JPH05339506A - Functional composite material - Google Patents

Functional composite material

Info

Publication number
JPH05339506A
JPH05339506A JP15080992A JP15080992A JPH05339506A JP H05339506 A JPH05339506 A JP H05339506A JP 15080992 A JP15080992 A JP 15080992A JP 15080992 A JP15080992 A JP 15080992A JP H05339506 A JPH05339506 A JP H05339506A
Authority
JP
Japan
Prior art keywords
gliadin
glutenin
gluten
composite material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15080992A
Other languages
Japanese (ja)
Inventor
Takashi Domae
孝志 同前
Masakazu Sugimoto
正和 杉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagata Sangyo Co Ltd
Original Assignee
Nagata Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagata Sangyo Co Ltd filed Critical Nagata Sangyo Co Ltd
Priority to JP15080992A priority Critical patent/JPH05339506A/en
Publication of JPH05339506A publication Critical patent/JPH05339506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a semiconductive composite material which can easily be molded into any shape by mixing a gluten, gliadin, or glutenin with a polyhydric alcohol. CONSTITUTION:A gluten, gliadin, or glutenin is mixed with a polyhydric alcohol (e.g. ethylene glycol) to obtain the title material. The amount of the alcohol is preferably 20-50, 5-50, or 20-50 pts.wt. per 100 pts.wt. gluten, gliadin, or glutenin, respectively. Since this material can easily be molded into any shape, it can be utilized as a functional material when molded into a desired shape and connected to adequate electrodes. Examples of its application include a sensor for detecting something as a mean for a large area, e.g. a planar or linear area, and a sensor fitted to a curved or movable surface. Dissolving or dispersing the material into a solvent gives a coating composition, adhesive, etc., from which a film can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導性機能を備えた新
規な複合材料に関する。
FIELD OF THE INVENTION The present invention relates to a novel composite material having a semiconducting function.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】小麦グル
テンは、熱により硬化して成形体を形成することが知ら
れている(特開平2−67109号)。この成形体は、
生分解性を有し、今後期待される材料の一つである。
2. Description of the Related Art Wheat gluten is known to be hardened by heat to form a molded article (JP-A-2-67109). This molded body is
It has biodegradability and is one of the materials expected in the future.

【0003】しかしながら、このような成形体は電気絶
縁性を有するものしか知られておらず、電気・電子材料
としては実用価値がなかった。
However, only such a molded article is known to have an electric insulating property, and it has no practical value as an electric / electronic material.

【0004】本発明の課題は、従来より知られている電
気絶縁性の小麦グルテンまたはその成分であるグリアジ
ンもしくはグルテニンから、半導性を有する新規な複合
材料を提供する処にある。
An object of the present invention is to provide a novel semiconducting composite material from conventionally known electrically insulating wheat gluten or its component gliadin or glutenin.

【0005】[0005]

【課題を解決するための手段】本発明の機能性複合材料
は、グルテンおよび多価アルコールからなるものであ
る。
The functional composite material of the present invention comprises gluten and a polyhydric alcohol.

【0006】本発明の他の機能性複合材料は、グリアジ
ンおよび多価アルコールからなるものである。
Another functional composite material of the present invention comprises gliadin and a polyhydric alcohol.

【0007】本発明のさらに他の機能性複合材料は、グ
ルテニンおよび多価アルコールからなるものである。
Still another functional composite material of the present invention comprises glutenin and polyhydric alcohol.

【0008】このように、電気絶縁性のグルテン、グリ
アジンまたはグルテニンと、多価アルコールとを組合せ
ることにより、半導性を示す複合材料を得ることができ
る。
As described above, a semiconductive composite material can be obtained by combining the electrically insulating gluten, gliadin or glutenin with the polyhydric alcohol.

【0009】本発明で用いるグルテンとは、小麦中のタ
ンパクの総称で、小麦の小胞体、細胞膜、プロテインボ
ディ由来のポリペプチドからなるグリアジンとグルテニ
ンが相互にジスルフィド結合あるいは水素結合等により
結合した巨大分子であり、通常、炭水化物10〜12
%、脂質8〜12%を含んでいる。
The gluten used in the present invention is a general term for proteins in wheat, and is a giant protein in which gliadin and glutenin, which are polypeptides derived from wheat endoplasmic reticulum, cell membrane, and protein body, are bound to each other by disulfide bond or hydrogen bond. Molecule, usually carbohydrates 10-12
%, Lipids 8-12%.

【0010】本発明で用いる多価アルコールとしては、
エチレングリコール、ジエチレングリコール、トリエチ
レングリコール、プロピレングリコール、グリセリン、
ソルビトールなどが挙げられ、中でも二価アルコールが
好ましく、エチレングリコール、ジエチレングリコール
が特に好ましい。
As the polyhydric alcohol used in the present invention,
Ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin,
Examples thereof include sorbitol, and among them, dihydric alcohols are preferable, and ethylene glycol and diethylene glycol are particularly preferable.

【0011】本発明の複合材料における配合割合は、グ
ルテン100部(重量部、以下同様)に対して多価アル
コール20〜50部、グリアジン100部に対して多価
アルコール5〜50部、グルテニン100部に対して多
価アルコール20〜50部であるのが、それぞれ好まし
い。
The compounding ratio of the composite material of the present invention is as follows: 20 to 50 parts of polyhydric alcohol to 100 parts of gluten (parts by weight; hereinafter the same), 5 to 50 parts of polyhydric alcohol to 100 parts of gliadin, and 100 parts of glutenin. It is preferably 20 to 50 parts of polyhydric alcohol with respect to parts.

【0012】本発明の複合材料は、汎用プラスチックと
同様の成形加工性を有するため、任意の形状に容易に成
形できる。それ故、面状、線状などの広い面積の平均的
機能検知や屈曲面、可動面のセンサなど、任意の形状に
して、適当な電極をとり出すことにより、機能性材料と
して利用することができる。
Since the composite material of the present invention has the same molding processability as general-purpose plastics, it can be easily molded into an arbitrary shape. Therefore, it can be used as a functional material by taking out an appropriate electrode by taking an average function detection of a wide area such as a plane shape or a linear shape or a sensor of a bent surface or a movable surface. it can.

【0013】あるいはまた、この材料を溶媒に溶解また
は分散することにより、塗料、接着剤などとすることも
でき、任意な支持体に塗布して塗膜を形成することもで
きる。
Alternatively, by dissolving or dispersing this material in a solvent, it can be used as a paint, an adhesive or the like, or can be applied to an arbitrary support to form a coating film.

【0014】[0014]

【実施例】以下、本発明の機能性複合材料を実施例に基
づき具体的に説明する。
EXAMPLES The functional composite material of the present invention will be specifically described below based on examples.

【0015】実施例1〜3、比較例1〜3 表1に示す割合(部)で各成分をジュースミキサーを用
いて均一に混合し、ウェットケーキ状の生地をつくっ
た。その生地の一部を2枚のPET(ポリエチレンテレ
フタレート)フィルムに挟み、150℃で、50kg/
cm2 の圧力下で1分間押圧処理してフィルムをつくっ
た。このフィルムの膜厚は80〜400μm程度であっ
た。
Examples 1 to 3 and Comparative Examples 1 to 3 The ingredients were uniformly mixed using a juice mixer in the proportions (parts) shown in Table 1 to prepare wet cake-like dough. A part of the cloth is sandwiched between two PET (polyethylene terephthalate) films, and at 150 ° C, 50 kg /
A film was prepared by pressing for 1 minute under a pressure of cm 2 . The film thickness of this film was about 80 to 400 μm.

【0016】得られたフィルムの半導体特性を、カーブ
トレイサー(テクトロニクス社製370型)を用いて測
定した。その結果を表1に示す。
The semiconductor characteristics of the obtained film were measured using a curve tracer (Model 370 manufactured by Tektronix). The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】また、実施例2のフィルムにおける負荷電
圧と透過電流の関係図(前記のカーブトレイサーにて測
定)を図1に示す。シリコンにおける負荷電圧と透過電
流の関係図(図7)と比べると、本実施例のフィルムが
半導性を有することが明らかである。
FIG. 1 shows a relationship diagram (measured with the above curve tracer) between the load voltage and the transmission current in the film of Example 2. It is clear that the film of this example has semiconductivity when compared with the relationship diagram (FIG. 7) between the load voltage and the transmission current in silicon.

【0019】実施例4 グリアジンに対するジエチレングリコールの配合割合を
変化させて、負荷電圧と透過電流の関係を測定した。す
なわち、グリアジン100部に対するジエチレングリコ
ールの配合量を、20部、25部、30部、35部、4
0部と変化させてフィルムを作製し(D20、D25、
D30、D35、D40とする)、実施例1〜3と同じ
カーブトレイサーを用いて、これらのフィルムに電圧を
印加して透過電流の値を求めた。その際の接触面積は1
0mm2 、接触力は約500gであった。結果を図2に
示す。
Example 4 The relationship between the load voltage and the permeation current was measured by changing the compounding ratio of diethylene glycol to gliadin. That is, the mixing amount of diethylene glycol with respect to 100 parts of gliadin was 20, 25, 30, 35, 4 parts.
A film was prepared by changing it to 0 part (D20, D25,
D30, D35, D40) and the same curve tracer as in Examples 1 to 3 were used to apply a voltage to these films to determine the value of the transmission current. The contact area at that time is 1
The contact force was 0 mm 2 , and the contact force was about 500 g. The results are shown in Figure 2.

【0020】実施例5 グリアジンに対するエチレングリコールの配合割合を変
化させて、透過電流の変化(抵抗の変化)を測定した。
すなわち、グリアジン100部に対するエチレングリコ
ールの配合量(部)を変えてフィルムを作製し、これら
のフィルムに50Vの電圧を印加して透過電流の値を求
めた。結果を図3に示す。
Example 5 The change in permeation current (change in resistance) was measured by changing the blending ratio of ethylene glycol to gliadin.
That is, films were prepared by changing the blending amount (parts) of ethylene glycol with respect to 100 parts of gliadin, and a voltage of 50 V was applied to these films to determine the value of the permeation current. Results are shown in FIG.

【0021】実施例6 多価アルコールの種類を変えて、負荷電圧と透過電流の
関係を測定した。すなわち、グリアジン100部に対
し、エチレングリコール20部、ジエチレングリコール
20部、またはグリセリン20部を配合してフィルムを
作製し(E20、D20、G20とする)、実施例4と
同様にして、これらのフィルムに電圧を印加して透過電
流の値を求めた。結果を図4に示す。
Example 6 The relationship between load voltage and permeation current was measured by changing the type of polyhydric alcohol. That is, a film was prepared by mixing 20 parts of ethylene glycol, 20 parts of diethylene glycol, or 20 parts of glycerin with 100 parts of gliadin (referred to as E20, D20, and G20), and these films were prepared in the same manner as in Example 4. A voltage was applied to and the value of the transmission current was obtained. The results are shown in Fig. 4.

【0022】実施例7 抵抗に対する温度の影響を測定した。すなわち、グリア
ジン100部にエチレングリコール30部を配合してフ
ィルムを作製し、このフィルムに熱をかけて透過電流の
変化(抵抗の変化)を測定した。印加電圧は25Vとし
た。結果を図5に示す。
Example 7 The effect of temperature on resistance was measured. That is, 100 parts of gliadin was mixed with 30 parts of ethylene glycol to prepare a film, and heat was applied to the film to measure a change in permeation current (change in resistance). The applied voltage was 25V. Results are shown in FIG.

【0023】図5から明らかなように、温度が上がると
抵抗が小さくなる。
As is clear from FIG. 5, the resistance decreases as the temperature rises.

【0024】実施例8 グルテンまたはグルテニンに対するエチレングリコール
の配合割合を変化させて、透過電流の変化(抵抗の変
化)を測定した。すなわち、グルテンまたはグルテニン
100部に対するエチレングリコールの配合量(部)を
変えてフィルムを作製し、これらのフィルムに10Vの
電圧を印加して透過電流の値を求めた。結果を図6に示
す。
Example 8 The change in permeation current (change in resistance) was measured by changing the blending ratio of ethylene glycol to gluten or glutenin. That is, films were produced by changing the blending amount (parts) of ethylene glycol with respect to 100 parts of gluten or glutenin, and a voltage of 10 V was applied to these films to determine the value of permeation current. Results are shown in FIG.

【0025】[0025]

【発明の効果】以上のように、従来より知られている電
気絶縁性の小麦グルテンまたはその成分であるグリアジ
ンもしくはグルテニンから、半導性を有する新規な複合
材料を得ることができた。
As described above, a novel composite material having semiconductivity can be obtained from conventionally known electrically insulating wheat gluten or its component gliadin or glutenin.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のフィルムにおける負荷電圧
と透過電流の関係図である。
FIG. 1 is a relationship diagram of a load voltage and a transmission current in a film of an example of the present invention.

【図2】本発明の他の実施例のフィルムにおける負荷電
圧と透過電流の関係図である。
FIG. 2 is a relationship diagram of a load voltage and a transmission current in a film of another example of the present invention.

【図3】本発明のさらに他の実施例のフィルムにおける
エチレングリコールの配合量と透過電流(抵抗)の関係
図である。
FIG. 3 is a diagram showing the relationship between the blending amount of ethylene glycol and the permeation current (resistance) in the film of still another example of the present invention.

【図4】本発明のさらに他の実施例のフィルムにおける
負荷電圧と透過電流の関係図である。
FIG. 4 is a diagram showing a relationship between a load voltage and a transmission current in a film of still another example of the present invention.

【図5】本発明のさらに他の実施例のフィルムにおける
温度と透過電流(抵抗)の関係図である。
FIG. 5 is a relationship diagram of temperature and permeation current (resistance) in the film of still another example of the present invention.

【図6】本発明のさらに他の実施例のフィルムにおける
エチレングリコールの配合量と透過電流(抵抗)の関係
図である。
FIG. 6 is a relational diagram of the blending amount of ethylene glycol and the permeation current (resistance) in the film of still another example of the present invention.

【図7】シリコンにおける負荷電圧と透過電流の関係図
である。
FIG. 7 is a relationship diagram between a load voltage and a transmission current in silicon.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 グルテンおよび多価アルコールからなる
機能性複合材料。
1. A functional composite material comprising gluten and a polyhydric alcohol.
【請求項2】 グリアジンおよび多価アルコールからな
る機能性複合材料。
2. A functional composite material comprising gliadin and a polyhydric alcohol.
【請求項3】 グルテニンおよび多価アルコールからな
る機能性複合材料。
3. A functional composite material comprising glutenin and a polyhydric alcohol.
JP15080992A 1992-06-10 1992-06-10 Functional composite material Pending JPH05339506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15080992A JPH05339506A (en) 1992-06-10 1992-06-10 Functional composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15080992A JPH05339506A (en) 1992-06-10 1992-06-10 Functional composite material

Publications (1)

Publication Number Publication Date
JPH05339506A true JPH05339506A (en) 1993-12-21

Family

ID=15504899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15080992A Pending JPH05339506A (en) 1992-06-10 1992-06-10 Functional composite material

Country Status (1)

Country Link
JP (1) JPH05339506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824870A2 (en) * 1994-06-03 1998-02-25 Asama Chemical Co., Ltd. Wheat gluten fractions
KR100670014B1 (en) * 2005-04-25 2007-01-16 동양제철화학 주식회사 Composition of polyvinyl alcohol resin for water pressure transfer
JP2009507942A (en) * 2005-08-22 2009-02-26 ジェネンコー・インターナショナル・インク Repeated protein complex and its preparation
CN114250125A (en) * 2020-09-24 2022-03-29 中国科学院大连化学物理研究所 Plant source porous micron particle and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824870A2 (en) * 1994-06-03 1998-02-25 Asama Chemical Co., Ltd. Wheat gluten fractions
EP0824870A3 (en) * 1994-06-03 1999-03-31 Asama Chemical Co., Ltd. Wheat gluten fractions
US6106881A (en) * 1994-06-03 2000-08-22 Asama Chemical Co., Ltd. Process for preparing dough or batter product containing gliadin or glutenin extracted from wheat gluten
KR100670014B1 (en) * 2005-04-25 2007-01-16 동양제철화학 주식회사 Composition of polyvinyl alcohol resin for water pressure transfer
JP2009507942A (en) * 2005-08-22 2009-02-26 ジェネンコー・インターナショナル・インク Repeated protein complex and its preparation
CN114250125A (en) * 2020-09-24 2022-03-29 中国科学院大连化学物理研究所 Plant source porous micron particle and preparation method and application thereof
CN114250125B (en) * 2020-09-24 2022-09-06 中国科学院大连化学物理研究所 Plant source porous micron particle and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100456045B1 (en) Pressure Sensitive Ink, Pressure Sensitive Ink Device, and Methods of Use
Sumita et al. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends
Guerrero et al. Mechanical and thermal properties of soy protein films processed by casting and compression
JP4568885B2 (en) Actuator element using high-strength, high-conductivity thin film and manufacturing method thereof
CN108731851A (en) Flexible capacitive pressure sensor and preparation method thereof
KR20100029652A (en) Low temperature dryable conductive paste composite for solar cell and printing method using the same
JPH05339506A (en) Functional composite material
WO2014021208A1 (en) Highly proton-conductive polymer film, method for producing same, and humidity sensor
Kim et al. Simultaneous improvement of performance and stability in PEDOT: PSS–sorbitol composite based flexible thermoelectric modules by novel design and fabrication process
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
EP0122633B1 (en) Conductive polymer composition
EP4245796A1 (en) Autonomous self-healing, transparent, electrically conducting elastomer and method of making the same
CN100340627C (en) Polymer base antistatic agent and method for preparing same
JPS5918804B2 (en) heat sensitive element
JPS6033138B2 (en) pressure sensitive conductive rubber
JPS6043874B2 (en) Conductive resin composition
CN113555494A (en) Flexible pressure sensor and preparation method thereof
CN207936906U (en) A kind of electronic surveying ruler
Tsao et al. Flexible Temperature Sensor Array Using Electro-Resistive Polymer Forhumanoid Artificial Skin
JPH02230684A (en) Planar heat generator
JPH02251562A (en) Resin composition
JPS61266462A (en) Electrically conductive silicone rubber molding and production thereof
WO2023175056A1 (en) Autonomous self-healing, transparent, electrically conducting elastomer and method of making the same
KR20230102850A (en) Preparing method for conductive composite, conductive composite and ppiezoresistive device using the same
RU93035801A (en) POLYMERIC COMPOSITION