JPH0534043A - Ice making machine and method for controlling ice making machine with fuzzy inference - Google Patents
Ice making machine and method for controlling ice making machine with fuzzy inferenceInfo
- Publication number
- JPH0534043A JPH0534043A JP19005191A JP19005191A JPH0534043A JP H0534043 A JPH0534043 A JP H0534043A JP 19005191 A JP19005191 A JP 19005191A JP 19005191 A JP19005191 A JP 19005191A JP H0534043 A JPH0534043 A JP H0534043A
- Authority
- JP
- Japan
- Prior art keywords
- ice
- temperature
- ice making
- water
- input variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production, Working, Storing, Or Distribution Of Ice (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、製氷機に関し、特に、
ファジイ推論によって離氷完了検知温度の決定を行う製
氷機及びその制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice making machine, and in particular,
The present invention relates to an ice maker and a control method thereof for determining a defrosting completion detection temperature by fuzzy reasoning.
【0002】[0002]
【従来の技術】従来この種製氷機においては、例えば特
開平1−200168号公報に示されるように、裏面に
冷凍サイクルの冷却パイプを備えた製氷部材の表面であ
る製氷面に製氷用水を循環し、氷塊を成長させ、成長し
た氷塊は冷却パイプにホットガスを流すと共に、給水電
磁弁から離氷用水を裏面に流して離氷させ、この離氷用
水は貯水タンクに貯めて、次回の製氷用水として用いる
構成がとられている。2. Description of the Related Art Conventionally, in this type of ice making machine, as shown in, for example, Japanese Unexamined Patent Publication No. 1-200168, ice making water is circulated on an ice making surface which is a surface of an ice making member having a cooling pipe of a refrigeration cycle on the back side. Then, the ice lumps are allowed to grow, and the grown ice lumps are caused to flow hot gas through the cooling pipe, and the ice water for supplying ice is flowed from the water supply solenoid valve to the back surface to remove ice, and the ice water is stored in the water storage tank for the next ice making. It is configured to be used as water.
【0003】製氷機は以上の製氷行程と離氷行程を繰り
返すサイクルを実行するものであるが、特に離氷行程を
終了するには、従来では冷却パイプの冷媒出口側温度を
出口温度センサーによって検出し、そこの温度が上昇し
て例えば+8℃等の一定の離氷完了検知温度に達した時
点でホットガスの流通を終了する方法がとられていた。The ice making machine executes the above cycle of repeating the ice making process and the ice removing process. In particular, in order to end the ice making process, conventionally, the temperature at the refrigerant outlet side of the cooling pipe is detected by the outlet temperature sensor. However, when the temperature there rises and reaches a certain ice-off completion detection temperature such as + 8 ° C., the hot gas flow is terminated.
【0004】[0004]
【発明が解決しようとする課題】このように従来の制御
方式は、外気温度や離氷用水の温度に係わらず離氷完了
検知温度が固定されていたため、以下に述べる種々の問
題を有していた。即ち、図8に低外気温の場合の冷却パ
イプの冷媒出口側温度ETの時間推移を、図9に中外気
温の場合の冷却パイプの冷媒出口側温度ETの時間推移
を、また、図10に高外気温の場合の冷却パイプの冷媒
出口側温度ETの時間推移をそれぞれ示す。As described above, the conventional control system has various problems described below because the deicing completion detection temperature is fixed regardless of the outside air temperature and the deicing water temperature. It was That is, FIG. 8 shows the time transition of the refrigerant outlet side temperature ET of the cooling pipe in the case of low outside air temperature, FIG. 9 shows the time transition of the refrigerant outlet side temperature ET of the cooling pipe in the case of medium outside air temperature, and FIG. The time transition of the refrigerant outlet side temperature ET of the cooling pipe when the outside air temperature is high is shown respectively.
【0005】外気温度が低い時には、製氷機の冷凍サイ
クルを構成する機器や配管の温度も低くなっているた
め、図8の離氷開始時点から冷却パイプにホットガスを
流し始めても、冷却パイプの冷媒出口側温度ETの上昇
速度は緩慢である。しかしながら、製氷部材の裏側には
離氷用水も流されているため、特に離氷用水の温度が高
い場合には、製氷部材の温度も上昇し、温度ETが+8
℃に達するかなり前に氷塊は落下を終了する。従って、
図9の中外気温時に比較して氷塊落下終了からホットガ
ス終了までの無駄な期間が長くなり、サイクル時間が長
くなって製氷能力が低下する問題があった。When the outside air temperature is low, the temperatures of the equipment and piping that make up the refrigeration cycle of the ice making machine are also low, so even if hot gas begins to flow from the start of ice removal in FIG. The rising rate of the refrigerant outlet side temperature ET is slow. However, since ice-breaking water is also made to flow on the back side of the ice-making member, the temperature of the ice-making member also rises and the temperature ET becomes +8, especially when the temperature of the ice-breaking water is high.
Long before the temperature reached ℃, the ice block finished falling. Therefore,
As compared with the inside / outside temperature in FIG. 9, there is a problem that the useless period from the end of the ice block drop to the end of the hot gas becomes longer, the cycle time becomes longer, and the ice making capacity is lowered.
【0006】逆に、外気温度が高い時は製氷機の冷凍サ
イクルを構成する機器や配管の温度も高くなっているた
め、図10の離氷開始時点から冷却パイプにホットガス
を流し始めると、冷却パイプの冷媒出口側温度ETは急
速に上昇する。従って、氷塊の内、冷却パイプに近接し
ている部分は急速に製氷部材から剥離するが、その他の
部分は剥離しておらず、温度ETの急激な上昇にも係わ
らず、なかなか氷塊は離脱せず、図10の如く温度ET
が+8℃に達する直前で落下終了する場合が多く、特に
製氷部材の裏側を流れる離氷用水の温度が低い場合には
ホットガスが終了した時点でも氷塊の落下が終了しなく
なる危険性があった。On the other hand, when the outside air temperature is high, the temperature of the equipment and piping constituting the refrigeration cycle of the ice making machine is also high. Therefore, when hot gas is started to flow through the cooling pipe from the start of ice removal in FIG. 10, The temperature ET on the refrigerant outlet side of the cooling pipe rises rapidly. Therefore, of the ice blocks, the part close to the cooling pipe is rapidly separated from the ice-making member, but the other parts are not separated, and the ice blocks are not easily removed despite the rapid increase in the temperature ET. No, temperature ET as shown in FIG.
Often ends just before the temperature reaches + 8 ° C, especially when the temperature of the ice-free water flowing on the back side of the ice making member is low, there is a risk that the ice block will not end falling even when the hot gas ends. .
【0007】本発明は、係る課題を解決し、ファジイ推
論により離氷完了検知温度を適宜決定することにより、
適正な温度で離氷を終了して製氷能力の向上と確実な離
氷を達成した製氷機及びその制御方法を提供することを
目的とする。According to the present invention, by solving the above problems and appropriately determining the ice-free completion detection temperature by fuzzy reasoning,
An object of the present invention is to provide an ice maker and a control method thereof, which have completed ice removal at an appropriate temperature and have improved ice making ability and achieved reliable ice removal.
【0008】[0008]
【課題を解決するための手段】本発明の製氷機は、冷却
器を具備した製氷手段と、離氷手段と、離氷用水を供給
する給水手段と、製氷手段により氷塊を形成する製氷行
程と離氷手段により製氷手段から氷塊を離脱させる離氷
行程とを交互に繰り返し実行すると共に、離氷行程中に
給水手段により製氷手段に離氷用水を供給し、冷却器の
温度が所定の離氷完了検知温度に到達したら離氷行程を
終了する制御手段とを備え、この制御手段における離氷
完了検知温度の決定に際して、外気温度に基づき変化す
る値と、離氷用水の温度に基づき変化する値を入力変数
としたファジイ推論を用いるものである。An ice making machine of the present invention comprises an ice making means equipped with a cooler, an ice removing means, a water supplying means for supplying ice removing water, and an ice making process for forming ice blocks by the ice making means. Alternately repeat the deicing process to separate the ice blocks from the ice making device by the deicing device, and supply the deicing water to the ice making device by the water supply device during the deicing process, so that the temperature of the cooler is a predetermined deicing temperature. A control means for terminating the deicing process when the completion detection temperature is reached, and a value that changes based on the outside air temperature and a value that changes based on the temperature of the deicing water when determining the deicing completion detection temperature in this control means. It uses fuzzy inference with the input variable as.
【0009】また、本発明の製氷機の制御方法は、外気
温度を第1の入力変数とし、離氷用水の温度を第2の入
力変数として複数の推論規則の両入力変数に対応するメ
ンバ−シップ関数から両入力変数に応じたメンバ−シッ
プ値を求めた後、当該推論規則の出力変数をファジイ合
成し、その重心をとることにより推論結果を得て、これ
を離氷完了検知温度の決定に利用するものである。Further, in the method for controlling an ice making machine according to the present invention, the outside air temperature is used as the first input variable, and the temperature of the ice-free water is used as the second input variable. After determining the membership value according to both input variables from the ship function, fuzzy combining the output variables of the inference rule, and obtaining the inference result by taking the center of gravity of the output variable to determine the deicing completion detection temperature. It is used for.
【0010】[0010]
【作用】本発明によれば、製氷機周囲の外気温度や供給
される離氷用水温の変動に対して的確に離氷完了検知温
度を決定でき、迅速、且つ安定した離氷を行うことがで
きる。According to the present invention, the deicing completion detection temperature can be accurately determined with respect to changes in the outside air temperature around the ice making machine and the supplied deicing water temperature, and quick and stable deicing can be performed. it can.
【0011】[0011]
【実施例】次に図面において実施例を説明する。図1は
本発明の製氷機1の制御手段としての制御装置Cのブロ
ック図であり、図2は製氷機1のシステム構成図、図3
は製氷機1の要部斜視図である。図2及び図3におい
て、製氷機1は独立した多数の氷塊2を製造するための
流下式の製氷機であり、表面に製氷面3Aを有する製氷
手段としての製氷部材3、3はステンレス板を折曲加工
して、水平方向に延びる凹部4及び凸部5とを交互に複
数形成されており、それぞれ裏面を相対向し、間隔を存
して結合されると共に、各製氷部材3、3の裏面には蛇
行状に形成された冷却器としての冷却パイプ6が凹部4
の裏面に接触して配設されている。Embodiments Next, embodiments will be described with reference to the drawings. FIG. 1 is a block diagram of a control device C as a control means of the ice making machine 1 of the present invention, and FIG. 2 is a system configuration diagram of the ice making machine 1, FIG.
FIG. 3 is a perspective view of a main part of the ice making machine 1. 2 and 3, the ice making machine 1 is a flow-down type ice making machine for producing a large number of independent ice blocks 2, and the ice making members 3 and 3 as an ice making means having an ice making surface 3A on the surface are stainless plates. A plurality of recesses 4 and protrusions 5 that extend in the horizontal direction are formed alternately by bending, and the back surfaces of the ice-making members 3 and 3 are joined to each other with their back surfaces facing each other and spaced apart. On the back side, a cooling pipe 6 as a cooler formed in a meandering shape is provided with a recess 4
Is arranged in contact with the back surface of the.
【0012】即ち、所定の間隔を存する冷却パイプ6の
垂直部分6Aは、凹部4及び凸部5と交差関係を成し、
この内凹部4の裏面と対応する部分を、該凹部4の裏面
にハンダ付け等によって固定し、冷却パイプ6のベンド
部分6Bは凹部4の裏面に接触することなく、凸部5の
裏面と間隔を存して対向する。係る冷却パイプ6は電動
圧縮機7、凝縮器9、キャピラリチューブ10等と共に
環状に接続されて冷凍サイクルが構成され、その付加的
装置として、凝縮器9をバイパスするバイパス管11
と、該バイパス管11に接続したホットガス電磁弁12
を備えている。また、凝縮器9は送風機8によって強制
冷却される。That is, the vertical portion 6A of the cooling pipe 6 having a predetermined space has a cross relationship with the concave portion 4 and the convex portion 5,
A portion corresponding to the back surface of the inner recess 4 is fixed to the back surface of the recess 4 by soldering or the like, and the bend portion 6B of the cooling pipe 6 is spaced from the back surface of the projection 5 without contacting the back surface of the recess 4. To face each other. The cooling pipe 6 is annularly connected together with the electric compressor 7, the condenser 9, the capillary tube 10 and the like to form a refrigeration cycle, and an additional device is a bypass pipe 11 that bypasses the condenser 9.
And a hot gas solenoid valve 12 connected to the bypass pipe 11.
Is equipped with. Further, the condenser 9 is forcibly cooled by the blower 8.
【0013】次に、水系統について説明する。一方の製
氷部材3の上端は他方の製氷部材3の上端に覆い被さり
上部水案内部14を構成さており、この上部水案内部1
4の上方に製氷水散水器13が配設され、その長手方向
には水案内部14を介して製氷面3Aに製氷用水を流下
せしめる多数の散水孔13Aを所定間隔を存して形成し
ている。この散水器13の端部から延出する導水管15
は、貯水タンク16に配設した循環ポンプ17に接続さ
れている。これら散水器13及び循環ポンプ17によっ
て散水手段が構成される。また、貯水タンク16は凸部
5の下端の下部水案内部18、18から落下する未凍結
水を回収する桶19と連通している。Next, the water system will be described. The upper end of one ice making member 3 covers the upper end of the other ice making member 3 to form an upper water guide portion 14. The upper water guide portion 1
4 is provided with an ice making water sprinkler 13 and a large number of water sprinkling holes 13A for allowing ice making water to flow down to the ice making surface 3A via a water guide portion 14 are formed at predetermined intervals in the longitudinal direction thereof. There is. Water conduit 15 extending from the end of this sprinkler 13.
Is connected to a circulation pump 17 arranged in the water storage tank 16. The water sprinkler 13 and the circulation pump 17 constitute a water sprinkler. Further, the water storage tank 16 is in communication with a trough 19 that collects unfrozen water that has dropped from the lower water guide portions 18, 18 at the lower end of the convex portion 5.
【0014】一方、製氷面3Aの裏面上方部位には離氷
用散水器20が配設され、その長手方向には製氷面3A
の裏面に離氷用水を散水せしめる多数の散水孔20Aを
所定間隔で形成している。この散水器20は給水手段と
しての給水電磁弁21を介して水道管に接続されてい
る。更に、図1において制御装置Cは基本的にはマイク
ロコンピュータからなる制御部25から構成され、この
制御部25の入力には、冷却パイプ6の冷媒出口側部分
に取り付けられた出口温度センサー26の出力と、凝縮
器9の冷媒出口側部分に取り付けられた外気温度センサ
ー28の出力と、散水器20に取り付けられた水温セン
サー29の出力が入力され、出力には電動圧縮機7、循
環ポンプ17のポンプモーター17M、ホットガス電磁
弁12、送風機8及び給水電磁弁21が接続されてい
る。On the other hand, an ice sprinkler 20 is disposed above the back surface of the ice making surface 3A, and the ice making surface 3A is provided in the longitudinal direction thereof.
A large number of water spray holes 20A for spraying the ice-free water are formed at predetermined intervals on the back surface of the. This sprinkler 20 is connected to a water pipe via a water supply solenoid valve 21 as a water supply means. Further, in FIG. 1, the control device C is basically composed of a control unit 25 composed of a microcomputer, and an input of the control unit 25 is an outlet temperature sensor 26 attached to a refrigerant outlet side portion of the cooling pipe 6. The output, the output of the outside air temperature sensor 28 attached to the refrigerant outlet side portion of the condenser 9, and the output of the water temperature sensor 29 attached to the sprinkler 20 are input, and the output is the electric compressor 7 and the circulation pump 17. The pump motor 17M, the hot gas solenoid valve 12, the blower 8 and the water supply solenoid valve 21 are connected.
【0015】次に、制御装置Cの制御動作を説明する。
制御部25は、先ず電源が投入されると給水電磁弁21
を開いて貯水タンク16へ給水動作を開始する。この場
合、離氷水散水器20の散水孔20Aから製氷面3A、
3Aの裏面上部に散水された水は凹部4の裏面、凸部5
の裏面に沿って流下し、下部案内部18から桶19に落
下し、貯水タンク16に定量給水されると給水電磁弁2
1が閉じて給水動作を終了する。Next, the control operation of the controller C will be described.
When the power is first turned on, the control unit 25 controls the water supply solenoid valve 21.
Is opened to start the water supply operation to the water storage tank 16. In this case, from the water spray hole 20A of the ice water sprayer 20 to the ice making surface 3A,
Water sprinkled on the upper part of the back surface of 3A is the back surface of the concave portion 4
When it flows down along the back surface of the water tank, falls from the lower guide portion 18 into the trough 19, and the fixed amount of water is supplied to the water storage tank 16, the water supply solenoid valve 2
1 is closed and the water supply operation is completed.
【0016】この給水動作の終了と同時に、電動圧縮機
7を起動し、冷却パイプ6に低温冷媒を循環し、同時に
循環ポンプ17のモーター17Mを動作させて製氷動作
を開始する。貯水タンク16内の製氷用水はこの循環ポ
ンプ17の作動によって導水管15を通り製氷水散水器
13に圧送され、該散水器13の散水孔13Aから上部
水案内部14に散水された製氷用水は、製氷面3Aを流
下する。製氷面3Aを流下する製氷用水は下部水案内部
18から桶19に落下して貯水タンク16に戻され、再
び製氷面3Aへと循環される。Simultaneously with the end of the water supply operation, the electric compressor 7 is started, the low temperature refrigerant is circulated in the cooling pipe 6, and at the same time, the motor 17M of the circulation pump 17 is operated to start the ice making operation. The ice making water in the water storage tank 16 is pressure-fed to the ice making water sprinkler 13 through the water conduit 15 by the operation of the circulation pump 17, and the ice making water sprinkled from the water sprinkling holes 13A of the water sprinkler 13 to the upper water guide portion 14 is , Flow down the ice making surface 3A. The ice making water flowing down the ice making surface 3A falls from the lower water guide portion 18 to the trough 19, is returned to the water storage tank 16, and is circulated again to the ice making surface 3A.
【0017】この時、冷却パイプ6の垂直部分6Aに沿
って製氷用水は流下するため、この循環を繰り返す過程
で冷却パイプ6の温度低下に合わせて製氷用水の温度は
徐々に低下して行く。更に製氷動作が続行されると、氷
塊2は更に成長して行く。この製氷動作が所定時間継続
して行われ、凹部4内に所定の氷塊2が形成されると、
電動圧縮機7は運転したまま送風機8のみを停止し、同
時に循環ポンプ17も停止して製氷行程を終了する。At this time, since the ice making water flows down along the vertical portion 6A of the cooling pipe 6, the temperature of the ice making water gradually decreases as the temperature of the cooling pipe 6 decreases in the process of repeating this circulation. When the ice making operation is further continued, the ice block 2 further grows. When this ice making operation is continuously performed for a predetermined time and a predetermined ice block 2 is formed in the concave portion 4,
While the electric compressor 7 is operating, only the blower 8 is stopped, and at the same time, the circulation pump 17 is also stopped to end the ice making process.
【0018】このような制御によって製氷動作が終了す
ると、制御部25はホットガス電磁弁12を開いてバイ
パス管11を通し、運転している電動圧縮機7から高温
高圧の冷媒ガス(ホットガス)を冷却パイプ6に導き、
製氷部材3を加熱して離氷動作を開始する。同時に給水
電磁弁21も開いて離氷用散水器20の散水孔20Aか
ら製氷面3A、3Aの裏側に所定時間離氷用水を散水す
る。この離氷用水は、凹部4の裏面、凸部5の裏面を流
れ、前記ホットガスによる加熱と合わせて製氷部材3、
3の温度を上昇させ、氷塊2と製氷面3Aの密着を解除
する。これによって凹部4から離脱した氷塊2は下方に
位置した図示しない貯氷庫に落下することになる。When the ice making operation is completed by such control, the control unit 25 opens the hot gas electromagnetic valve 12 and passes through the bypass pipe 11, and the high temperature and high pressure refrigerant gas (hot gas) from the electric compressor 7 in operation. To the cooling pipe 6,
The ice making member 3 is heated to start the ice removing operation. At the same time, the water supply solenoid valve 21 is also opened to spray ice-free water for a predetermined time from the water spray holes 20A of the ice sprayer 20 to the back sides of the ice making surfaces 3A and 3A. The ice removing water flows on the back surface of the concave portion 4 and the back surface of the convex portion 5, and together with the heating by the hot gas, the ice making member 3,
The temperature of 3 is raised, and the close contact between the ice block 2 and the ice making surface 3A is released. As a result, the ice blocks 2 separated from the recesses 4 fall into the ice storage (not shown) located below.
【0019】このホットガスによる離氷行程は、製氷行
程の終了後、出口温度センサー26によって検知される
冷却パイプ6の冷媒出口側温度ETが、制御部25によ
って決定される離氷完了検知温度KTまで上昇した時点
において終了し、その後再び製氷動作が開始される。こ
こで、氷塊落下を終了させるのに充分な離氷完了検知温
度KTは経験的に外気温度ATと給水電磁弁21から供
給される離氷用水の温度WTとによって変化することが
分かっている。即ち、外気温度ATが高く、離氷用水の
温度WTが低い場合は氷塊は落下し難く、離氷完了検知
温度を高くする必要があり、外気温度ATが低く、離氷
用水の温度WTが高いほど離氷完了検知温度を低くして
も氷塊は落下を終了できる。In the ice-freezing process using the hot gas, the temperature ET of the refrigerant outlet side of the cooling pipe 6 detected by the outlet temperature sensor 26 is determined by the control unit 25 after the completion of the ice-making process. It ends when the temperature rises to, and then the ice making operation is started again. Here, it is empirically known that the deicing completion detection temperature KT that is sufficient for ending the ice block fall changes depending on the outside air temperature AT and the temperature WT of the deicing water supplied from the water supply solenoid valve 21. That is, when the outside air temperature AT is high and the ice removing water temperature WT is low, it is difficult for the ice blocks to fall, and it is necessary to raise the ice removal completion detection temperature. The outside air temperature AT is low and the ice removing water temperature WT is high. Even if the ice release completion detection temperature is lowered, the ice block can finish falling.
【0020】即ち、これらをAT、WTと離氷完了検知
温度KTの関係で考えると、「ATが高く、WTが低け
れば、KTを高くする必要がある」、「ATが低く、W
Tが高ければ、KTを低くする」と云う関係になること
が分かる。制御部25においては前記離氷完了検知温度
KTを決定するに当たり、外気温度センサー28及び水
温センサー29の出力から外気温度AT及び離氷用水の
温度WTを検知し、以上のような経験則を利用して実験
的に予め定めたルールによるファジイ推論を用いて前記
離氷完了検知温度KTを決定する。以下、制御部25に
おいて実行されるファジイ制御につき説明する。That is, considering these in terms of the relationship between AT, WT and ice-free completion detection temperature KT, "if AT is high and WT is low, it is necessary to increase KT" and "AT is low, W
It can be understood that the relationship is such that if T is high, KT is low. In determining the deicing completion detection temperature KT, the control unit 25 detects the outside air temperature AT and the deicing water temperature WT from the outputs of the outside air temperature sensor 28 and the water temperature sensor 29, and uses the above empirical rule. Then, the deicing completion detection temperature KT is determined experimentally using fuzzy inference according to a predetermined rule. The fuzzy control executed by the controller 25 will be described below.
【0021】ファジイ推論に用いる入力、即ちル−ルの
条件部の変数(ファジイ変数)としては前記ATを第1
の入力変数とし、前記WTを第2の入力変数とする。出
力、即ちル−ルの結論部の出力変数としては、前記KT
をとる。ファジイラベルとしてはPB(かなり高い)、
PS(少し高い)、ZO(普通)、NS(少し低い)及
びNB(かなり低い)の5つを用いる。また、各入力変
数AT、WT及び出力変数KTのファジイラベルに与え
るメンバシップ関数を連続関数として表現したものを図
4から図6に示す。即ち、入力変数AT及びWTのファ
ジイラベルは0℃以上+40℃以下の規格化した台集合
上で規定し、出力変数KTのファジイラベルは0℃以上
+20℃以下の規格化した台集合で規定する。このよう
な「かなり」と云ったあいまいな量を定量化することに
より、ファジイ推論を行うことができるようになる。As the input used for fuzzy inference, that is, the variable of the conditional part of the rule (fuzzy variable), the AT is the first.
, And the WT as a second input variable. The output, that is, the output variable of the conclusion part of the rule is KT
Take PB (quite expensive) as a fuzzy label,
Five are used: PS (slightly high), ZO (normal), NS (slightly low) and NB (quite low). 4 to 6 show the membership functions given to the fuzzy labels of the input variables AT and WT and the output variable KT as continuous functions. That is, the fuzzy labels of the input variables AT and WT are defined on the standardized set of 0 ° C to + 40 ° C, and the fuzzy labels of the output variables KT are defined on the standardized set of 0 ° C to + 20 ° C. . By quantifying such an ambiguous amount that is "quite", fuzzy inference can be performed.
【0022】更に、ファジイ推論に用いるルールとして
は、この種製氷機の制御における経験則より表1に示す
13のル−ルの組み合わせが考えられる。表1は入力変
数ATのラベルを横に、入力変数WTのラベルを縦にと
り、マトリックスによって組み合わせを表したもので、
マトリックスの交差部に結論部としての出力変数KTの
ラベルが示されている。これらのルールは、実験により
実際に製氷機1を種々の外気温度AT及び水温WT条件
下にて動作させ、常に確実な離氷が行われるように各変
数AT、WT、KTのラベルを組み合わせて構成された
ものである。Further, as a rule used for fuzzy inference, a combination of 13 rules shown in Table 1 can be considered based on an empirical rule in controlling this type of ice making machine. Table 1 shows the combinations of the input variables AT in the matrix and the labels in the input variable WT in the horizontal direction.
The label of the output variable KT as the conclusion part is shown at the intersection of the matrix. According to these rules, the ice making machine 1 is actually operated under various conditions of the outside air temperature AT and the water temperature WT by experiment, and the labels of the variables AT, WT, and KT are combined so that the deicing is always performed reliably. It is composed.
【0023】[0023]
【表1】 [Table 1]
【0024】表1の各ル−ルについて詳述すると、先ず
ル−ル「If入力変数AT=NBand入力変数WT=
NBthenKT=ZO」は、「外気温度ATがかなり
低く、離氷用水の温度WTもかなり低い時は、離氷完了
検知温度KTを普通にする」と云う条件の成立度を示
す。ル−ル「If入力変数AT=ZOand入力変数W
T=NBthenKT=PS」は、「外気温度ATが普
通で、離氷用水の温度WTがかなり低い時は、離氷完了
検知温度KTを少し高くする」と云う条件の成立度を示
す。Each rule in Table 1 will be described in detail. First, the rule "If input variable AT = NBand input variable WT =
"NBthenKT = ZO" indicates the degree of satisfaction of the condition "when the outside air temperature AT is considerably low and the ice-breaking water temperature WT is also quite low, the ice-breaking completion detection temperature KT is made normal". Rule “If input variable AT = ZO and input variable W
“T = NBthenKT = PS” indicates the degree of satisfaction of the condition that “when the outside air temperature AT is normal and the ice-breaking water temperature WT is considerably low, the ice-breaking completion detection temperature KT is slightly increased”.
【0025】ル−ル「If入力変数AT=PBand入
力変数WT=NBthenKT=PB」は、「外気温度
ATがかなり高く、離氷用水の温度WTがかなり低い時
は、離氷完了検知温度KTをかなり高くする」と云う条
件の成立度を示す。ル−ル「If入力変数AT=NSa
nd入力変数WT=NSthenKT=ZO」は、「外
気温度ATが少し低く、離氷用水の温度WTも少し低い
時は、離氷完了検知温度KTを普通にする」と云う条件
の成立度を示す。The rule "If input variable AT = PBand input variable WT = NBthenKT = PB" is that "when the outside air temperature AT is considerably high and the ice-cooling water temperature WT is considerably low, the de-icing completion detection temperature KT is set. The degree of satisfaction of the condition "to make it considerably high" is shown. Rule “If input variable AT = NSa
The “nd input variable WT = NSthenKT = ZO” indicates the degree of satisfaction of the condition that “when the outside air temperature AT is a little low and the ice-breaking water temperature WT is a little low, the ice-breaking completion detection temperature KT is normal”. .
【0026】ル−ル「If入力変数AT=PSand入
力変数WT=NSthenKT=PS」は、「外気温度
ATが少し高く、離氷用水の温度WTが少し低い時は、
離氷完了検知温度KTを少し高くする」と云う条件の成
立度を示す。ル−ル「If入力変数AT=NBand入
力変数WT=ZOthenKT=NS」は、「外気温度
ATがかなり低く、離氷用水の温度WTが普通の時は、
離氷完了検知温度KTを少し低くする」と云う条件の成
立度を示す。The rule "If input variable AT = PSand input variable WT = NSthenKT = PS" is "when the outside air temperature AT is a little high and the ice water temperature WT is a little low,
The degree of satisfaction of the condition of "raising the ice removal completion detection temperature KT slightly" is shown. The rule “If input variable AT = NBand input variable WT = ZOthenKT = NS” states that “when the outside air temperature AT is considerably low and the ice icing water temperature WT is normal,
The degree of satisfaction of the condition of "lowering the ice-free completion detection temperature KT" is shown.
【0027】ル−ル「If入力変数AT=ZOand入
力変数WT=ZOthenKT=ZO」は、「外気温度
ATが普通で、離氷用水の温度WTも普通の時は、離氷
完了検知温度KTを普通にする」と云う条件の成立度を
示す。ル−ル「If入力変数AT=PBand入力変数
WT=ZOthenKT=PS」は、「外気温度ATが
かなり高く、離氷用水の温度WTが普通の時は、離氷完
了検知温度KTを少し高くする」と云う条件の成立度を
示す。The rule "If input variable AT = ZOand input variable WT = ZOthenKT = ZO" is "when the outside air temperature AT is normal and the ice water temperature WT is also normal, the ice removal completion detection temperature KT is set. The degree of satisfaction of the condition of "normalize" is shown. Rule “If input variable AT = PBand input variable WT = ZOthenKT = PS” indicates that “outside air temperature AT is considerably high and deicing completion detection temperature KT is slightly increased when deicing water temperature WT is normal. The degree of satisfaction of the condition "" is shown.
【0028】ル−ル「If入力変数AT=NSand入
力変数WT=PSthenKT=NS」は、「外気温度
ATが少し低く、離氷用水の温度WTが少し高い時は、
離氷完了検知温度KTを少し低くする」と云う条件の成
立度を示す。ル−ル「If入力変数AT=PSand入
力変数WT=PSthenKT=ZO」は、「外気温度
ATが少し高く、離氷用水の温度WTも少し高い時は、
離氷完了検知温度KTを普通にする」と云う条件の成立
度を示す。The rule "If input variable AT = NSand input variable WT = PShenKT = NS" is that "when the outside air temperature AT is a little low and the ice water temperature WT is a little high,
The degree of satisfaction of the condition of "lowering the ice-free completion detection temperature KT" is shown. The rule “If input variable AT = PSand input variable WT = PSthenKT = ZO” is “when the outside air temperature AT is a little high and the ice-free water temperature WT is a little high,
The degree of satisfaction of the condition "normalize the ice-free completion detection temperature KT" is shown.
【0029】ル−ル「If入力変数AT=NBand入
力変数WT=PBthenKT=NB」は、「外気温度
ATがかなり低く、離氷用水の温度WTがかなり高い時
は、離氷完了検知温度KTをかなり低くする」と云う条
件の成立度を示す。ル−ル「If入力変数AT=ZOa
nd入力変数WT=PBthenKT=NS」は、「外
気温度ATが普通で、離氷用水の温度WTがかなり高い
時は、離氷完了検知温度KTを少し低くする」と云う条
件の成立度を示す。The rule "If input variable AT = NBand input variable WT = PBthenKT = NB" is that "when the outside air temperature AT is considerably low and the ice water WT temperature is considerably high, the ice removal completion detection temperature KT is set. The degree of satisfaction of the condition of "much lower" is shown. Rule “If input variable AT = ZOa
The nd input variable WT = PBthenKT = NS ”indicates the degree of satisfaction of the condition that“ when the outside air temperature AT is normal and the deicing water temperature WT is considerably high, the deicing completion detection temperature KT is lowered a little ”. .
【0030】ル−ル「If入力変数AT=PBand入
力変数WT=PBthenKT=ZO」は、「外気温度
ATがかなり高く、離氷用水の温度WTもかなり高い時
は、離氷完了検知温度KTを普通にする」と云う条件の
成立度を示す。実際のファジイ推論においてはこれらの
ファジイルールを全て若しくは選択的に使用し、外気温
度センサー28及び水温センサー29で温度AT及びW
Tを測定してこれらを各ルールにそれぞれ代入すること
によって入力変数ATに応じたメンバーシップ値及び入
力変数WTに応じたメンバーシップ値を求め、両メンバ
−シップ値の最小値、即ち小さい方のメンバ−シップ値
をそのルールの成立度として選択する。結論部において
は、この成立度より下方のKTのメンバ−シップ関数
(台集合)の面積を各ルール毎にもとめ、求められた全
面積を加重平均によりファジイ合成し、その重心を求め
て推論結果としての出力変数KTを決定する。The rule "If input variable AT = PBand input variable WT = PBthenKT = ZO" indicates that "when the outside air temperature AT is considerably high and the ice water temperature WT is also quite high, the ice removal completion detection temperature KT is set. The degree of satisfaction of the condition of "normalize" is shown. In the actual fuzzy inference, these fuzzy rules are used all or selectively and the outside air temperature sensor 28 and the water temperature sensor 29 are used to detect the temperatures AT and W.
The membership value according to the input variable AT and the membership value according to the input variable WT are obtained by measuring T and substituting them into each rule, and the minimum value of both membership values, that is, the smaller one Select the membership value as the success of the rule. In the conclusion part, the area of KT's membership function (set of units) below this degree of success is found for each rule, and the obtained total area is fuzzy combined by weighted average, and the center of gravity is found to infer the result. Output variable KT is determined.
【0031】次に、図7において実際の状況を想定して
前記動作を実行してみる。例として今、ル−ル1「If
入力変数AT=PSand入力変数WT=NSthen
KT=PS」及びルール2「If入力変数AT=ZOa
nd入力変数WT=NBthenKT=PS」を用い、
外気温度センサー28によって得られた外気温度ATが
+23℃、水温センサー29によって得られた離氷用水
の温度WTが+6℃であったものとすると、図7のAT
の入力値は+23、WTの入力値は+6となる。この場
合、ルール1のATではメンバーシップ値0.3、WT
ではメンバーシップ値0.6でヒットし、ルール2のA
Tではメンバーシップ値0.7、WTではメンバーシッ
プ値0.4でヒットする。Next, referring to FIG. 7, the above operation is executed assuming an actual situation. As an example, rule 1 "If
Input variable AT = PSand Input variable WT = NSthen
KT = PS ”and rule 2“ If input variable AT = ZOa
nd input variable WT = NBthenKT = PS ”,
Assuming that the outside air temperature AT obtained by the outside air temperature sensor 28 is + 23 ° C. and the temperature WT of the deicing water obtained by the water temperature sensor 29 is + 6 ° C., AT in FIG.
The input value of is +23, and the input value of WT is +6. In this case, the AT of Rule 1 has a membership value of 0.3 and WT
Then hit with a membership value of 0.6, A of rule 2
With a membership value of 0.7 for T, a membership value of 0.4 for WT.
【0032】各ルールで得られたメンバーシップ値の小
さい方の値を成立度として選択し、ルール1では結論部
のKTのメンバーシップ関数の0.3より下方の面積を
求め、ルール2では結論部のKTのメンバーシップ関数
の0.4より下方の面積を求めて各面積を図中矢印の如
く重ね合わせ、その重心を求めると+15℃が得られ
る。これによってKT=+15℃が決定される。即ち、
外気温度ATが+23℃で離氷用水温度WTが+6℃の
時は離氷完了検知温度KTは+15℃となる。The smaller one of the membership values obtained by each rule is selected as the degree of success, and in Rule 1, the area below 0.3 of the membership function of KT in the conclusion part is obtained, and in Rule 2, the conclusion is obtained. When the area below 0.4 of the KT membership function of the section is obtained and the areas are overlapped as indicated by the arrows in the figure and the center of gravity thereof is obtained, + 15 ° C is obtained. This determines KT = + 15 ° C. That is,
When the outside air temperature AT is + 23 ° C and the deicing water temperature WT is + 6 ° C, the deicing completion detection temperature KT is + 15 ° C.
【0033】ここで、外気温度ATがかなり低く(N
B)、離氷用水の温度WTがかなり高い時(PB)は、
表1からも明らかなように、離氷完了検知温度KTをか
なり低くする(NB)方向に制御するので、従来のよう
に氷塊の落下終了からホットガスの終了まで不必要に長
く無駄な時間が取られることも解消できる。即ち、A
T、WTの変動に応じてKTの高さを調節するので、状
況に応じて適正な離氷完了検知温度を決定することがで
きるようになる。Here, the outside air temperature AT is considerably low (N
B), when the temperature WT of the deicing water is considerably high (PB),
As is clear from Table 1, since the ice removal completion detection temperature KT is controlled to a direction (NB) that is considerably lowered, an unnecessarily long and useless time from the end of the ice block drop to the end of the hot gas as in the conventional case. It can also be taken away. That is, A
Since the height of KT is adjusted according to the fluctuations of T and WT, it becomes possible to determine an appropriate ice-free completion detection temperature according to the situation.
【0034】尚、前述のファジイ制御において、実施例
では凝縮器9の冷媒出口側温度と散水器20の温度から
外気温度及び離氷用水の温度を直接的に検出したが、そ
れに限らず、冷却パイプ6の冷媒出口側温度の推移が、
外気温度及び離氷用水の温度によって変化することに着
目し、出口温度センサー26からの出力の推移時間から
外気温度及び離氷用水の温度を間接的に検知しても良
い。それによればセンサーを1個にすることができる。
また、実施例では2個のルールを用いて推論を行った
が、全て若しくは更に多くのルールを用いて推論を行え
ば、あらゆる状況に応じて的確な推論結果が得られるこ
とは云うまでもない。In the fuzzy control described above, in the embodiment, the outside air temperature and the deicing water temperature are directly detected from the refrigerant outlet side temperature of the condenser 9 and the temperature of the sprinkler 20, but the present invention is not limited to this. The transition of the temperature on the refrigerant outlet side of the pipe 6
Paying attention to the fact that it changes depending on the outside air temperature and the temperature of the ice-free water, the outside air temperature and the temperature of the ice-free water may be indirectly detected from the transition time of the output from the outlet temperature sensor 26. According to this, one sensor can be used.
In addition, in the embodiment, the inference is performed using two rules, but it goes without saying that if inference is performed using all or more rules, an accurate inference result can be obtained according to any situation. .
【0035】[0035]
【発明の効果】以上の如く本発明によれば、外気温度と
供給される離氷用水の温度によって変化する値を入力変
数としてファジイ推論により離氷完了検知温度を決定す
るので、外気温度や離氷用水の温度の変動に対して的確
な離氷完了検知温度を設定でき、それによって無駄な離
氷時間を費やさずに製氷能力の向上を図ることができる
と共に、確実な離氷を達成することができるようにな
る。As described above, according to the present invention, the defrosting completion detection temperature is determined by fuzzy inference using a value that changes depending on the outside air temperature and the temperature of the supplied deicing water as an input variable. It is possible to set an accurate deicing completion detection temperature for fluctuations in the temperature of ice water, thereby improving the ice making capacity without wasting defrosting time and achieving reliable deicing. Will be able to.
【0036】特に、実験的に決定されたル−ルに基づい
て制御されるので、定性的な関係だけを決定すれば良
く、数式モデルが不要となる利点もある。In particular, since the control is performed based on the experimentally determined rule, only the qualitative relationship needs to be determined, and there is an advantage that the mathematical model is unnecessary.
【図1】制御装置のブロック図である。FIG. 1 is a block diagram of a control device.
【図2】製氷機のシステム構成図である。FIG. 2 is a system configuration diagram of an ice making machine.
【図3】製氷機の要部斜視図である。FIG. 3 is a perspective view of an essential part of the ice making machine.
【図4】入力変数ATのメンバシップ関数を表す図であ
る。FIG. 4 is a diagram showing a membership function of an input variable AT.
【図5】入力変数WTのメンバシップ関数を表す図であ
る。FIG. 5 is a diagram showing a membership function of an input variable WT.
【図6】出力変数KTのメンバシップ関数を表す図であ
る。FIG. 6 is a diagram showing a membership function of an output variable KT.
【図7】ファジイ推論の手法を説明する図である。FIG. 7 is a diagram illustrating a fuzzy inference method.
【図8】低外気温の場合の温度ETの時間推移を示す図
である。FIG. 8 is a diagram showing a time transition of a temperature ET in the case of low outside air temperature.
【図9】中外気温の場合の温度ETの時間推移を示す図
である。FIG. 9 is a diagram showing a time transition of a temperature ET in the case of a medium outside temperature.
【図10】高外気温の場合の温度ETの時間推移を示す
図である。FIG. 10 is a diagram showing a time transition of a temperature ET in the case of a high outside air temperature.
1 製氷機 3 製氷部材 6 冷却パイプ 7 電動圧縮機 9 凝縮器 11 バイパス管 12 ホットガス電磁弁 13 製氷用水散水器 17 循環ポンプ 20 離氷用水散水器 25 制御部 26 出口温度センサー 28 外気温度センサー 29 水温センサー 1 ice machine 3 ice making members 6 cooling pipes 7 Electric compressor 9 condenser 11 Bypass pipe 12 Hot gas solenoid valve 13 Water sprinkler for ice making 17 Circulation pump 20 Water sprinkler for ice removal 25 Control unit 26 Outlet temperature sensor 28 Outside temperature sensor 29 Water temperature sensor
Claims (2)
と、離氷用水を供給する給水手段と、前記製氷手段によ
り氷塊を形成する製氷行程と前記離氷手段により前記製
氷手段から氷塊を離脱させる離氷行程とを交互に繰り返
し実行すると共に、前記離氷行程中に前記給水手段によ
り前記製氷手段に離氷用水を供給し、前記冷却器の温度
が所定の離氷完了検知温度に到達したら前記離氷行程を
終了する制御手段とを備え、該制御手段における前記離
氷完了検知温度の決定に際して、外気温度に基づき変化
する値と、離氷用水の温度に基づき変化する値を入力変
数としたファジイ推論を用いることを特徴とする製氷
機。1. An ice making means provided with a cooler, an ice removing means, a water supply means for supplying water for ice removing, an ice making step for forming ice blocks by the ice making means, and an ice making block from the ice making means by the ice removing means. The ice removing process for releasing the ice is alternately repeated, and during the ice removing process, water for ice removing is supplied to the ice making means by the water supply means, and the temperature of the cooler reaches a predetermined ice removal completion detection temperature. And a control means for terminating the deicing process when the temperature reaches the defrosting completion temperature. When determining the deicing completion detection temperature in the control means, a value that changes based on the outside air temperature and a value that changes based on the temperature of the deicing water are input. An ice machine characterized by using fuzzy inference as variables.
水の温度を第2の入力変数として複数の推論規則の両入
力変数に対応するメンバ−シップ関数から両入力変数に
応じたメンバ−シップ値を求めた後、当該推論規則の出
力変数をファジイ合成し、その重心をとることにより推
論結果を得て、これを離氷完了検知温度の決定に利用す
ることを特徴とするファジイ推論による製氷機の制御方
法。2. A member corresponding to both input variables of a plurality of inference rules, wherein the outside air temperature is used as a first input variable and the ice-free water temperature is used as a second input variable. -Fuzzy inference characterized in that after the ship value is obtained, the output variables of the inference rule are fuzzy combined and the center of gravity thereof is taken to obtain an inference result, which is used to determine the ice-free completion detection temperature. Control method for ice machines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19005191A JPH0534043A (en) | 1991-07-30 | 1991-07-30 | Ice making machine and method for controlling ice making machine with fuzzy inference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19005191A JPH0534043A (en) | 1991-07-30 | 1991-07-30 | Ice making machine and method for controlling ice making machine with fuzzy inference |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0534043A true JPH0534043A (en) | 1993-02-09 |
Family
ID=16251529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19005191A Pending JPH0534043A (en) | 1991-07-30 | 1991-07-30 | Ice making machine and method for controlling ice making machine with fuzzy inference |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0534043A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007255722A (en) * | 2006-03-20 | 2007-10-04 | Sanyo Electric Co Ltd | Reverse cell type ice maker |
JP2009250486A (en) * | 2008-04-03 | 2009-10-29 | Hoshizaki Electric Co Ltd | Ice-making machine |
EP2455690A3 (en) * | 2010-11-18 | 2013-03-20 | Manitowoc Foodservice Companies, LLC | Water inlet system for harvesting ice cubes in an ice making machine |
EP3742086A4 (en) * | 2018-01-15 | 2021-03-10 | Daikin Industries, Ltd. | Ice making system |
US11747071B2 (en) | 2021-10-07 | 2023-09-05 | Haier Us Appliance Solutions, Inc. | Systems and methods for detecting and monitoring ice formation within an ice maker |
-
1991
- 1991-07-30 JP JP19005191A patent/JPH0534043A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007255722A (en) * | 2006-03-20 | 2007-10-04 | Sanyo Electric Co Ltd | Reverse cell type ice maker |
JP2009250486A (en) * | 2008-04-03 | 2009-10-29 | Hoshizaki Electric Co Ltd | Ice-making machine |
EP2455690A3 (en) * | 2010-11-18 | 2013-03-20 | Manitowoc Foodservice Companies, LLC | Water inlet system for harvesting ice cubes in an ice making machine |
EP3742086A4 (en) * | 2018-01-15 | 2021-03-10 | Daikin Industries, Ltd. | Ice making system |
US10995975B2 (en) | 2018-01-15 | 2021-05-04 | Daikin Industries, Ltd. | Ice making system |
US11747071B2 (en) | 2021-10-07 | 2023-09-05 | Haier Us Appliance Solutions, Inc. | Systems and methods for detecting and monitoring ice formation within an ice maker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5008675B2 (en) | Automatic ice maker and its operating method | |
US4366679A (en) | Evaporator plate for ice cube making apparatus | |
EP2261582B1 (en) | Ice making unit for flow down type ice maker | |
US20050155360A1 (en) | Multiple ice making decision method and operation method for automatic ice making machine | |
JPH0534043A (en) | Ice making machine and method for controlling ice making machine with fuzzy inference | |
JP2005180825A (en) | Automatic ice maker | |
JPH0510641A (en) | Ice making machine and method for controlling ice making machine with fuzzy inference | |
EP1500886B1 (en) | Method for operating an automatic ice-making machine | |
JPH0510642A (en) | Ice making machine and method for controlling ice making machine with fuzzy inference | |
JP4972507B2 (en) | Automatic ice machine | |
JPH0510640A (en) | Ice making machine and method for controlling ice making machine with fuzzy inference | |
JP2006090691A (en) | Operating method for flow down type ice maker | |
JP2002098453A (en) | Method for dealing with abnormality of automatic ice maker | |
JP2020118321A (en) | Flow-down type ice making machine | |
JP6954808B2 (en) | De-icing control method for ice makers | |
JP3213147B2 (en) | Refrigerant circulation circuit for ice machines, etc. | |
WO2022077347A1 (en) | Flow rate control method for an ice making assembly | |
JPH0643658Y2 (en) | Ice machine | |
JP4518875B2 (en) | Deicing operation method of automatic ice maker | |
KR102213188B1 (en) | Ice maker | |
JP3000907B2 (en) | Operation control method of ice storage type chiller | |
JPH11248321A (en) | Operation control method for automatic ice maker | |
JP4846547B2 (en) | How to operate an automatic ice machine | |
JPH0419424Y2 (en) | ||
JPH0243025Y2 (en) |