JPH0533957Y2 - - Google Patents

Info

Publication number
JPH0533957Y2
JPH0533957Y2 JP1599186U JP1599186U JPH0533957Y2 JP H0533957 Y2 JPH0533957 Y2 JP H0533957Y2 JP 1599186 U JP1599186 U JP 1599186U JP 1599186 U JP1599186 U JP 1599186U JP H0533957 Y2 JPH0533957 Y2 JP H0533957Y2
Authority
JP
Japan
Prior art keywords
heat
sensitive resistor
sensitive
humidity
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1599186U
Other languages
Japanese (ja)
Other versions
JPS62128360U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1599186U priority Critical patent/JPH0533957Y2/ja
Priority to DE3751125T priority patent/DE3751125T2/en
Priority to EP87101319A priority patent/EP0232817B1/en
Priority to NZ219136A priority patent/NZ219136A/en
Priority to CA000528880A priority patent/CA1287986C/en
Priority to AU68287/87A priority patent/AU574947B2/en
Priority to US07/010,794 priority patent/US4768378A/en
Priority to KR878700873A priority patent/KR890004076B1/en
Publication of JPS62128360U publication Critical patent/JPS62128360U/ja
Application granted granted Critical
Publication of JPH0533957Y2 publication Critical patent/JPH0533957Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

【考案の詳細な説明】 <技術分野> 本考案は、例えば、電子レンジにおいて加熱さ
れる食品の仕上がりを検出するために使用される
湿度検出装置に関するものである。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a humidity detection device used, for example, to detect the finish of food heated in a microwave oven.

<先行技術> 第18図は湿度検出装置を組込んだ電子レンジ
の斜視図である。図中1はマグネトロン、2は高
圧トランス、3はマグネトロン1および高圧トラ
ンス2等を冷却するための冷却フアンで、これら
は、加熱室4外の本体5に内蔵されている。そし
て、マグネトロン1自体の放熱は加熱室4の室壁
の通孔6から加熱室4内の被加熱物で発生する温
風aと共に排気ダクト7へ排気される。排気ダク
ト7には第19図のように湿度センサー8が配さ
れ、加熱室4内で加熱された被加熱物より発生す
る水蒸気を加熱室4外に排出している。
<Prior Art> FIG. 18 is a perspective view of a microwave oven incorporating a humidity detection device. In the figure, 1 is a magnetron, 2 is a high-voltage transformer, and 3 is a cooling fan for cooling the magnetron 1, high-voltage transformer 2, etc., and these are built in the main body 5 outside the heating chamber 4. The heat radiated from the magnetron 1 itself is exhausted from the through hole 6 in the wall of the heating chamber 4 to the exhaust duct 7 together with the hot air a generated by the object to be heated in the heating chamber 4 . A humidity sensor 8 is disposed in the exhaust duct 7 as shown in FIG. 19, and discharges water vapor generated from the heated object inside the heating chamber 4 to the outside of the heating chamber 4.

湿度センサー8は、自己加熱または加熱熱源に
より加熱される第一感熱抵抗Hと、第一感熱抵抗
Hと並設され雰囲気中の湿度を検出する第二感熱
抵抗Nと、該第二感熱抵抗Nおよび第一感熱抵抗
Hを支持する基板11とを具えている。
The humidity sensor 8 includes a first heat-sensitive resistor H that is self-heated or heated by a heating heat source, a second heat-sensitive resistor N that is arranged in parallel with the first heat-sensitive resistor H and detects the humidity in the atmosphere, and the second heat-sensitive resistor N. and a substrate 11 supporting the first heat-sensitive resistor H.

第一感熱抵抗Hおよび第二感熱抵抗Nは第21
図のように電気的に結線される。すなわち、演算
増幅器OP1、トランジスタQ、抵抗RSおよび基
準電源Vrefにより定電流回路を構成し、第一感
熱抵抗Hに定電流Io=Vref/RSを供給し、自己
加熱させて温度を水の沸点(100℃)以上の温度
にしておくことにより湿度検知効果をもたせる。
The first heat-sensitive resistance H and the second heat-sensitive resistance N are the 21st
Connect electrically as shown in the figure. That is, a constant current circuit is configured by an operational amplifier OP1, a transistor Q, a resistor RS, and a reference power supply Vref, and a constant current Io=Vref/RS is supplied to the first heat-sensitive resistor H to cause it to self-heat and lower its temperature to the boiling point of water ( By keeping the temperature above 100℃, it has a humidity detection effect.

半導体制御抵抗(トランジスタ)Qは演算増幅
器OP1の出力電流増幅用である。第二感熱抵抗
Nは周囲温度検出用の感熱抵抗であつて、第二感
熱抵抗Nを第一感熱抵抗Hの出力と演算増幅器
OP2の反転入力に挿入している。演算増幅器OP
2は湿度検出増幅するためのものである。Rfは
演算増幅器OP2の利得を決める帰還抵抗、RBは
第二感熱抵抗に流れる電流をバイパスするための
抵抗である。
The semiconductor control resistor (transistor) Q is for amplifying the output current of the operational amplifier OP1. The second heat sensitive resistor N is a heat sensitive resistor for detecting ambient temperature, and the second heat sensitive resistor N is connected to the output of the first heat sensitive resistor H and an operational amplifier.
It is inserted into the inverting input of OP2. operational amplifier OP
2 is for detecting and amplifying humidity. Rf is a feedback resistor that determines the gain of the operational amplifier OP2, and RB is a resistor that bypasses the current flowing through the second heat-sensitive resistor.

第22図は、第21図の回路構成を簡単に記載
した湿度検知回路図である。
FIG. 22 is a humidity detection circuit diagram simply describing the circuit configuration of FIG. 21.

かかる構成においては、出力電圧Voutは、 Vout=RH・Io・Rf/−(1−aH・Io2・RH/hm・S)
・RN……(1) で導出される。
In this configuration, the output voltage Vout is Vout=RH・Io・Rf/−(1−aH・Io 2・RH/hm・S)
・RN...Derived from (1).

ただし、 RH:第一感熱抵抗Hの0℃の時の抵抗 αH:第一感熱抵抗Hの温度係数 Io:定電流源 RN:第二感熱抵抗Nの0℃の時の抵抗 Rf:演算増幅器の帰還抵抗 S:第一感熱抵抗Hの表面積 hm:熱伝達係数 乾燥状態ではhmは一定のため、出力Voutは負
の一定値となる。調理が経過し、発生した水蒸気
によりhmが増大するとVoutの絶対値は小さくな
る。この出力電圧Voutから食品の仕切り具合を
検出して加熱時間を制御していた。
However, RH: Resistance of the first heat-sensitive resistor H at 0°C αH: Temperature coefficient Io of the first heat-sensitive resistor H: Constant current source RN: Resistance of the second heat-sensitive resistor N at 0°C Rf: Operational amplifier's resistance Feedback resistor S: surface area of first heat-sensitive resistor H hm: heat transfer coefficient Since hm is constant in a dry state, the output Vout is a constant negative value. As cooking progresses and hm increases due to the steam generated, the absolute value of Vout becomes smaller. The heating time was controlled by detecting the degree of partitioning of the food from this output voltage Vout.

しかし、第20図のような従来の湿度センサー
8では、蒸気を含んだ空気が第23図のように第
一、第二感熱抵抗にむらに当たり、温度むらA
1,A2が生じ、また風速の変化によつてもhm
が変化するため、正しく湿度を検出することがむ
ずかしかつた。
However, in the conventional humidity sensor 8 as shown in FIG. 20, air containing steam unevenly hits the first and second heat-sensitive resistors as shown in FIG.
1, A2 occurs, and also due to changes in wind speed, hm
It was difficult to accurately detect humidity because the humidity changed.

また、電子レンジの供給電圧が変化すると、冷
却フアン3の回転数が変わり、排気風の風量aも
変化する。例えば、電子レンジで調理中にクーラ
ーの電源のON−OFF、他の機器の電源ON−
OFF等により電子レンジの供給電圧変化は生じ
る。かかる場合、湿度センサー8を用いて調理を
行なつていた場合には第一感熱抵抗の温度が変わ
る。
Moreover, when the supply voltage of the microwave oven changes, the rotation speed of the cooling fan 3 changes, and the air volume a of the exhaust air also changes. For example, while cooking in the microwave, turn the cooler on and off, turn on other devices, etc.
The supply voltage of the microwave oven changes due to turning off, etc. In such a case, if the humidity sensor 8 is used for cooking, the temperature of the first heat-sensitive resistor changes.

電子レンジの供給電圧が上昇した場合には第一
感熱抵抗4の温度が低下する。排気風の風速aが
一定であれば、第一感熱抵抗Hの温度の低下は排
気風aに含まれている水蒸気量の変化ととらえる
ことができるが、排気風aの風速が変動する場合
には排気風aの風速変化が水蒸気量の変化かが判
別つかない状態となる。また、そのために、湿度
センサーからの出力信号が、第24図のように揺
とうBを起こし、正確な計測が困難であつた。
When the supply voltage of the microwave oven increases, the temperature of the first heat-sensitive resistor 4 decreases. If the wind speed a of the exhaust air is constant, a decrease in the temperature of the first heat-sensitive resistor H can be interpreted as a change in the amount of water vapor contained in the exhaust air a, but if the wind speed of the exhaust air a fluctuates, In this case, it is difficult to determine whether a change in the wind speed of the exhaust air a is a change in the amount of water vapor. Moreover, for this reason, the output signal from the humidity sensor fluctuates as shown in FIG. 24, making accurate measurement difficult.

<目的> 本考案は、上記に鑑み、感熱抵抗に当たる風速
を制御することにより正確な湿度検出を可能とす
る湿度検出装置の提供を目的としている。
<Purpose> In view of the above, an object of the present invention is to provide a humidity detection device that enables accurate humidity detection by controlling the wind speed that hits the heat-sensitive resistor.

<実施例> 以下、本考案の実施例を図面に基づいて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本考案の第一実施例を示すもので、本
考案に係る湿度検出装置は、第19図に示す電子
レンジの排気ダクト7としての通風路の雰囲気中
の湿度を検出する湿度センサー8が設けられ、該
湿度センサー8は、自己加熱または加熱熱源によ
り加熱される第一感熱抵抗Hと、第一感熱抵抗H
を並設され雰囲気中の湿度を検出する第二感熱抵
抗Nと、該第二感熱抵抗および第一感熱抵抗Hと
支持する基板11と、前記第一感熱抵抗Hおよび
第二感熱抵抗Nと包囲する下面開放の直方体状整
流箱12と、該整流箱12の通風路送風方向と直
交する前対向板12Aに形成された角形の風量制
御用流入口13と、前記整流箱12の通風路送風
方向と直交する後対向板12Bに形成された角形
の風量制御用流出口14とを具えて成るものであ
る。
FIG. 1 shows a first embodiment of the present invention, and the humidity detection device according to the present invention is a humidity sensor that detects the humidity in the atmosphere of an air passage as an exhaust duct 7 of a microwave oven shown in FIG. 8 is provided, and the humidity sensor 8 includes a first heat-sensitive resistor H heated by self-heating or a heating heat source, and a first heat-sensitive resistor H
a second heat-sensitive resistor N arranged in parallel to detect humidity in the atmosphere; a substrate 11 supporting the second heat-sensitive resistor and the first heat-sensitive resistor H; and a substrate 11 surrounding the first heat-sensitive resistor H and the second heat-sensitive resistor N. A rectangular parallelepiped rectifier box 12 with an open bottom surface, a rectangular air volume control inlet 13 formed on the front facing plate 12A perpendicular to the airflow direction of the airflow path of the rectification box 12, and and a rectangular air volume control outlet 14 formed in the rear facing plate 12B orthogonal to the rear facing plate 12B.

上記構成において、排気ダクト7を通つて整流
箱12内に入れられた風Cが、第一感熱抵抗およ
び第二感熱抵抗Nに当たる。例えば、雰囲気温度
20℃中で、第2図のように50℃の水蒸気を含む排
気風を感熱抵抗H,Nの感熱部9,10にあてる
と、整流箱12がない場合、排気風Cの流速が強
く、整流がなされていないために第21図のよう
に感熱抵抗の表面上で、排気風の当たり方に強弱
が生じ、温度むらA1,A2が発生する。したが
つて、排気風の温度に対する応答速度にも、むら
を生じ、これが第22図のような揺とうの主要と
なる。
In the above configuration, the wind C introduced into the rectifier box 12 through the exhaust duct 7 hits the first heat-sensitive resistor and the second heat-sensitive resistor N. For example, the ambient temperature
When the exhaust air containing water vapor at 50°C is applied to the heat-sensitive parts 9 and 10 of the heat-sensitive resistors H and N at 20°C as shown in Fig. 2, the flow velocity of the exhaust air C will be strong if there is no rectifier box 12. Because the flow is not rectified, the exhaust air hits the surface of the heat-sensitive resistor with varying degrees of strength, resulting in temperature unevenness A1 and A2, as shown in FIG. Therefore, the response speed to the temperature of the exhaust air also becomes uneven, and this is the main cause of fluctuations as shown in FIG. 22.

しかし、排気風を整流箱12内へ入れ、排気風
の流速をおとし、かつ整流すると、第3図のよう
に感熱抵抗の表面全体をなめるように排気風の当
たり方が均一になり、感熱抵抗H,Nの表面上の
温度むらや、応答速度むらが解決される。
However, when the exhaust air is introduced into the rectifier box 12 to reduce the flow velocity and rectify the exhaust air, the exhaust air hits the entire surface of the heat-sensitive resistor uniformly, as shown in Figure 3, and the heat-sensitive resistor Temperature unevenness and response speed unevenness on the surfaces of H and N are solved.

この結果、出力信号Dが第4図のように安定す
る。したがつて、安定した出力信号が得られれ
ば、より正確な加熱時間の算出が可能となるとい
つた効果がある。
As a result, the output signal D becomes stable as shown in FIG. Therefore, if a stable output signal is obtained, the heating time can be calculated more accurately.

第5図は本考案の第二実施例を示すものであ
る。
FIG. 5 shows a second embodiment of the present invention.

整流箱12の流入口13が小さい場合、調理の
経過とともに発生する蒸気に含まれる油、食品カ
ス等の雑物のため、穴をふさぐ可能性がある。そ
の場合、蒸気を含んだ空気が第一、第二感熱抵抗
H,Nに当たらず湿度を検出することが不可能と
なる。
If the inlet 13 of the rectifier box 12 is small, there is a possibility that the hole may be blocked by oil, food waste, and other impurities contained in the steam generated as the cooking progresses. In that case, air containing steam will not come into contact with the first and second heat-sensitive resistors H and N, making it impossible to detect humidity.

そこで、本実施例では、整流箱12の前対向板
12Aの流入口13a,13b,13cを複数個
形成したもので、整流箱12の足部12aは基板
11に形成された孔11aに貫通された後折曲げ
ることにより基板11には固定される。他の構成
は上記第一実施例と同様である。
Therefore, in this embodiment, a plurality of inlets 13a, 13b, and 13c are formed in the front facing plate 12A of the rectifier box 12, and the leg portion 12a of the rectifier box 12 is penetrated by the hole 11a formed in the substrate 11. It is then fixed to the substrate 11 by bending it. The other configurations are the same as those of the first embodiment.

上記のごとく構成することにより、雑物により
仮に一つの流入口13aが塞がつても他の流入口
13b,13cによつて整流箱12内へ風Cを流
入できるため、安定した湿度検知を可能にする。
With the above configuration, even if one inlet 13a is blocked by foreign objects, the other inlets 13b and 13c allow the wind C to flow into the rectifier box 12, allowing stable humidity detection. Make it.

なお、上記第一、第二実施例において、供給電
圧が変化した場合でも風速が遅くなつているた
め、出力変動も小にできる。すなわち、第6図は
第21図の検出回路において冷却フアン3を停止
状態から回転させた際の出力電圧Voutについて、
従来のものXと本考案Yのものをそれぞれ図示し
たもので、本考案では感熱抵抗に当たる風速が遅
くなつているため電圧変化が少ない。
In addition, in the first and second embodiments described above, even when the supply voltage changes, since the wind speed becomes slower, output fluctuations can also be reduced. That is, FIG. 6 shows the output voltage Vout when the cooling fan 3 is rotated from a stopped state in the detection circuit of FIG. 21.
These diagrams show the conventional type X and the present invention Y. In the present invention, the wind speed hitting the heat-sensitive resistor is slow, so there is little voltage change.

また、第7図は冷却フアン3が回転し、電圧
Voutが一定となつた時に冷却フアン3の供給電
圧が変化した場合の特性図で、図中X1は従来の
場合、Y1は本考案の場合を示し、本考案では非
常に少ない出力変動におさえられている。
In addition, Fig. 7 shows that the cooling fan 3 is rotating and the voltage is
This is a characteristic diagram when the supply voltage of the cooling fan 3 changes when Vout is constant. In the figure, X1 shows the conventional case and Y1 shows the case of the present invention. ing.

第8,9図は本考案の第三実施例を示すもの
で、整流箱12の下部付近に横長の流入口13お
よび流出口14が形成され、前記流入口13およ
び流出口14の横幅は、前記各感熱抵抗H,Nの
一対のリード脚部9A,10A間の間隔よりも小
に設定され、整流箱12を通つた風Cが直接、第
一感熱抵抗Hおよび第二感熱抵抗Nに当たらない
ようにされたもので、温度の流速を下げ整流を行
ない、感熱抵抗H,Nの表面全体に均一に温風を
当て表面の温度バラツキを補正する。他の構成は
上記第一実施例と同様である。
8 and 9 show a third embodiment of the present invention, in which a horizontally elongated inlet 13 and an elongated outlet 14 are formed near the bottom of the rectifying box 12, and the width of the inlet 13 and the outlet 14 is as follows: The distance between the pair of lead legs 9A and 10A of each heat-sensitive resistor H and N is set to be smaller than that, so that the wind C passing through the rectifier box 12 directly hits the first heat-sensitive resistor H and the second heat-sensitive resistor N. The temperature flow rate is lowered to perform rectification, and hot air is uniformly applied to the entire surface of the heat-sensitive resistors H and N to correct for temperature variations on the surface. The other configurations are the same as those of the first embodiment.

上記構成において、整流箱12内に入つてきた
風Cは乱流し、第3図のごとく感熱抵抗N,Hの
表面全体をなめるようになり、排気風Cの当たり
方が均一になる。
In the above configuration, the wind C entering the rectifying box 12 flows turbulently and licks the entire surface of the heat-sensitive resistors N and H as shown in FIG. 3, so that the exhaust air C hits uniformly.

ここで、流入口13,14の横幅が各感熱抵抗
H,Nの一対リード脚部9A,10A間よりも大
であれば流入口13を通り抜けた排気風は直接感
熱抵抗H,Nのリード脚部9A,10Aにあた
り、リード脚部9A,10Aより熱伝導が生じ感
熱部9,10の両端部A1から先に温度が上り中
心部A2とに温度差が現われる。したがつて排気
風の温度に対する応答速度にもむらを生じ、これ
らの要素から出力Voutに第24図のごとき揺と
うが現われる。
Here, if the width of the inflow ports 13 and 14 is larger than the width between the pair of lead legs 9A and 10A of each heat-sensitive resistor H and N, the exhaust air passing through the inlet port 13 will directly flow through the lead legs of the heat-sensitive resistors H and N. In the parts 9A and 10A, heat conduction occurs from the lead leg parts 9A and 10A, and the temperature rises first from both ends A1 of the heat sensitive parts 9 and 10, and a temperature difference appears between the center part A2 and the heat sensitive parts 9A and 10A. Therefore, the response speed to the temperature of the exhaust air also becomes uneven, and fluctuations as shown in FIG. 24 appear in the output Vout due to these factors.

しかし本例では、流入口13、流出口14の横
幅は一対のリーダ脚部9A,10Aの間隔よりも
小に設定しているので、整流箱12内に入つた排
気風は乱流し、感熱抵抗H,Nの表面全体をなめ
るようになり、排気風の当り方が均一になり感熱
部9,10の表面上の温度むらや応答速度むらが
解決される。この結果、出力信号Dが第4図のよ
うに安定する。
However, in this example, the widths of the inlet 13 and outlet 14 are set smaller than the distance between the pair of leader legs 9A, 10A, so the exhaust air entering the rectifier box 12 flows turbulently, causing heat-sensitive resistance. The entire surface of H and N is licked, the exhaust air is uniformly hit, and temperature unevenness and response speed unevenness on the surfaces of the heat sensitive parts 9 and 10 are solved. As a result, the output signal D becomes stable as shown in FIG.

第11,12図は本考案の第四実施例を示すも
ので、これは、整流箱12を熱伝導率の良好なア
ルミニウム等の金属製とされたものである。な
お、図中14は基板11への熱影響を防止する断
面パツキングである。他の構成は上記第二実施例
と同様である。
11 and 12 show a fourth embodiment of the present invention, in which the rectifier box 12 is made of metal such as aluminum, which has good thermal conductivity. Note that 14 in the figure is a cross-sectional packing for preventing thermal influence on the substrate 11. The other configurations are the same as those of the second embodiment.

第12図は、整流箱12の材質が1mm厚のポリ
プロピレン樹脂の場合と、0.6mm厚のアルミニウ
ム製の場合とにおける冷却フアン3が回転を初め
てから回路出力が安定するまでの時間を示したも
のである。ポリプロピレン樹脂の場合(図中W)
であると回路出力が安定するまでに約3分間必要
であつたものが、アルミニウム等の熱伝導率の良
い金属製にすると約50秒で安定する様になつた。
Figure 12 shows the time from when the cooling fan 3 starts rotating until the circuit output stabilizes when the rectifier box 12 is made of polypropylene resin with a thickness of 1 mm and when it is made of aluminum with a thickness of 0.6 mm. It is. In the case of polypropylene resin (W in the diagram)
It used to take about 3 minutes for the circuit output to stabilize, but when it was made of a metal with good thermal conductivity, such as aluminum, it became stable in about 50 seconds.

第13図は本考案の第五実施例を示すもので、
これは整流箱12内に第一感熱抵抗Hおよび第二
感熱抵抗N間を仕切る仕切板16が介設され、該
仕切板16に排風連通孔17が形成されたもので
ある。他の構成は上記第二実施例と同様である。
FIG. 13 shows a fifth embodiment of the present invention.
In this embodiment, a partition plate 16 is provided in a rectifying box 12 to separate a first heat sensitive resistor H and a second heat sensitive resistor N, and an exhaust air communication hole 17 is formed in the partition plate 16. The other configurations are the same as those of the second embodiment.

上記構成においては、整流箱12内に流入した
風Cのむらを小にし得、風速変化による上記第(1)
式のhmの変化を抑え、正確に湿度検知を行ない
得る。
In the above configuration, the unevenness of the wind C flowing into the rectifier box 12 can be reduced, and the above (1)
It is possible to suppress changes in hm in the equation and accurately detect humidity.

第14,15図は本考案の第六実施例を示すも
ので、これは、第一感熱抵抗Hおよび第二感熱抵
抗Nに合成樹脂被膜17,18を形成したもの
で、該合成樹脂被膜17,18は、あとえばシリ
コン樹脂またはポリイミド系樹脂等の耐熱性のも
のであつて、感熱抵抗H,Nの脚部9A,10A
および感熱部9,10の全体を被膜している。他
の構成は上記第二実施例と同様である。
14 and 15 show a sixth embodiment of the present invention, in which synthetic resin coatings 17 and 18 are formed on the first heat-sensitive resistor H and the second heat-sensitive resistor N. , 18 are heat-resistant materials such as silicone resin or polyimide resin, and the legs 9A, 10A of the heat-sensitive resistors H, N are
And the entire heat sensitive parts 9 and 10 are coated. The other configurations are the same as those of the second embodiment.

上記のごとく構成すれば第一感熱抵抗Hおよび
第二感熱抵抗Nのもつ熱容量を上げ、風むらによ
るhmの変化と小さくし、風むらの影響を除去し、
出力電圧Voutの揺とうを防止し、安定した出力
電圧が得られ精度の高い湿度検知と可能となる。
With the above configuration, the heat capacity of the first heat-sensitive resistor H and the second heat-sensitive resistor N is increased, the change in hm due to wind unevenness is reduced, and the influence of wind unevenness is eliminated.
This prevents fluctuations in the output voltage Vout, provides a stable output voltage, and enables highly accurate humidity detection.

第16,17図は、本考案の第七実施例を示す
もので、これは、第一感熱抵抗Hおよび第二感熱
抵抗Nの感熱部9,10が基板11から5mm以上
離間Sされたものである。なお、他の構成は上記
第一実施例と同様である。
16 and 17 show a seventh embodiment of the present invention, in which the heat-sensitive parts 9 and 10 of the first heat-sensitive resistor H and the second heat-sensitive resistor N are spaced apart from the substrate 11 by 5 mm or more. It is. Note that the other configurations are the same as those of the first embodiment.

感熱抵抗H,Nが基板11に密着して取付けら
れている場合、電子レンジが動作していない状態
では冷却フアン3が回転しないので、感熱抵抗
H,Nや基板11に排気風は当たらず、自己発熱
している感熱抵抗Hにより基板11は加熱され
る。その後、調理モードになると冷却フアン3が
回転し、庫内からの排気風は感熱抵抗H,Nや基
板11に当たる。感熱抵抗H,Nは熱時定数が短
く、冷却フアン3が回転を始めて約30秒後には熱
平衡状態に達する。
When the heat-sensitive resistors H and N are attached closely to the board 11, the cooling fan 3 does not rotate when the microwave oven is not operating, so the exhaust air does not hit the heat-sensitive resistors H and N and the board 11. The substrate 11 is heated by the heat-sensitive resistor H which is self-heating. Thereafter, when the cooking mode is entered, the cooling fan 3 rotates, and the exhaust air from inside the refrigerator hits the heat-sensitive resistors H, N and the substrate 11. The heat-sensitive resistors H and N have short thermal time constants, and reach a thermal equilibrium state approximately 30 seconds after the cooling fan 3 starts rotating.

しかし、基板11は熱容量が大きいため、約3
分の熱時定数を持つている。
However, since the substrate 11 has a large heat capacity, approximately 3
It has a thermal time constant of minutes.

このため、感熱抵抗H.Nが基板11に密着し
て取付けられている場合には、第17図実線Wの
ごとく基板11の熱時定数に影響され、回路出力
は冷却フアン3の回転後約3分間経過しなければ
安定しない。
Therefore, if the heat-sensitive resistor HN is attached closely to the board 11, it will be affected by the thermal time constant of the board 11 as shown by the solid line W in FIG. It will not be stable until it passes.

しかし、本実施例のごとく感熱抵抗N,Hの感
熱部9,10を基板11から5mm以上離せば、自
己発熱している感熱抵抗Hによる基板11の加熱
は少なくなるし、また、冷却フアン3が回転を始
めると、基板11と感熱抵抗H,Nの間に空気の
断熱層が形成されるため、基板11に蓄熱された
熱が感熱抵抗H,Nにおよぼす影響は非常に少な
く、第17図の破線Uのごとくほとんど感熱抵抗
H,Nの熱時定数である約30秒にて回路出力は安
定する。
However, if the heat-sensitive parts 9 and 10 of the heat-sensitive resistors N and H are separated from the board 11 by 5 mm or more as in this embodiment, the heating of the board 11 by the self-heating heat-sensitive resistor H will be reduced, and the cooling fan 3 When starts rotating, a heat insulating layer of air is formed between the substrate 11 and the heat-sensitive resistors H, N, so that the heat stored in the substrate 11 has very little effect on the heat-sensitive resistors H, N. As indicated by the broken line U in the figure, the circuit output stabilizes in approximately 30 seconds, which is the thermal time constant of the heat-sensitive resistors H and N.

<効果> 以上の説明から明らかな通り、本考案は、通風
路の雰囲気中の湿度を検出する湿度センサーが設
けられ、該湿度センサーは、自己加熱または加熱
熱源により加熱される第一感熱抵抗と、第一感熱
抵抗と並設され雰囲気中の湿度を検出する第二感
熱抵抗と、該第二感熱抵抗および第一感熱抵抗を
支持する基板と、前記第一感熱抵抗および第二感
熱抵抗を包囲する整流箱と、該整流箱の通風路送
風方向と直交する前対向板に形成された風量制御
用流入口と、前記整流箱の通風路送風方向と直交
する後対向板に形成された風量制御用流出口とを
具えて成ることを特徴とする湿度検出装置に関す
るものである。
<Effects> As is clear from the above description, the present invention is provided with a humidity sensor that detects the humidity in the atmosphere of the ventilation passage, and the humidity sensor includes a first heat-sensitive resistor that is heated by self-heating or a heating heat source. , a second thermal resistor arranged in parallel with the first thermal resistor to detect humidity in the atmosphere, a substrate supporting the second thermal resistor and the first thermal resistor, and surrounding the first thermal resistor and the second thermal resistor. a rectifying box, an air volume control inlet formed on a front facing plate perpendicular to the air blowing direction of the air passage of the straightening box, and an air volume control inlet formed on a rear facing plate perpendicular to the air blowing direction of the air passage of the straightening box. The present invention relates to a humidity detection device characterized in that it is equipped with an air outlet.

したがつて、本考案によると、感熱抵抗を包囲
する流入口および流出口付の整流箱を設けただけ
の簡単な構成で、風むらの影響による感熱部の温
度むらを除去でき、正確な湿度検出を可能とする
といつた優れた効果がある。
Therefore, according to the present invention, with a simple configuration that only includes a rectifying box with an inlet and an outlet surrounding the heat-sensitive resistor, it is possible to eliminate temperature variations in the heat-sensing part due to the influence of wind variations, and to obtain accurate humidity. It has an excellent effect in making detection possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第一実施例を示す湿度検出装
置の斜視図、第2図は第二感熱抵抗への排風の当
たり方を示す斜視図、第3図は同じく排気風の流
れを示す側面図、第4図は湿度センサーの出力
図、第5図は本考案の第二実施例を示す斜視図、
第6図は同じく冷却フアンを停止状態から回転さ
せた際の検出回路の出力電圧を示す図、第7図は
出力電圧が一定になつたときに冷却フアンの供給
電圧を変化させた場合の特性図、第8図は本考案
の第三実施例を示す湿度検出装置の斜視図、第9
図は同じく正面図、第10図は排気風が感熱抵抗
のリード脚部にあたつた場合の感熱部の温度むら
を示す斜視図、第11図は本考案の第四実施例を
示す湿度検出装置の斜視図、第12図は同じく回
路出力電圧とフアン回転数の関係を示す図、第1
3図は本考案の第五実施例を示す湿度検出装置の
斜視図、第14図は本考案の第六実施例を示す湿
度検出装置の斜視図、第15図は同感熱抵抗の断
面図、第16図は本考案の第七実施例を示す湿度
検出装置の整流箱を除いた状態を示す斜視図、第
17図は同じく出力電圧を示す図、第18図は一
般的な電子レンジの斜視図、第19図は排気ダク
トの側面図、第20図は先行技術における湿度セ
ンサーの斜視図、第21図は温度検出回路図、第
22図は第21図における温度検出回路を簡単に
した場合の検出回路図、第23図は整流箱がない
場合の温度むら状態を示す側面図、第24図は同
じく整流箱がない場合の湿度センサーの出力電圧
を示す図である。 H……第一感熱抵抗、N……第二感熱抵抗、7
……通風路、8……湿度センサー、9,10……
感熱部、9A,10A……リード脚部、11……
基板、12……整流箱、12A……前対向板、1
2B……後対向板、13,13a,13b,13
c……風量制御用流入口、14……風量制御用流
出口。
Fig. 1 is a perspective view of a humidity detection device showing the first embodiment of the present invention, Fig. 2 is a perspective view showing how the exhaust air hits the second heat-sensitive resistor, and Fig. 3 is a perspective view showing the flow of the exhaust air. 4 is a diagram showing the output of the humidity sensor, and FIG. 5 is a perspective view showing the second embodiment of the present invention.
Figure 6 shows the output voltage of the detection circuit when the cooling fan is rotated from a stopped state, and Figure 7 shows the characteristics when the supply voltage of the cooling fan is changed when the output voltage is constant. 8 is a perspective view of a humidity detection device showing a third embodiment of the present invention, and FIG.
The figure is also a front view, Figure 10 is a perspective view showing the temperature unevenness of the heat sensitive part when the exhaust air hits the lead leg of the heat sensitive resistor, and Figure 11 is a humidity detection showing the fourth embodiment of the present invention. Fig. 12 is a perspective view of the device, and Fig. 1 is a diagram showing the relationship between circuit output voltage and fan rotation speed.
3 is a perspective view of a humidity detecting device showing a fifth embodiment of the present invention, FIG. 14 is a perspective view of a humidity detecting device showing a sixth embodiment of the present invention, and FIG. 15 is a cross-sectional view of the same heat-sensitive resistor. Fig. 16 is a perspective view of a humidity detection device according to the seventh embodiment of the present invention, with the rectifier box removed; Fig. 17 is a diagram also showing the output voltage; and Fig. 18 is a perspective view of a general microwave oven. Figure 19 is a side view of the exhaust duct, Figure 20 is a perspective view of a humidity sensor in the prior art, Figure 21 is a temperature detection circuit diagram, and Figure 22 is a simplified version of the temperature detection circuit in Figure 21. FIG. 23 is a side view showing the temperature unevenness state when there is no rectifier box, and FIG. 24 is a diagram showing the output voltage of the humidity sensor when there is no rectifier box. H...First heat sensitive resistor, N...Second heat sensitive resistor, 7
...Ventilation duct, 8...Humidity sensor, 9,10...
Heat sensitive part, 9A, 10A... Lead leg, 11...
Board, 12... Rectifier box, 12A... Front opposing plate, 1
2B... Rear facing plate, 13, 13a, 13b, 13
c... Inlet for air volume control, 14... Outlet for air volume control.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 通風路の雰囲気中の湿度を検出する湿度センサ
ーが設けられ、該湿度センサーは、自己加熱また
は加熱熱源により加熱される第一感熱抵抗と、第
一感熱抵抗と並設され雰囲気中の湿度を検出する
第二感熱抵抗と、該第二感熱抵抗および第一感熱
抵抗を支持する基板と、前記第一感熱抵抗および
第二感熱抵抗を包囲する整流箱と、該整流箱の通
風路送風方向と直交する前対向板に形成された風
量制御用流入口と、前記整流箱の通風路送風方向
と直交する後対向板に形成された風量制御用流出
口とを具えて成ることを特徴とする湿度検出装
置。
A humidity sensor is provided to detect the humidity in the atmosphere of the ventilation passage, and the humidity sensor includes a first heat-sensitive resistor heated by self-heating or a heating heat source, and a humidity sensor arranged in parallel with the first heat-sensitive resistor to detect the humidity in the atmosphere. a second heat-sensitive resistor, a substrate supporting the second heat-sensitive resistor and the first heat-sensitive resistor, a rectifier box surrounding the first heat-sensitive resistor and the second heat-sensitive resistor, and an air passage of the rectifier box perpendicular to the air blowing direction. Humidity detection characterized by comprising: an air volume control inlet formed on a front facing plate, and an air volume control outlet formed on a rear facing plate perpendicular to the ventilation direction of the air passage of the rectifier box. Device.
JP1599186U 1986-02-04 1986-02-06 Expired - Lifetime JPH0533957Y2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1599186U JPH0533957Y2 (en) 1986-02-06 1986-02-06
DE3751125T DE3751125T2 (en) 1986-02-04 1987-01-30 Moisture measuring circuit.
EP87101319A EP0232817B1 (en) 1986-02-04 1987-01-30 Humidity detecting circuit
NZ219136A NZ219136A (en) 1986-02-04 1987-02-02 Humidity detector circuit
CA000528880A CA1287986C (en) 1986-02-04 1987-02-03 Humidity detecting circuit
AU68287/87A AU574947B2 (en) 1986-02-04 1987-02-04 Humidity detection
US07/010,794 US4768378A (en) 1986-02-04 1987-02-04 Humidity detecting circuit
KR878700873A KR890004076B1 (en) 1986-02-04 1987-02-04 Humidity detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1599186U JPH0533957Y2 (en) 1986-02-06 1986-02-06

Publications (2)

Publication Number Publication Date
JPS62128360U JPS62128360U (en) 1987-08-14
JPH0533957Y2 true JPH0533957Y2 (en) 1993-08-27

Family

ID=30807437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1599186U Expired - Lifetime JPH0533957Y2 (en) 1986-02-04 1986-02-06

Country Status (1)

Country Link
JP (1) JPH0533957Y2 (en)

Also Published As

Publication number Publication date
JPS62128360U (en) 1987-08-14

Similar Documents

Publication Publication Date Title
US4734554A (en) Heating apparatus with humidity sensor
US4717811A (en) Differential resistance humidity detector
JP3100986B2 (en) Improved heated pressure transducer assembly
JPH086268Y2 (en) Thermal flow meter
EP0232817B1 (en) Humidity detecting circuit
US4658120A (en) Sensor device for use with cooking appliances
JPH0533957Y2 (en)
JPH0528517Y2 (en)
JPH05231899A (en) Intake air amount detector
JP2952438B2 (en) Thermal flow meter
JPS6014149A (en) Detector for absolute humidity
CA1337301C (en) Humidity detector
JP2517076B2 (en) High frequency heating equipment
JPS642089Y2 (en)
JPS60230019A (en) Gas flow rate detector
JPS6314248Y2 (en)
KR900006476Y1 (en) Heating appiance with humidity sensor
JP2580794Y2 (en) Thermal conductivity type absolute humidity sensor
JPH0329716Y2 (en)
JPS64554Y2 (en)
JPS59221531A (en) Electronic range
JPH0672819B2 (en) Thermal detector
JPS6014151A (en) Detector for absolute humidity
JPS59115918A (en) Electronic oven
JPS59221529A (en) Electronic range