JPH0534011B2 - - Google Patents

Info

Publication number
JPH0534011B2
JPH0534011B2 JP60230326A JP23032685A JPH0534011B2 JP H0534011 B2 JPH0534011 B2 JP H0534011B2 JP 60230326 A JP60230326 A JP 60230326A JP 23032685 A JP23032685 A JP 23032685A JP H0534011 B2 JPH0534011 B2 JP H0534011B2
Authority
JP
Japan
Prior art keywords
formula
acoustic lens
ultrasonic probe
crosslinking agent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60230326A
Other languages
Japanese (ja)
Other versions
JPS6290139A (en
Inventor
Fumihiro Namiki
Shiro Takeda
Nobushiro Shimura
Noboru Shimamoto
Yasuhisa Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Fujitsu Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Fujitsu Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP60230326A priority Critical patent/JPS6290139A/en
Publication of JPS6290139A publication Critical patent/JPS6290139A/en
Publication of JPH0534011B2 publication Critical patent/JPH0534011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波診断装置に用いる探触子に係
り、特に表面に凸状音響レンズを形成した構造の
超音波探触子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a probe used in an ultrasonic diagnostic apparatus, and more particularly to an improvement in an ultrasonic probe having a structure in which a convex acoustic lens is formed on the surface.

〔従来技術〕[Prior art]

超音波ビームを集束するため、また生体との密
着性を向上させるために、従来より、超音波探触
子の表面に凸状音響レンズを形成する手法がとら
れて来た。
In order to focus the ultrasonic beam and to improve the close contact with the living body, a method of forming a convex acoustic lens on the surface of the ultrasonic probe has been conventionally used.

音響レンズとしては、シリコーンゴムにTiO2
などの無機粉末を混合し、音響インピーダンスを
1.4〜1.6(×106Kg/m2.s)、音速を生体中よりも
遅い、1000(m/s)前後になるように調節した
ものを使用していた。
As an acoustic lens, TiO 2 is used on silicone rubber.
By mixing inorganic powders such as
1.4 to 1.6 (×10 6 Kg/m 2 .s), and the velocity of sound was adjusted to around 1000 (m/s), which is slower than that in a living body.

第2図にPDMS(Polydimethylsiloxanes)系
のシリコーンゴムにTiO2粉末を混合した場合し
た場合の混合比に対する密度ρ(g/cm3)音速C
(m/s)、音響インピーダンスρC(×106Kg/m2
s)の変化の様子を示す。混合比が増すに従つて
密度ρは大きくなつていくが逆に音速Cは小さく
なつていく。このためρCの増加率は小さい。上
記の所望の音響インピーダンスを得る為には、第
2図cより、80〜160重量部のTiO2粉末を混合す
る必要がある。
Figure 2 shows the density ρ (g/cm 3 ) and sound velocity C as a function of the mixing ratio when TiO 2 powder is mixed with PDMS (Polydimethylsiloxanes) silicone rubber.
(m/s), acoustic impedance ρC (×10 6 Kg/m 2 .
The change in s) is shown below. As the mixing ratio increases, the density ρ increases, but conversely, the sound speed C decreases. Therefore, the rate of increase in ρC is small. In order to obtain the above-mentioned desired acoustic impedance, it is necessary to mix 80 to 160 parts by weight of TiO 2 powder, as shown in FIG. 2c.

第3図にTiO2粉末の混合比に対する、3.5MHz
における音波の減衰率γ(dB/mm)の関係を示
す。80〜160重量部TiO2粉末を混合したもので
は、γは1.5〜3.5(dB/mm)となり、非常に大き
い。このような音響レンズを用いると、減衰のた
めに超音波探触子の感度が低下するという問題点
がある。
Figure 3 shows the mixing ratio of TiO 2 powder at 3.5MHz.
This shows the relationship between the attenuation rate γ (dB/mm) of sound waves in . When 80 to 160 parts by weight of TiO 2 powder is mixed, γ is 1.5 to 3.5 (dB/mm), which is very large. When such an acoustic lens is used, there is a problem in that the sensitivity of the ultrasound probe is reduced due to attenuation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、音響インピーダンスが生体に
ほぼ等しく、音速が生体よりも小さく、なおかつ
音波の減衰率の小さい凸状音響レンズを用いるこ
とにより、超音波探触子の分解能及び感度を向上
させることにある。
An object of the present invention is to improve the resolution and sensitivity of an ultrasound probe by using a convex acoustic lens whose acoustic impedance is approximately equal to that of a living body, whose sound velocity is lower than that of a living body, and whose attenuation rate of sound waves is small. It is in.

〔発明の要点〕[Key points of the invention]

本発明は、レンズ材での音波の減衰を小さくす
る為に、無機粉体の混合量が少なくても、所望の
音響インピーダンスが得られるように、無機粉体
を混合する前のシリコーンゴムを密度を大きくす
るようにしたものである。
In order to reduce the attenuation of sound waves in the lens material, the silicone rubber before mixing inorganic powder is It is designed to increase the size of .

このような密度の大きなシリコーンゴムとして
γ−トリフルオロプロピル基を含有するオルガノ
ポリシロキサンを使用した。
Organopolysiloxane containing a γ-trifluoropropyl group was used as such a high-density silicone rubber.

特許公開昭56−168547には、生体中よりも音速
度の遅いフツ素系シリコーンゴムを音響レンズと
して使用した例が記載されている。このフツ素系
シリコーンゴムは、従来のシリコーンゴムと比較
して、減衰量が大きいことを利用し、多重エコー
を除去することを特徴としているが、」本発明の
シリコーンゴムでは上記γ−トリフルオロプロピ
ル基の量を調節することにより、粉体の入つてい
ない時の密度が従来のポリジメチルシロキサン系
シリコーンゴムが1.0(g/cm3)前後なのに対して
0.8〜2.3(g/cm3)の範囲で密度を自由に設定で
きる。
Patent Publication No. 56-168547 describes an example in which fluorine-based silicone rubber, which has a lower sound velocity than in living bodies, is used as an acoustic lens. This fluorine-based silicone rubber is characterized by its large attenuation compared to conventional silicone rubber, which eliminates multiple echoes. By adjusting the amount of propyl groups, the density without powder is around 1.0 (g/cm 3 ) for conventional polydimethylsiloxane silicone rubber.
The density can be freely set within the range of 0.8 to 2.3 (g/cm 3 ).

但し、一般式RaSiO(4-a)/2で表されるジオルガ
ノポリシロキサンのRがγ−トリフルオロプロピ
ル基、および、ビニル基等の硬化に必要な反応性
有機基を必要量含有する置換もしくは非置換の1
価炭化水素基であり、aは1.9〜2.1であるジオル
ガノポリシロキサンを用いるが、ここで、Rは10
〜50mol%がγ−トリフルオロプロピル基であ
り、残りがメチル基であること望ましい。
However, R of the diorganopolysiloxane represented by the general formula RaSiO (4-a)/2 is substituted with a γ-trifluoropropyl group and a reactive organic group necessary for curing, such as a vinyl group, in the required amount. or unsubstituted 1
Diorganopolysiloxane is used which is a valent hydrocarbon group and a is 1.9 to 2.1, where R is 10
It is desirable that ~50 mol% be γ-trifluoropropyl groups and the remainder be methyl groups.

何故なら、γ−トリフルオロプロピル基の量が
10mol%以下では密度増加の効果が少なく、音響
インピーダンスを人体と略同一の値とするには多
量の無機粉末の添加が必要となつてしまうので、
減衰量を減少させる効果が得られない。また、γ
−トリフルオロプロピル基の量が50mol%以上で
はシリコーンゴム自体の減衰が大きくなるので、
やはり減衰量の減少がなされなくなつてしまう。
This is because the amount of γ-trifluoropropyl group is
If it is less than 10 mol%, the effect of increasing density will be small, and it will be necessary to add a large amount of inorganic powder to make the acoustic impedance approximately the same value as the human body.
The effect of reducing the amount of attenuation cannot be obtained. Also, γ
-If the amount of trifluoropropyl groups is 50 mol% or more, the attenuation of the silicone rubber itself will increase, so
After all, the attenuation amount is no longer reduced.

また、上記組成のシリコーンゴムに添加する無
機粉体としては酸化チタンあるいはアルミナが望
ましい。これは他の粉末では減衰が著しいためで
ある。
Further, as the inorganic powder added to the silicone rubber having the above composition, titanium oxide or alumina is preferable. This is because other powders exhibit significant attenuation.

このようなシリコーンゴムに無機粉体を混合し
て、音響インピーダンス、音速を所望の値に調節
した音響レンズでは、粉体の量は従来の半分以下
となるので、粘度を少なくすることができる。こ
のため探触子に直接音響レンズを形成することが
可能となり、加工性の点でも有利という副次的な
効果も奏する。
In an acoustic lens in which the acoustic impedance and speed of sound are adjusted to desired values by mixing inorganic powder with such silicone rubber, the amount of powder is less than half of the conventional amount, so the viscosity can be reduced. Therefore, it becomes possible to form an acoustic lens directly on the probe, which also has the secondary effect of being advantageous in terms of processability.

更に従来は組成物の粘度が高かつたため音響レ
ンズを形成してから探触子に接着していたが、こ
の方法では接着時の位置精度を高めるためにレン
ズとして必要な厚さ以上に厚いレンズを形成する
必要があつた。
Furthermore, in the past, the viscosity of the composition was high, so an acoustic lens was formed and then bonded to the probe, but this method requires a lens that is thicker than necessary for the lens in order to improve positional accuracy during bonding. It was necessary to form a

本願発明ではそのような必要はないためレンズ
として必要最小限の厚みで良く、このため組成物
の減衰率が従来の2/3程度に減少することと併せ、
従来の音響レンズより減衰量が大幅に小さい音響
レンズを得ることができる。
In the present invention, there is no such need, so the minimum thickness required for the lens is sufficient, and the attenuation rate of the composition is reduced to about 2/3 of that of the conventional lens.
It is possible to obtain an acoustic lens with significantly smaller attenuation than conventional acoustic lenses.

〔発明の実施例〕[Embodiments of the invention]

γ−トリフルオロプロピル基を35モルパーセン
ト含むジオルガノポリシロキサンに、酸化チタン
粉末を50重量部混合したものでは、音響インピー
ダンス1.6×106Kg/m2.s、音速980m/sであ
り、このような音響インピーダンスと音速の値を
持つ従来のレンズ材と3.5MHzにおける減衰率を
比較すると、第1図に示すように20℃において
は、本発明のレンズ材は従来の70%程度の減衰率
しかないことがわかる。さらに、生体に直接、接
触させて用いるレンズ材は、実際の使用温度が体
温の35℃前後になる。本発明のレンズ材は温度の
上昇にともなつて減衰率が小さくなる特性があ
り、第1図より35℃においては、従来の60%程度
の減衰率になる。
A diorganopolysiloxane containing 35 mole percent of γ-trifluoropropyl groups mixed with 50 parts by weight of titanium oxide powder has an acoustic impedance of 1.6×10 6 Kg/m 2 . s, sound speed is 980 m/s, and when comparing the attenuation rate at 3.5 MHz with a conventional lens material with such values of acoustic impedance and sound speed, as shown in Figure 1, at 20°C, the lens of the present invention It can be seen that the material has a damping rate of only about 70% of the conventional material. Furthermore, for lens materials that are used in direct contact with living bodies, the actual operating temperature is around 35°C, which is the body temperature. The lens material of the present invention has a characteristic that the attenuation rate decreases as the temperature rises, and as shown in Fig. 1, at 35°C, the attenuation rate is about 60% of the conventional lens material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、音響インピーダンスが生体
に、ほぼ等しくなおかつ凸レンズを形成するのに
十分な、小さな音速を有し、使用温度において音
波の減衰の小さい音響レンズが得られるので、こ
のような音響レンズを音波放射面に形成した超音
波トランスデユーサは、時間分解能、方位分解
能、音波の送受信効率の良いものとなる。
According to the present invention, it is possible to obtain an acoustic lens whose acoustic impedance is approximately equal to that of a living body, which has a sufficiently low sound velocity to form a convex lens, and which has small attenuation of sound waves at the operating temperature. An ultrasonic transducer in which the waveform is formed on the sound wave emission surface has good temporal resolution, azimuth resolution, and sound wave transmission/reception efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例と本発明との減衰率を各温度で
測定した結果を示すグラフ、第2図はTiO2粉末
の混合量に関する、密度ρ、音速C、及び音響イ
ンピーダンスρCの変化を夫々示すグラフ、第3
図はTiO2粉末の混合量に関する従来例の減衰率
の変化を示すグラフである。
Figure 1 is a graph showing the results of measuring the attenuation rates of the conventional example and the present invention at various temperatures, and Figure 2 is a graph showing the changes in density ρ, sound velocity C, and acoustic impedance ρC with respect to the amount of TiO 2 powder mixed. Graph shown, 3rd
The figure is a graph showing changes in the attenuation rate of the conventional example with respect to the amount of TiO 2 powder mixed.

Claims (1)

【特許請求の範囲】 1 表面に凸状音響レンズを有する超音波探触子
において、該音響レンズが ○イ 一般式【式】(ここでRは10〜 50mol%のγ−トリフルオロプロピル基、及
び、ビニル基等の硬化に必要な反応性有機基を
必要量含有する置換もしくは非置換の1価炭化
水素基であり、aは1.9〜2.1である)で表わさ
れるジオルガノポリシロキサン、100重量部。 ○ロ 平均粒子径が0.1〜1.0μmである酸化チタン
および又はアルミナ粉末10〜200重量部。 ○ハ 架橋剤および又は硬化触媒。 で表記された組成物より形成したことを特徴とす
る超音波探触子。 2 上記○ハの架橋剤が一般式【式】 (ここでR′は置換または非置換の1価炭化水素基
であり、b=1.0〜2.1、c=0.001〜1.0、b+c
=1.001〜3である。) で表わされるオルガノハイドロジエンポリシロキ
サン0.1〜10重量部であり、硬化触媒が白金系化
合物である組成物から得られる音響レンズを有す
る特許請求の範囲第1項に記載の超音波探触子。 3 上記○イの【式】で表わされるオルガ ノポリシロキサンが25℃における粘度が100〜
200000CPである液状物であり、上記○ハの架橋剤
が一般式【式】(ここでR′は置換ま たは非置換の1価炭化水素基であり、b=1.0〜
2.1、c=0.001〜1.0、b+c=1.001〜3であ
る。)で表わされ、25℃における粘度が1〜
5000CPであるオルガノハイドロジエンポリシロ
キサンで構成される組成物より形成された音響レ
ンズを有する特許請求の範囲第1項に記載の超音
波探触子。
[Claims] 1. An ultrasonic probe having a convex acoustic lens on its surface, wherein the acoustic lens has the general formula [Formula] (where R is 10 to 50 mol% of a γ-trifluoropropyl group, and a diorganopolysiloxane (substituted or unsubstituted monovalent hydrocarbon group containing the required amount of reactive organic groups necessary for curing of vinyl groups, etc., where a is 1.9 to 2.1), 100% by weight Department. ○B 10 to 200 parts by weight of titanium oxide and/or alumina powder having an average particle diameter of 0.1 to 1.0 μm. ○C Crosslinking agent and/or curing catalyst. An ultrasonic probe characterized by being formed from a composition represented by. 2 The crosslinking agent in ○C above has the general formula [Formula]
=1.001~3. 2. The ultrasonic probe according to claim 1, comprising an acoustic lens obtained from a composition containing 0.1 to 10 parts by weight of an organohydrodiene polysiloxane represented by the following formula and whose curing catalyst is a platinum-based compound. 3 The organopolysiloxane represented by the formula in ○A above has a viscosity of 100 to 25℃ at 25℃.
200000CP, and the crosslinking agent of ○C above has the general formula [Formula] (where R' is a substituted or unsubstituted monovalent hydrocarbon group, and b = 1.0 to
2.1, c=0.001-1.0, b+c=1.001-3. ), and the viscosity at 25℃ is 1~
The ultrasonic probe according to claim 1, having an acoustic lens formed from a composition composed of organohydrodiene polysiloxane 5000CP.
JP60230326A 1985-10-16 1985-10-16 Ultrasonic probe Granted JPS6290139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230326A JPS6290139A (en) 1985-10-16 1985-10-16 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230326A JPS6290139A (en) 1985-10-16 1985-10-16 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS6290139A JPS6290139A (en) 1987-04-24
JPH0534011B2 true JPH0534011B2 (en) 1993-05-21

Family

ID=16906077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230326A Granted JPS6290139A (en) 1985-10-16 1985-10-16 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6290139A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172801B1 (en) 2000-07-13 2009-04-08 Panasonic Corporation Acoustic lens and method of manufacturing the same
JP4734005B2 (en) * 2005-03-25 2011-07-27 株式会社東芝 Ultrasonic probe
US7902294B2 (en) 2008-03-28 2011-03-08 General Electric Company Silicone rubber compositions comprising bismuth oxide and articles made therefrom
JP2016036651A (en) * 2014-08-11 2016-03-22 プレキシオン株式会社 Puncture needle for photoacoustic imaging apparatus and photoacoustic imaging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165096A (en) * 1983-03-10 1984-09-18 株式会社東芝 Acoustic lens
JPS60122999A (en) * 1983-12-08 1985-07-01 株式会社東芝 Acoustic lens unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165096A (en) * 1983-03-10 1984-09-18 株式会社東芝 Acoustic lens
JPS60122999A (en) * 1983-12-08 1985-07-01 株式会社東芝 Acoustic lens unit

Also Published As

Publication number Publication date
JPS6290139A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
Grewe et al. Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications
JPH0457280B2 (en)
JP6573994B2 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe and ultrasonic probe, and acoustic wave measuring device, ultrasonic diagnostic device, photoacoustic wave measuring device and ultrasonic endoscope
JP2011072702A (en) Acoustic lens for ultrasonic probe, and ultrasonic probe
US11524099B2 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
Zhou et al. Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application
JP7162143B2 (en) Acoustic matching layer material, composition for acoustic matching layer material, acoustic matching sheet, acoustic wave probe, acoustic wave measuring device, and method for manufacturing acoustic wave probe
JPH0534011B2 (en)
CN108734051A (en) Ultrasonic sensor and electronic device
JP6697631B2 (en) Resin material for acoustic lens, acoustic lens, acoustic wave probe, acoustic wave measuring device, ultrasonic diagnostic device, photoacoustic wave measuring device and ultrasonic endoscope
CA2338036A1 (en) Ultrasonic probe and method of manufacturing the same
Gururaja Piezoelectric composite materials for ultrasonic transducer applications
JP2002095081A (en) Ultrasonic probe and its manufacturing method and acoustic lens and its manufacturing method
JPS6240495A (en) Sound wave absorbing body
JPH09107594A (en) Ultrasonic device
JP2017012435A (en) Composition for acoustic wave probes, silicone resin for acoustic wave probes using the same, acoustic wave probe, ultrasonic probe, acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic wave measurement device, and ultrasonic endoscope
Itsumi et al. Low acoustic attenuation silicone rubber lens for medical ultrasonic array probe
JPH0140488Y2 (en)
JPS61164544A (en) Acoustic lens for ultrasonic diagnostic apparatus
JPH0772836B2 (en) Method for manufacturing acoustic wave absorber
SU466274A1 (en) Vibration absorption mastic
SU1677621A1 (en) Damping compound for ultrasonic piezoelectric transducers
RU2078340C1 (en) Piezoelectric transformer (bimorph) for ultrasonic diagnostic catheter
CN117417623A (en) Backing layer material, backing layer, preparation method of backing layer and ultrasonic probe
Yamashita et al. Low-attenuation acoustic silicone lens for medical ultrasonic array probes