorption amount) in the crushed concrete corresponding to the radiation energy of the photoelectric peak of the quantitative nuclide is measured, and the photoelectric peak area of the quantitative nuclide is calculated by the γ-ray attenuation amount. By dividing, the photoelectric peak area of the quantitative nuclide can be accurately quantified.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1ないし図5に
より説明する。最初に、図2及び図3を用いて本発明の
放射能測定装置の構成とその動作について説明し、その
後、図1,図4及び図5を用いて本発明の放射能の定量
手法について述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, the configuration and operation of the radioactivity measuring apparatus of the present invention will be described with reference to FIGS. 2 and 3, and then the radioactivity quantification method of the present invention will be described with reference to FIGS. 1, 4 and 5. .

【0010】図2は、本発明の放射能測定装置のシステ
ム構成図を示したものである。原子力発電所の廃炉解体
に伴って、大量に発生するコンクリートを粉砕機22で
破砕し、破砕体(破砕コンクリート)9を作る。測定対
象である破砕体9をベルトコンベア23で移送し、放射
能測定容器24に投下する。放射線測定容器24の中心
軸上には、破砕体9の放射線(γ線)測定用の放射線検
出器10が配置されている。放射線検出器10の放射線
検出信号は放射線信号処理器18に入力し、放射線信号
処理器18はγ線スペクトル1を作成する。並びに、放
射線検出器10では破砕体9以外からの放射線を遮蔽す
るための遮蔽体13が放射能測定容器24の外周部に配
置されている。また、放射線測定容器24の外周部に配
置した照射用線源(γ線源)12で破砕体9を照射し、
破砕体9を透過して来る放射線を測定する放射線検出器
11が放射線測定容器24の中心軸上に配置されてい
る。照射用線源12は照射方向以外に放射線が漏れない
ように線源容器14内に設置されており、照射を行わな
いときに放射線を止める線源シャッタ15が線源容器1
4の照射方向の前方に配置している。この放射線検出器
11の検出信号も放射線信号処理器18に入力され、放
射線信号処理器18はγ線スペクトル2を作成する。即
ち、放射線信号処理器18は二系統の放射線処理機能を
もつている。演算制御器19はこのγ線スペクトル1と
γ線スペクトル2を用いて、後述する方法で破砕体9内
の放射能強度を求める。また、演算制御器19は放射能
強度に基づいて破砕体9の放射能の有無を判断し、振分
機20に指令を出力する。なお、この放射能の有無の判
定は一定の放射能強度値を境界にして行う。振分機20
はこの指令によって破砕体9を選別排出し、放射能をも
った破砕体9と放射能がない破砕体9を別々に運搬容器
21に挿加される。また、演算制御器19は放射能測定
容器24内の破砕体9の移送速度が適切になるよう回転
羽根が設けられている内筒17を駆動する駆動機16に
指令を出す。この指令に基づき駆動機16は内筒の回転
速度を調整する。
FIG. 2 is a system configuration diagram of the radioactivity measuring apparatus of the present invention. With the dismantling of the decommissioned nuclear power plant, a large amount of concrete is crushed by a crusher 22 to form a crushed body (crushed concrete) 9. The crushed body 9 to be measured is transferred by the belt conveyor 23 and dropped into the radioactivity measuring container 24. A radiation detector 10 for measuring the radiation (γ-rays) of the crushed body 9 is arranged on the central axis of the radiation measuring container 24. The radiation detection signal of the radiation detector 10 is input to the radiation signal processor 18, and the radiation signal processor 18 creates the γ-ray spectrum 1. In addition, in the radiation detector 10, a shield 13 for shielding the radiation other than the crushed body 9 is arranged on the outer peripheral portion of the radioactivity measuring container 24. Further, the crushed body 9 is irradiated with the irradiation radiation source (γ-ray source) 12 arranged on the outer peripheral portion of the radiation measurement container 24,
A radiation detector 11 for measuring the radiation transmitted through the crushed body 9 is arranged on the central axis of the radiation measuring container 24. The irradiation radiation source 12 is installed in the radiation source container 14 so that radiation does not leak in directions other than the irradiation direction, and a radiation source shutter 15 that stops radiation when irradiation is not performed has a radiation source container 1.
4 is arranged in front of the irradiation direction. The detection signal of the radiation detector 11 is also input to the radiation signal processor 18, and the radiation signal processor 18 creates the γ-ray spectrum 2. That is, the radiation signal processor 18 has a dual radiation processing function. The arithmetic controller 19 uses the γ-ray spectrum 1 and the γ-ray spectrum 2 to obtain the radioactivity intensity in the crushed body 9 by the method described later. Further, the arithmetic controller 19 determines the presence or absence of radioactivity of the crushed body 9 based on the radioactivity intensity, and outputs a command to the distributor 20. The presence / absence of this radioactivity is determined with a constant radioactivity intensity value as the boundary. Sorting machine 20
According to this command, the crushed body 9 is selectively discharged, and the crushed body 9 having radioactivity and the crushed body 9 having no radioactivity are separately inserted into the transport container 21. Further, the arithmetic and control unit 19 issues a command to the drive unit 16 for driving the inner cylinder 17 provided with the rotary blade so that the transfer speed of the crushed body 9 in the radioactivity measuring container 24 becomes appropriate. Based on this command, the driving machine 16 adjusts the rotation speed of the inner cylinder.

【0011】図3は放射線測定に係わる基本構成図を示
したものである。破砕体9を放射線検出器10及び放射
線検出器11を中心とした同時円周上の外周に配置して
移送する。この構成では、破砕体9自体が宇宙線等の外
部放射線を遮蔽する効果があるため遮蔽体13の厚さを
薄くすることができる。破砕体9内に含まれる核種は、
天然核種(40K,238U崩壊系列核種及び232Th崩壊系
列核種)及び定量核種、例えば、60Coである。それぞ
れのγ線エネルギは、40K:1.46MeV、238U崩壊
系列核種の代表γ線放出核種である214Bi:0.61,
1.12,1.76MeV、232Th崩壊系列核種の代表γ線
放出核種である228Ac:0.91 、0.97MeV、及
60Co:1.17,1.33MeV でる。従って、放
射線検出器10はφ3″×3″NaI(Tl)シンチレ
ーション検出器で十分対応できる。また、照射用線源1
2は破砕体9の厚さ20cm程度を透過できるγ線放出核
種であれば良いので、137Cs(0.66MeV)で対応
可能である。その透過γ線を検出する放射線検出器11
はφ2″×2″NaI(Tl)シンチレーション検出器
で十分である。本構成のように、放射線検出器の周囲に
破砕体9を、順次、移送する機構を用いると、外部放射
線の影響を受けず破砕体9の放射能及びγ線減衰量の測
定が可能となる。
FIG. 3 is a basic configuration diagram relating to radiation measurement. The crushed body 9 is placed on the outer circumference on the simultaneous circumference centered on the radiation detector 10 and the radiation detector 11 and transferred. In this configuration, the crushing body 9 itself has an effect of shielding external radiation such as cosmic rays, so that the thickness of the shield 13 can be reduced. The nuclide contained in the crushed body 9 is
Natural nuclides ( 40 K, 238 U decay series nuclide and 232 Th decay series nuclide) and quantitative nuclides such as 60 Co. The respective γ-ray energies are 40 K: 1.46 MeV and 214 Bi: 0.61, which is a representative γ-ray emitting nuclide of the 238 U decay series nuclide.
It is 1.12, 1.76 MeV, 228 Ac: 0.91 and 0.97 MeV, which are representative γ-ray emitting nuclides of the 232 Th decay series nuclide, and 60 Co: 1.17, 1.33 MeV. Therefore, as the radiation detector 10, a φ3 ″ × 3 ″ NaI (Tl) scintillation detector can be sufficiently used. Also, the irradiation radiation source 1
2 may be a γ-ray emitting nuclide that can pass through the crushed body 9 having a thickness of about 20 cm, so 137 Cs (0.66 MeV) can be used. Radiation detector 11 for detecting the transmitted γ-rays
Is a φ2 ″ × 2 ″ NaI (Tl) scintillation detector. When a mechanism for sequentially transferring the crushed bodies 9 around the radiation detector as in this configuration is used, it is possible to measure the radioactivity and the γ-ray attenuation amount of the crushed bodies 9 without being affected by external radiation. .

【0012】次に、図1,図4及び図5を用いて本発明
の放射能定量手法について説明する。
Next, the radioactivity quantification method of the present invention will be described with reference to FIGS. 1, 4 and 5.

【0013】図1は、本発明の放射能の定量方法を示す
ブロック図を示すものである。先ず、破砕体中のγ線量
1を放射線検出器10検出し、放射線信号処理器18に
より破砕体のγ線スペクトルを得る。そのγ線スペクト
ルの一測定例を図4に示す。ここで、25は定量核種で
ある60Coの光電ピーク、26は天然核種である40Kの
光電ピークである。このγ線スペクトルを用いて、破砕
体9内のγ線放出核種を同定する。例えば、予めγ線エ
ネルギEが分かっている線源でγ線スペクトルを測定す
ると、γ線スペクトル上のあるチャンネルCにγ線エネ
ルギEなる光電ピークを検出できる。即ち、E=f(C)
で表すことができる。ここでの関数fが放射線検出器の
エネルギ特性である。従って、光電ピークのチャンネル
を検索することにより核種同定2が可能となる。また、
γ線エネルギが0.3〜5MeV程度の範囲に於いて、
破砕体9(コンクリート程度)の密度に対するγ線の相互
作用はコンプトン散乱である。つまり、測定した破砕体
9のγ線スペクトルには、光電ピーク以外にコンプトン
散乱成分も測定される。コンプトン散乱線エネルギはそ
の散乱核種の光電ピークより低エネルギとなるので、定
量核種である60Co(1.33MeV)より高いエネルギ
の天然核種のコンプトン散乱線が60Coの光電ピークに
入り、光電ピーク面積の形状及び面積が変化する。即
ち、コンプトン散乱の影響を差し引かないと放射能定量
値の誤差が大きくなる。また、コンプトン散乱には、放
射線検出器内で起こるコンプトン散乱と破砕体9内で起
こるコンプトン散乱がある。前者の場合、検出器の特性
として取扱うことが可能であり予め求めて置くことがで
きる。後者の場合は、破砕体9の密度分布によって変化
する。この密度分布は、破砕体9にγ線を照射すること
で測定できる。γ線の質量吸収係数は、0.1〜2.0M
eV程度のγ線ではほとんど変化が無く線減衰係数は密
度に比例するので、放射線減衰率は次式で表わせる。
FIG. 1 is a block diagram showing a method for quantifying radioactivity according to the present invention. First, the γ-ray dose 1 in the crushed body is detected by the radiation detector 10, and the radiation signal processor 18 obtains the γ-ray spectrum of the crushed body. One measurement example of the γ-ray spectrum is shown in FIG. Here, 25 is a photopeak of 60 Co which is a quantitative nuclide, and 26 is a photopeak of 40 K which is a natural nuclide. This γ-ray spectrum is used to identify the γ-ray emitting nuclide in the crushed body 9. For example, if the γ-ray spectrum is measured with a radiation source whose γ-ray energy E is known in advance, a photoelectric peak of the γ-ray energy E can be detected in a channel C on the γ-ray spectrum. That is, E = f (C)
Can be expressed as The function f here is the energy characteristic of the radiation detector. Therefore, nuclide identification 2 can be performed by searching the channel of the photopeak. Also,
In the range of gamma ray energy of about 0.3 to 5 MeV,
The interaction of γ rays with the density of the crushed body 9 (about concrete) is Compton scattering. That is, in the measured γ-ray spectrum of the crushed body 9, not only the photoelectric peak but also the Compton scattering component is measured. Because the Compton scattered ray energy becomes lower energy than the photoelectric peak of the scattering species, Compton scattered radiation natural radionuclides of higher energy than a quantitative nuclide 60 Co (1.33 MeV) enters the photoelectric peak of 60 Co, photopeak The shape of the area and the area change. That is, the error of the quantitative value of radioactivity becomes large unless the influence of Compton scattering is subtracted. The Compton scattering includes Compton scattering that occurs in the radiation detector and Compton scattering that occurs in the crushed body 9. In the former case, it can be treated as a characteristic of the detector and can be obtained and set in advance. In the latter case, it changes depending on the density distribution of the crushed body 9. This density distribution can be measured by irradiating the crushed body 9 with γ rays. γ-ray mass absorption coefficient is 0.1-2.0M
Since there is almost no change for γ rays of about eV and the linear attenuation coefficient is proportional to the density, the radiation attenuation rate can be expressed by the following equation.

【0014】 EXP(−μpAA+μρBB)) …(数1) ここで、μは質量吸収係数、ρAは破砕体9の密度、ρB
は空気の密度、tA は放射能測定容器24の外径から内
径までの距離、及びtB は照射用線源12から放射能測
定容器24の外径までの距離である。ρB はほぼゼロに
近い値なので上式は以下のように簡略化できる。
EXP (−μp A t A + μρ B t B )) (Equation 1) where μ is a mass absorption coefficient, ρ A is the density of the crushed bodies 9, and ρ B
Is the density of air, t A is the distance from the outer diameter to the inner diameter of the radioactivity measuring container 24, and t B is the distance from the radiation source 12 to the outer diameter of the radioactivity measuring container 24. Since ρ B is a value close to zero, the above equation can be simplified as follows.

【0015】 EXP(−μρAA) …(数2) そこで、破砕体9の外周部に照射用線源12を配置し、
照射用線源12で破砕体9に放射線照射を行い、破砕体
9を透過して来る放射線を放射線検出器11で測定(破
砕体のγ線透過度8測定)する。照射放射線量に数2を
掛け合わした値が透過放射線量であるから、破砕体9中
のγ線減衰率と密度の算出7が可能となる。以上のこと
から、60Coの光電ピークより高い光電ピークをもつ天
然核種、例えば、40Kを同定し、検出器の応答関数6を
検出器の特性と破砕体9の密度から求める。この応答関
数6は以下方法で求める。応答関数6の測定体系を本発
明の測定体系と同等にし、密度値が分かっている固体に
40K等を添加しγ線スペクトル、即ち、応答関数6を測
定する。これを数種類の密度に対して行い、密度と応答
関数6を対応させる。この対応テーブルを演算制御器1
9内に持たせておけば、測定破砕体9の応答関数6を短
時間で求めることができる。この応答関数6の一例を図
5に示す。これは40Kの応答関数6を示したものであ
る。この応答関数6の光電ピーク値27を測定γ線スペ
クトルの光電ピーク値26と同じ値とし、他のエネルギ
領域は(光電ピーク26)/(光電ピーク27)の比率
を掛けて40Kの破砕体9中の応答関数6を求める。この
応答関数6を測定γ線スペクトル(図4に相当)から差
し引くことにより、60Coのみのスペクトルを得る。こ
のスペクトル差し引き作業をスペクトルストリッピング
3と云う。スペクトルストリッピング3後のスペクトル
から60Co光電ピーク面積4を求める。なお、このピー
ク面積4の算出方法については科学技術庁が提示してい
る分析マニュアルに論じられている方法を取る。次に、
60Co光電ピーク面積4に破砕体中の60Co光電ピーク
放射線減数率で除算することで正味のピーク面積を得
る。正味のピーク面積は破砕体9の放射能強度と一対一
に対応するので、破砕体9の60Coの放射能強度を求め
ることができる。
[0015] EXP (-μρ A t A) ... ( Equation 2) Thus, to place the irradiation ray source 12 to the outer peripheral portion of the crushing member 9,
The irradiation source 12 irradiates the crushed body 9 with radiation, and the radiation transmitted through the crushed body 9 is measured by the radiation detector 11 (γ-ray transmittance of the crushed body is measured by 8). Since the value obtained by multiplying the irradiation dose by the number 2 is the transmitted radiation dose, it is possible to calculate 7 of the γ-ray attenuation rate and density in the crushed body 9. From the above, a natural nuclide having a photopeak higher than that of 60 Co, for example, 40 K is identified, and the response function 6 of the detector is obtained from the characteristics of the detector and the density of the crushed bodies 9. This response function 6 is obtained by the following method. The measurement system of the response function 6 is made equal to that of the present invention, and a solid whose density value is known is obtained.
Add 40 K and measure the γ-ray spectrum, that is, the response function 6. This is performed for several types of densities, and the densities correspond to the response function 6. This correspondence table is used as the arithmetic controller 1
If it is provided inside 9, the response function 6 of the measured crushed body 9 can be obtained in a short time. An example of this response function 6 is shown in FIG. This shows the response function 6 of 40 K. The photoelectric peak value 27 of this response function 6 is set to the same value as the photoelectric peak value 26 of the measured γ-ray spectrum, and other energy regions are multiplied by the ratio of (photoelectric peak 26) / (photoelectric peak 27) to obtain a crushed body of 40 K. The response function 6 in 9 is obtained. By subtracting this response function 6 from the measured γ-ray spectrum (corresponding to FIG. 4), the spectrum of only 60 Co is obtained. This spectrum subtraction operation is called spectrum stripping 3. The 60 Co photopeak area 4 is determined from the spectrum after spectrum stripping 3. The method for calculating this peak area 4 will be the method discussed in the analysis manual presented by the Science and Technology Agency. next,
The 60 Co photoelectric peak area 4 is divided by the 60 Co photoelectric peak radiation reduction rate in the crushed body to obtain the net peak area. Since the net peak area has a one-to-one correspondence with the radioactivity intensity of the crushed body 9, the 60 Co radioactivity intensity of the crushed body 9 can be determined.

【0016】図6は、放射能測定部の変形例を示す。天
然核種の放射能強度が低くなると図4に示したような明
瞭な光電ピーク26の検出が難しくなる。天然核種の放
射能強度が低くなったとしても定量核種の60Coの光電
ピークには、天然核種のコンプトン散乱の影響を受け
る。このコンプトン散乱線を正確に補正するために、第
三の放射線検出器28を配置する。放射線検出器28
は、γ線エネルギ分解能が高いGe半導体検出器を用い
る。Ge半導体検出器28はγ線エネルギ分解能が高い
ため天然核種の光電ピークを必ず検出することができ
る。この天然核種の光電ピークを基に図5に示した応答
関数6を求め、上述した方法で破砕体9の放射能強度を
測定することができる。
FIG. 6 shows a modification of the radioactivity measuring section. When the radioactivity of the natural nuclide becomes low, it becomes difficult to detect the clear photopeak 26 as shown in FIG. Even if the radioactivity of the natural nuclide becomes low, the photoelectric peak of 60 Co of the quantitative nuclide is affected by Compton scattering of the natural nuclide. A third radiation detector 28 is arranged in order to accurately correct this Compton scattered ray. Radiation detector 28
Uses a Ge semiconductor detector with high γ-ray energy resolution. Since the Ge semiconductor detector 28 has high γ-ray energy resolution, it can always detect the photopeak of a natural nuclide. The response function 6 shown in FIG. 5 is obtained based on the photopeak of this natural nuclide, and the radioactivity intensity of the crushed body 9 can be measured by the method described above.

【0017】[0017]

【発明の効果】本発明は、破砕体の測定放射線スペクト
ルを天然核種の応答関数(放射線スペクトル)を用いて
スペクトルストリッピング補正を実施するので、定量核
種の放射能測定値を正確に補正できる破砕体の放射能測
定装置を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, since the measured radiation spectrum of the crushed body is subjected to spectrum stripping correction using the response function (radiation spectrum) of the natural nuclide, the crushed body capable of accurately correcting the radioactivity measurement value of the quantified nuclide. A device for measuring radioactivity of the body can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射能の定量方法を示すブロック図。FIG. 1 is a block diagram showing a method for quantifying radioactivity according to the present invention.

【図2】本発明の放射能測定装置のシステム系統図。FIG. 2 is a system diagram of a radioactivity measuring apparatus of the present invention.

【図3】本発明の放射線測定部の説明図。FIG. 3 is an explanatory diagram of a radiation measuring unit of the present invention.

【図4】破砕体のγ線スペクトルの一例を示す特性図。FIG. 4 is a characteristic diagram showing an example of a γ-ray spectrum of a crushed body.

【図5】応答関数の一例を示す特性図。FIG. 5 is a characteristic diagram showing an example of a response function.

【図6】本発明の放射能測定部の変形例を示す説明図。FIG. 6 is an explanatory diagram showing a modified example of the radioactivity measuring unit of the present invention.

【符号の説明】[Explanation of symbols]

9…破砕体、10…放射線検出器、11…放射線検出
器、12…照射用線源。
9 ... Crushed body, 10 ... Radiation detector, 11 ... Radiation detector, 12 ... Irradiation source.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固体を砕いた破砕体の放射能測定部を設け
た破砕体放射能測定装置に於いて、前記破砕体内に存在
する核種が放出する放射線のスペクトルを放射線検出器
で測定し、前記スペクトル中の定量光電ピーク面積を前
記定量光電ピークより高いエネルギをもった光電ピーク
面積で補正し、前記定量核種の放射能強度を定量するこ
とを特徴とする破砕体放射能測定方法。
1. A crushed body radioactivity measuring apparatus provided with a radioactivity measuring unit for a crushed body obtained by crushing a solid, wherein a spectrum of radiation emitted by a nuclide existing in the crushed body is measured by a radiation detector, A method for measuring the radioactivity of a fragmented body, which comprises quantifying the radioactivity intensity of the quantitative nuclide by correcting the quantitative photopeak area in the spectrum with a photopeak area having energy higher than that of the quantitative photopeak.
【請求項2】請求項1に於いて、前記光電ピーク面積の
放射線エネルギに相当する前記破砕体中での放射線減衰
量を求め、前記光電ピーク面積を前記放射線減衰量で除
算して、前記光電ピーク面積を正確に定量する破砕体放
射能測定方法。
2. The method according to claim 1, wherein the radiation attenuation amount in the crushed body corresponding to the radiation energy of the photoelectric peak area is obtained, and the photoelectric peak area is divided by the radiation attenuation amount to obtain the photoelectric A method for measuring the radioactivity of crushed bodies that accurately determines the peak area.
JP16421591A 1991-07-04 1991-07-04 Method for measuring radioactivity of crushed body Pending JPH0511063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16421591A JPH0511063A (en) 1991-07-04 1991-07-04 Method for measuring radioactivity of crushed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16421591A JPH0511063A (en) 1991-07-04 1991-07-04 Method for measuring radioactivity of crushed body

Publications (1)

Publication Number Publication Date
JPH0511063A true JPH0511063A (en) 1993-01-19

Family

ID=15788858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16421591A Pending JPH0511063A (en) 1991-07-04 1991-07-04 Method for measuring radioactivity of crushed body

Country Status (1)

Country Link
JP (1) JPH0511063A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315939A (en) * 2006-05-26 2007-12-06 Hitachi Ltd Charged particle measuring apparatus and system, and detection efficiency acquisition arithmetic unit
JP2014159970A (en) * 2013-02-19 2014-09-04 Mitsubishi Heavy Industries Mechatronics Systems Ltd Radioactivity inspection device and radioactivity detection method
KR101447030B1 (en) * 2012-12-26 2014-10-06 한국원자력연구원 Determination of individual exposure rate for each gamma nuclide
JP2014224783A (en) * 2013-05-17 2014-12-04 川崎重工業株式会社 Radioactivity measurement system and processing system for incineration ash
JP2019049512A (en) * 2017-09-12 2019-03-28 日立Geニュークリア・エナジー株式会社 Clearance measuring system and clearance measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315939A (en) * 2006-05-26 2007-12-06 Hitachi Ltd Charged particle measuring apparatus and system, and detection efficiency acquisition arithmetic unit
KR101447030B1 (en) * 2012-12-26 2014-10-06 한국원자력연구원 Determination of individual exposure rate for each gamma nuclide
JP2014159970A (en) * 2013-02-19 2014-09-04 Mitsubishi Heavy Industries Mechatronics Systems Ltd Radioactivity inspection device and radioactivity detection method
JP2014224783A (en) * 2013-05-17 2014-12-04 川崎重工業株式会社 Radioactivity measurement system and processing system for incineration ash
JP2019049512A (en) * 2017-09-12 2019-03-28 日立Geニュークリア・エナジー株式会社 Clearance measuring system and clearance measuring method

Similar Documents

Publication Publication Date Title
EP3223040A1 (en) Method and apparatus for distinguishing radionuclide by using plastic scintillator
KR20180050016A (en) Total inspection system and method for measuring the alpha, beta, and gamma radioactivity from dismantled radioactive wastes in the nuclear power plant decommissioning
Zakaly et al. Estimate the absolute efficiency by MATLAB for the NaI (Tl) detector using IAEA-314
US3988615A (en) Method for radioactivity monitoring
JP2017161259A (en) Device and method for radioactive concentration measurement
JPH06258496A (en) Measuring apparatus of activity concentration for radioactive waste container
JPS6215443A (en) Measuring device for characteristic of radioactive waste
JPH0511063A (en) Method for measuring radioactivity of crushed body
Oglat Gamma ray, beta and alpha particles as a sources and detection
JPH07209493A (en) Selecting device of radioactive waste and selecting method thereof
Morishita Development of a portable alpha–beta–gamma radioactive material continuous air-monitoring system
JPS61107183A (en) Method for measuring radioactive quantity of radioactive waste contained in receptacle
JP3581413B2 (en) Non-destructive radiometric collimator measurement method for solidified radioactive waste in drums
JP2703409B2 (en) Radioactivity measurement method
JP2023040830A (en) Method for inspecting contamination of powdery waste by radioactive material
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
JPH0479597B2 (en)
JP2010101663A (en) Multiple radiation analyzing apparatus and multiple radiation analyzing method
JP2736199B2 (en) Measurement method for filling boundary of radioactive material filled container
JPH06288939A (en) Method and instrument for measuring boron concentration in nuclear reactor cooling water
Mauerhofer Improvement in the counting statistics and in the limit of detection with Compton suppression spectrometers—a contribution to instrumental neutron activation analysis
Novotny et al. Characterization of the Si (Li) detector for Monte Carlo calculations of beta spectra
JP3241262B2 (en) Radioactivity measurement method for solidified radioactive waste
JP2978103B2 (en) Active neutron measurement method and apparatus
JP5635583B2 (en) γ-ray measuring device