JPH05339283A - 5-bromo-4-chloroindo-3-yl-2-sialic acid - Google Patents

5-bromo-4-chloroindo-3-yl-2-sialic acid

Info

Publication number
JPH05339283A
JPH05339283A JP15327592A JP15327592A JPH05339283A JP H05339283 A JPH05339283 A JP H05339283A JP 15327592 A JP15327592 A JP 15327592A JP 15327592 A JP15327592 A JP 15327592A JP H05339283 A JPH05339283 A JP H05339283A
Authority
JP
Japan
Prior art keywords
compound
formula
sialidase
added
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15327592A
Other languages
Japanese (ja)
Other versions
JP2904647B2 (en
Inventor
Ikuo Fujii
郁雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANPAKU KOGAKU KENKYUSHO KK
Original Assignee
TANPAKU KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANPAKU KOGAKU KENKYUSHO KK filed Critical TANPAKU KOGAKU KENKYUSHO KK
Priority to JP15327592A priority Critical patent/JP2904647B2/en
Publication of JPH05339283A publication Critical patent/JPH05339283A/en
Application granted granted Critical
Publication of JP2904647B2 publication Critical patent/JP2904647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a new compound giving a chromogenic substrate useful for the retrieval of new sialidase-like enzyme. CONSTITUTION:The compound of formula I. The compound can be produced e.g. by reacting a compound of formula II with acetic anhydride in pyridine, chlorinating the 2-acetyl group of the resultant compound of formula III in a saturated HCl/acetyl chloride solution, reacting the product with a compound of formula IV in formamide in the presence of sodium hydride and treating the produced compound of formula V with 28% sodium methoxide and 1N sodium hydroxide in methanol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酵素の検索、スクリー
ニングに有用な、新規な発色性基質に関する。この新規
な発色性基質は特に、組み換えDNA技術や菌株のスク
リーニングによる新規シアリダーゼ様酵素の検索に極め
て有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel chromogenic substrate useful for searching and screening for enzymes. This novel chromogenic substrate is particularly useful for searching for a novel sialidase-like enzyme by recombinant DNA technology or screening of strains.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】細胞表層
にはシアル酸を含む糖脂質や糖タンパク質が存在し、細
胞の分化、増殖、ガン化、免疫などの基本的な生命現象
に深くかかわっている。また、それらの糖鎖部分がウィ
ルスや毒素のレセプターとして機能したり、細胞認識に
も関与していることが次第に明らかにされてきている。
現在までに200種を超える糖鎖構造の異なる糖脂質分
子種の存在が知られており、もし糖脂質糖鎖を選択的に
加水分解することができればそれぞれの糖脂質の生理的
意義を明確にすることができる。以上のような観点か
ら、今日糖脂質の糖鎖配列に特異的に作用する未知の糖
加水分解酵素(グリコシダーゼ)の検索が様々な方法によ
って試みられている。
2. Description of the Related Art Glycolipids and glycoproteins containing sialic acid are present on the surface of cells and are deeply involved in basic life phenomena such as cell differentiation, proliferation, canceration and immunity. ing. Further, it has been gradually revealed that those sugar chain portions function as receptors for viruses and toxins and are involved in cell recognition.
It is known that there are more than 200 kinds of glycolipid molecular species with different sugar chain structures, and if the glycolipid sugar chains can be selectively hydrolyzed, the physiological significance of each glycolipid will be clarified. can do. From the above viewpoints, various methods have been used to search for unknown sugar hydrolase (glycosidase) that specifically acts on the sugar chain sequence of glycolipids.

【0003】その代表的な例として、ウシ脳から単離し
たガングリオシドを唯一の炭素源とする合成培地に生育
する菌株から、糖脂質の糖鎖配列に選択的に作用するグ
リコシダーゼの検索が行なわれている。また組み換えD
NA技術により新しい活性をもつ酵素の発現が検討され
ているが、いずれの場合も酵素の精製及びその活性測定
に多大な労力が費やされており、簡便なスクリーニング
法の開発が強く望まれている。特に、特定の糖鎖構造の
末端に位置するシアル酸を特異的に切断する酵素(以
下、この酵素をシアリダーゼ様酵素という)を培地上で
効率良くスクリーニングする方法が開発されたならば、
その技術は医療分野はもとより、糖脂質(ガングリオシ
ド)の生理学的役割の研究等、様々な分野に大いに貢献
し得ると考えられる。
As a typical example, a glycosidase that selectively acts on the sugar chain sequence of glycolipid is searched for from a strain isolated from bovine brain which grows on a synthetic medium containing ganglioside as the sole carbon source. ing. Also recombination D
Expression of an enzyme having a new activity has been investigated by NA technology, but in each case, a great deal of labor is spent on purification of the enzyme and measurement of its activity, and development of a simple screening method is strongly desired. There is. In particular, if a method for efficiently screening on a medium an enzyme that specifically cleaves sialic acid located at the end of a specific sugar chain structure (hereinafter, this enzyme is referred to as sialidase-like enzyme) is developed,
It is considered that the technology can greatly contribute not only to the medical field but also to various fields such as research on physiological roles of glycolipids (gangliosides).

【0004】[0004]

【課題を解決するための手段】本発明者らは、菌株や組
み換えDNA技術による培地上でのシアリダーゼ様酵素
の検索・スクリーニングを簡便化し得る発色性基質につ
いて鋭意検討を重ねた結果、下記式で示される5−ブロ
ム−4−クロロインド−3−イル−2−シアル酸がその
目的を達成し得ることを見い出し本発明を完成するに至
った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies on a chromogenic substrate that can facilitate the search and screening of sialidase-like enzymes on the medium by strains or recombinant DNA technology, and as a result, It was found that the shown 5-bromo-4-chloroindo-3-yl-2-sialic acid can achieve its purpose, and the present invention has been completed.

【0005】[0005]

【化2】 [Chemical 2]

【0006】本発明に係る発色性基質(1)は、下記反応
式1
The chromogenic substrate (1) according to the present invention is represented by the following reaction formula 1

【化3】 に示すように、シアリダーゼの認識部位(A)と発色性部
位(B)を兼ね備えており、シアリダーゼ様酵素の存在
下、グリコシル結合が加水分解され、それと同時に遊離
されたインドール型発色部位(B)がすみやかに空気酸化
され、インディゴ化合物(2)を生成する。インディゴ化
合物(2)は青色を呈し、この青色を指標として新規シア
リダーゼ様酵素の検索が可能となる。
[Chemical 3] As shown in Fig. 2, it has both a sialidase recognition site (A) and a chromogenic site (B), and in the presence of a sialidase-like enzyme, the glycosyl bond is hydrolyzed and released simultaneously with the indole type coloring site (B). Promptly undergoes air oxidation to form the indigo compound (2). The indigo compound (2) exhibits a blue color, and it becomes possible to search for a novel sialidase-like enzyme using this blue color as an index.

【0007】本発明の発色性基質(1)は、下記反応式2The chromogenic substrate (1) of the present invention has the following reaction formula 2

【化4】 に示す合成経路に従って合成することができる。即ち、
シアル酸(3)をピリジン中無水酢酸と反応させ水酸基と
アセチル基として保護した後ジアゾメタンによりカルボ
キシル基をエステルとした化合物(4)を得、次に飽和塩
化水素/塩化アセチル溶液中で化合物(4)の2位のアセ
チル基をクロル基とし、これを、別途3−アセトキシ−
1−アセチル−5−ブロム−4−クロロ−インドール
(5)の加水分解より得られる1−アセチル−5−ブロム
−4−クロロ−インドール(6)と水素化ナトリウム存在
下、ホルムアミド中で反応させて縮合体(7)を得る。そ
の後、縮合体(7)をメタノール中、28%ナトリウムメ
トキシド及び1N水酸化ナトリウムで処理し、その全ア
セチル基を加水分解する。反応残査を高速液体クロマト
グラフィーにより精製し、発色性基質(1)を得ることが
できる。
[Chemical 4] It can be synthesized according to the synthetic route shown in. That is,
The sialic acid (3) was reacted with acetic anhydride in pyridine to protect it as a hydroxyl group and an acetyl group, and then the compound (4) was obtained by converting the carboxyl group to an ester with diazomethane, and then the compound (4) was prepared in a saturated hydrogen chloride / acetyl chloride solution. 2) the acetyl group at the 2-position is a chloro group, which is separately treated with 3-acetoxy-
1-acetyl-5-bromo-4-chloro-indole
The condensate (7) is obtained by reacting 1-acetyl-5-bromo-4-chloro-indole (6) obtained by hydrolysis of (5) with formamide in the presence of sodium hydride. Thereafter, the condensate (7) is treated with 28% sodium methoxide and 1N sodium hydroxide in methanol to hydrolyze all the acetyl groups. The reaction residue can be purified by high performance liquid chromatography to obtain the chromogenic substrate (1).

【0008】この様にして得られる発色性基質(1)は、
天然型シアリダーゼ(EC3.2.1.18)と反応させる
と反応はすみやかに進行しインディゴ化合物特有の青色
(吸収極大625nm)を呈する。この実験事実より、本発
明化合物の2位の立体化学(COOH:β配位、インドー
ル部:α配位)が決定された。
The chromogenic substrate (1) thus obtained is
When reacted with natural sialidase (EC 3.2.1.18), the reaction proceeds promptly and the blue color peculiar to indigo compounds
(Absorption maximum 625 nm). From this experimental fact, the stereochemistry at the 2-position (COOH: β coordination, indole moiety: α coordination) of the compound of the present invention was determined.

【0009】[0009]

【発明の作用および効果】本発明の発色性基質(1)の反
応性及び基質特異性が検討された。基質(1)は天然型シ
アリダーゼ(Sialidase;EC3.2.1.18)によりすみ
やかに分解され、青色を呈した。この反応は吸光光度法
(625nm)により追跡され、本基質のシアリダーゼに対
する速度論量を決定した(Km=1.62×10-3M)。ま
た本基質(1)は天然型β−ガラクトシダーゼ(β−Gala
ctosidase;EC3.2.1.23)との反応では分解されな
いことが判明し、本基質のシアリダーゼに対する基質特
異性が証明された。
The action and effect of the present invention The reactivity and substrate specificity of the chromogenic substrate (1) of the present invention were investigated. The substrate (1) was rapidly decomposed by a natural sialidase (EC 3.2.1.18) and exhibited a blue color. This reaction is absorptiometry
(625 nm) followed to determine the kinetic amount of this substrate for sialidase (Km = 1.62 × 10 −3 M). In addition, this substrate (1) is a natural β-galactosidase (β-Gala
It was found that it was not decomposed in the reaction with ctosidase; EC 3.2.1.23), and the substrate specificity of this substrate for sialidase was proved.

【0010】以上のことから、本基質(1)は、組み換
えDNA技術による新規シアリダーゼ様酵素の検索ある
いは菌株からの検索のために効果的なスクリーニング法
として利用できる。さらに医療分野においては天然型シ
アリダーゼの体内活性の測定のために臨床検査試薬とし
ての応用性が期待できる。以下に実施例を挙げ、本発明
をさらに詳しく説明する。尚、実施例中の化合物番号
は、反応式2で示した化合物番号と一致している。
From the above, this substrate (1) can be used as an effective screening method for the search for a novel sialidase-like enzyme by recombinant DNA technology or the search for bacterial strains. Further, in the medical field, applicability as a clinical test reagent can be expected for measuring the in-vivo activity of natural sialidase. Hereinafter, the present invention will be described in more detail with reference to examples. The compound numbers in the examples are the same as the compound numbers shown in Reaction Scheme 2.

【0011】実施例1 アセチル体(4)の合成 シアル酸(3)(2.05g,6.63mmol)をピリジン(2
5ml)に懸濁し、氷冷下無水酢酸(30ml)を加え1時間
後室温にもどし一夜攪拌した。減圧濃縮した後残渣にト
ルエンを加え減圧濃縮した。トルエンを加え減圧濃縮す
る操作を3回繰り返した。残渣をメタノール(20ml)に
溶解し、ジアゾメタンのエーテル溶液を反応溶液が黄色
になるまで加え5分間放置した。酢酸を加えて過剰のジ
アゾメタンを分解した後減圧濃縮した。残渣をシリカゲ
ルカラムクロマトにより精製した(シリカゲル:50g,溶
出溶液:トルエン−酢酸エチル(1:1)〜酢酸エチル)。
目的物の分画を減圧濃縮し油状物を得た。収量:3.2
8g(92.7%)。
Example 1 Synthesis of acetyl derivative (4) Sialic acid (3) (2.05 g, 6.63 mmol) was added to pyridine (2).
The mixture was suspended in 5 ml), acetic anhydride (30 ml) was added under ice cooling, and after 1 hour, the mixture was returned to room temperature and stirred overnight. After concentration under reduced pressure, toluene was added to the residue and the mixture was concentrated under reduced pressure. The operation of adding toluene and concentrating under reduced pressure was repeated 3 times. The residue was dissolved in methanol (20 ml), an ether solution of diazomethane was added until the reaction solution became yellow, and the mixture was left for 5 minutes. Acetic acid was added to decompose excess diazomethane and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (silica gel: 50 g, elution solution: toluene-ethyl acetate (1: 1) -ethyl acetate).
The target fraction was concentrated under reduced pressure to obtain an oily substance. Yield: 3.2
8 g (92.7%).

【0012】実施例2 インドール誘導体(6)の合成 3−アセトキシ−1−アセチル−5−ブロモ−4−クロ
ロ−インドール(1.00g,3.03mmol)をアルゴン置換
した後、氷水下に80%硫酸(5ml)を加え、その後室温
で50分攪拌した。氷を加えて溶液を約80mlにした
後、析出した結晶を濾取した。収量:844mg(96.5
%)。
Example 2 Synthesis of indole derivative (6) 3-acetoxy-1-acetyl-5-bromo-4-chloro-indole (1.00 g, 3.03 mmol) was replaced with argon, and then 80% under ice water. Sulfuric acid (5 ml) was added, followed by stirring at room temperature for 50 minutes. Ice was added to make the solution about 80 ml, and the precipitated crystals were collected by filtration. Yield: 844 mg (96.5)
%).

【0013】実施例3 縮合体(7)の合成 アセチル体(4)(533mg,1.00mmol)を塩化アセチル
(10ml)に溶解し、氷冷下に飽和塩化水素−塩化アセチ
ル溶液(5ml)を加えて室温で一夜攪拌した。減圧濃縮し
残渣にトルエンを加え濃縮した。この操作を3回繰り返
すと結晶が得られた。このようにして得られた結晶をD
MF(2.5ml)に溶解した溶液を、インドール誘導体
(6)(289mg,1.00mmol)をDMF(2.5ml)に溶
解し氷冷下に水素化ナトリウム(24mg,1.00mmol)を
加えた溶液に加え氷冷下に1時間、その後室温で一夜攪
拌した。減圧濃縮した後10%クエン酸水溶液と酢酸エ
チルを加え、酢酸エチル層を水洗した。無水硫酸マグネ
シウムで乾燥し減圧濃縮した。残渣をシリカゲルカラム
により精製し、縮合体(7)を得た。収量:547mg
(71.8%)。
Example 3 Synthesis of Condensate (7) Acetyl derivative (4) (533 mg, 1.00 mmol) was converted to acetyl chloride.
It was dissolved in (10 ml), saturated hydrogen chloride-acetyl chloride solution (5 ml) was added under ice cooling, and the mixture was stirred at room temperature overnight. After concentration under reduced pressure, toluene was added to the residue and the mixture was concentrated. This operation was repeated 3 times to obtain crystals. The crystals thus obtained are D
The solution in MF (2.5 ml) was dissolved in indole derivative (6) (289 mg, 1.00 mmol) in DMF (2.5 ml), and sodium hydride (24 mg, 1.00 mmol) was added under ice cooling. The above solution was added, and the mixture was stirred under ice cooling for 1 hour and then at room temperature overnight. After concentration under reduced pressure, 10% aqueous citric acid solution and ethyl acetate were added, and the ethyl acetate layer was washed with water. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column to obtain a condensate (7). Yield: 547mg
(71.8%).

【0014】実施例4 発色性基質(1)の合成 化合物(7)(260mg,341μmol)をメタノール(15m
l)に溶解し28%ナトリウムメトキシド(45μl)を加
えて室温で2時間反応した。アンバーリスト15を加え
pH7にした後減圧濃縮した。残渣を水(3ml)に溶解し
1M−水酸化ナトリウム(600μmol)を加えて室温で
30分攪拌した。アンバーリスト15を加えpH2にし
た後、ただちに樹脂を濾過し濾液に1M酢酸アンモニウ
ム(pH7.0)(10ml)を加えて凍結乾燥した。残渣をH
PLCにより精製した(コスモシール5C18、10×2
50mm、アセトニトリル−50mmol酢酸アンモニウム緩
衝溶液、グラジエント10%−40%アセトニトリル
(15分)、流速3ml/分、検出254nm、保持時間1
5.0分)。保持時間15.0分のピークを分取し、凍結
乾燥した。残渣として含まれている酢酸アンモニウムを
HPLCにより除去し目的した発色性基質(1)を得た
(コスモシール5C18、10×250mm、アセトニトリ
ル−水、グラジエント10%−80%アセトニトリル
(10分)、流速3ml/分、検出254nm)。収量:10
0mg(54.5%)。融点:158〜160℃。NMR
(δ,ppm):1.79(dd,J=12.0,12.0H
z,1H),1.91(s,3H),2.82(dd,J=1
2.0,4.4Hz,1H),3.46〜3.77(m,7
H),7.13(d,J=8.8Hz,1H),7.28
(d,J=8.8Hz,1H)。NMRはD2O(重水)で
測定した。
Example 4 Synthesis of chromogenic substrate (1) Compound (7) (260 mg, 341 μmol) was added to methanol (15 m).
28% sodium methoxide (45 μl) was added and the mixture was reacted at room temperature for 2 hours. Add Amberlist 15
It was adjusted to pH 7 and concentrated under reduced pressure. The residue was dissolved in water (3 ml), 1M sodium hydroxide (600 μmol) was added, and the mixture was stirred at room temperature for 30 min. After adding Amberlyst 15 to adjust to pH 2, the resin was immediately filtered, and 1 M ammonium acetate (pH 7.0) (10 ml) was added to the filtrate and freeze-dried. The residue is H
Purified by PLC (Cosmo Seal 5C 18 , 10 × 2
50 mm, acetonitrile-50 mmol ammonium acetate buffer solution, gradient 10% -40% acetonitrile
(15 minutes), flow rate 3 ml / min, detection 254 nm, retention time 1
5.0 minutes). The peak with a retention time of 15.0 minutes was collected and freeze-dried. Ammonium acetate contained as a residue was removed by HPLC to obtain the desired chromogenic substrate (1).
(Cosmo Seal 5 C 18 , 10 × 250 mm, acetonitrile-water, gradient 10% -80% acetonitrile
(10 min), flow rate 3 ml / min, detection 254 nm). Yield: 10
0 mg (54.5%). Melting point: 158-160 ° C. NMR
(Δ, ppm): 1.79 (dd, J = 12.0, 12.0H
z, 1H), 1.91 (s, 3H), 2.82 (dd, J = 1
2.0, 4.4 Hz, 1 H), 3.46 to 3.77 (m, 7
H), 7.13 (d, J = 8.8Hz, 1H), 7.28
(D, J = 8.8Hz, 1H). NMR was measured with D 2 O (heavy water).

【0015】実施例5 速度論量の決定 天然シアリダーゼ(0.04unit)とウシ血清アルブミン
(0.03%)の200mM酢酸カリウム緩衝液(pH4.6
2)0.9mlを恒温層で25℃に保つ。これに基質(1)の
各種濃度(40mM,20mM,10mM,5mM,2.5mM)溶
液0.1mlを加え、すばやく振盪したのち吸光光度計で
吸収(625nm)の増加を、30分間追跡した。得られた
結果よりシアリダーゼの本基質(1)に対するKm値を1.
62×10-3Mと決定した。
Example 5 Determination of kinetic amount Natural sialidase (0.04 unit) and bovine serum albumin
(0.03%) of 200 mM potassium acetate buffer (pH 4.6)
2) Keep 0.9 ml in a constant temperature layer at 25 ° C. To this, 0.1 ml of various concentrations (40 mM, 20 mM, 10 mM, 5 mM, 2.5 mM) of the substrate (1) was added, and after rapid shaking, the increase in absorption (625 nm) was monitored with an absorptiometer for 30 minutes. From the results obtained, the Km value of sialidase for this substrate (1) was 1.
It was determined to be 62 × 10 −3 M.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記式1で表わされる化合物。 【化1】 1. A compound represented by the following formula 1. [Chemical 1]
JP15327592A 1992-06-12 1992-06-12 Method for producing 5-bromo-4-chloroindo-3-yl-2-sialic acid Expired - Lifetime JP2904647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15327592A JP2904647B2 (en) 1992-06-12 1992-06-12 Method for producing 5-bromo-4-chloroindo-3-yl-2-sialic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15327592A JP2904647B2 (en) 1992-06-12 1992-06-12 Method for producing 5-bromo-4-chloroindo-3-yl-2-sialic acid

Publications (2)

Publication Number Publication Date
JPH05339283A true JPH05339283A (en) 1993-12-21
JP2904647B2 JP2904647B2 (en) 1999-06-14

Family

ID=15558907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15327592A Expired - Lifetime JP2904647B2 (en) 1992-06-12 1992-06-12 Method for producing 5-bromo-4-chloroindo-3-yl-2-sialic acid

Country Status (1)

Country Link
JP (1) JP2904647B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055354A3 (en) * 1999-03-17 2000-12-21 Univ Bristol A diagnostic test
JP2003522113A (en) * 1998-10-27 2003-07-22 ユーエービー リサーチ ファンデイション Chromogenic substrate for sialidase and its production and use
US6812332B2 (en) 1997-10-27 2004-11-02 Ibbex, Inc. Chromogenic substrates of sialidase and methods of making and using the same
WO2014031498A1 (en) * 2012-08-18 2014-02-27 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
US9547009B2 (en) 2012-08-21 2017-01-17 Academia Sinica Benzocyclooctyne compounds and uses thereof
US9879042B2 (en) 2014-09-08 2018-01-30 Academia Sinica Human iNKT cell activation using glycolipids
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
US9982041B2 (en) 2014-01-16 2018-05-29 Academia Sinica Compositions and methods for treatment and detection of cancers
US10005847B2 (en) 2014-05-27 2018-06-26 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
US10023892B2 (en) 2014-05-27 2018-07-17 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
US10111951B2 (en) 2013-09-06 2018-10-30 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
US10119972B2 (en) 2014-03-27 2018-11-06 Academia Sinica Reactive labelling compounds and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US10274488B2 (en) 2008-07-15 2019-04-30 Academia Sinica Glycan arrays on PTFE-like aluminum coated glass slides and related methods
US10317393B2 (en) 2007-03-23 2019-06-11 Academia Sinica Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells
US10338069B2 (en) 2010-04-12 2019-07-02 Academia Sinica Glycan arrays for high throughput screening of viruses
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
US10342858B2 (en) 2015-01-24 2019-07-09 Academia Sinica Glycan conjugates and methods of use thereof
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
CN110683981A (en) * 2019-09-05 2020-01-14 湖南恒泰生物医药有限公司 Synthesis method of 5-bromo-4-chloro-1-acetyl-3-indophenol
US10538592B2 (en) 2016-08-22 2020-01-21 Cho Pharma, Inc. Antibodies, binding fragments, and methods of use
US11332523B2 (en) 2014-05-28 2022-05-17 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11884739B2 (en) 2014-05-27 2024-01-30 Academia Sinica Anti-CD20 glycoantibodies and uses thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812332B2 (en) 1997-10-27 2004-11-02 Ibbex, Inc. Chromogenic substrates of sialidase and methods of making and using the same
US6844346B2 (en) 1997-10-27 2005-01-18 Ibbex, Inc. Chromogenic substrates of sialidase and methods of making and using the same
JP2003522113A (en) * 1998-10-27 2003-07-22 ユーエービー リサーチ ファンデイション Chromogenic substrate for sialidase and its production and use
JP2003503009A (en) * 1999-03-17 2003-01-28 ユニバーシティ・オブ・ブリストル Diagnostic test
EP2107121A3 (en) * 1999-03-17 2009-11-18 The University of Bristol A diagnostic test for bacterial vaginosis
WO2000055354A3 (en) * 1999-03-17 2000-12-21 Univ Bristol A diagnostic test
US10317393B2 (en) 2007-03-23 2019-06-11 Academia Sinica Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells
US10274488B2 (en) 2008-07-15 2019-04-30 Academia Sinica Glycan arrays on PTFE-like aluminum coated glass slides and related methods
US11267870B2 (en) 2009-12-02 2022-03-08 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10338069B2 (en) 2010-04-12 2019-07-02 Academia Sinica Glycan arrays for high throughput screening of viruses
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US9914956B2 (en) 2012-08-18 2018-03-13 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
US10214765B2 (en) 2012-08-18 2019-02-26 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
WO2014031498A1 (en) * 2012-08-18 2014-02-27 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
US9547009B2 (en) 2012-08-21 2017-01-17 Academia Sinica Benzocyclooctyne compounds and uses thereof
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
US10111951B2 (en) 2013-09-06 2018-10-30 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
US10918714B2 (en) 2013-09-06 2021-02-16 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
US9982041B2 (en) 2014-01-16 2018-05-29 Academia Sinica Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US10119972B2 (en) 2014-03-27 2018-11-06 Academia Sinica Reactive labelling compounds and uses thereof
US10618973B2 (en) 2014-05-27 2020-04-14 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
US10023892B2 (en) 2014-05-27 2018-07-17 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US11884739B2 (en) 2014-05-27 2024-01-30 Academia Sinica Anti-CD20 glycoantibodies and uses thereof
US11319567B2 (en) 2014-05-27 2022-05-03 Academia Sinica Fucosidase from bacteroides and methods using the same
US10005847B2 (en) 2014-05-27 2018-06-26 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US11332523B2 (en) 2014-05-28 2022-05-17 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
US10533034B2 (en) 2014-09-08 2020-01-14 Academia Sinica Human iNKT cell activation using glycolipids
US9879042B2 (en) 2014-09-08 2018-01-30 Academia Sinica Human iNKT cell activation using glycolipids
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
US10342858B2 (en) 2015-01-24 2019-07-09 Academia Sinica Glycan conjugates and methods of use thereof
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
US10538592B2 (en) 2016-08-22 2020-01-21 Cho Pharma, Inc. Antibodies, binding fragments, and methods of use
CN110683981A (en) * 2019-09-05 2020-01-14 湖南恒泰生物医药有限公司 Synthesis method of 5-bromo-4-chloro-1-acetyl-3-indophenol

Also Published As

Publication number Publication date
JP2904647B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JPH05339283A (en) 5-bromo-4-chloroindo-3-yl-2-sialic acid
JPS60252464A (en) Substrates for hydrolase and manufacture
Takaku et al. Synthesis of oligoribonucleotides using 4-methoxybenzyl group as a new protecting group of the 2′-hydroxyl group of adenosine
JPS6345293A (en) Sialosylceramide compound and production thereof
US5633366A (en) Pyrimidine nucleoside derivatives and methods for producing them
Salo et al. Synthesis of 2-acetamido-2-deoxy-α-D-mannopyranosyl phosphate and uridine 5'-(2-acetamido-2-deoxy-α-D-mannopyranosyl dipotassium pyrophosphate
US5011923A (en) Polyacetyl oligosaccharide derivatives
US4774327A (en) N-glycolylneuraminic acid derivative
Yamamoto N-Acyl Specificity of Taka-N-acetyl-β-D-glucosaminidase Studied by Synthetic Substrate Analogs II. Preparation of Some p-Nitrophenyl 2-Halogenoacetylamino-2-deoxy-β-D-glucopyranosides and Their Susceptibility to Enzymic Hydrolysis
Matta et al. Synthesis of p-nitrophenyl 2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-D-galactopyranosides
CN109929003B (en) Tetraphenylethylene compound containing sialic acid glycosyl unit, preparation method and application
Sakairi et al. Chemical behavior of benzylidene acetal groups bridging the contiguous glucose residues in malto-oligosaccharide derivatives
Classon et al. Novel Route to 4-Thiofuranosides. Synthesis of Methyl 4-Thio-α-D-Talofuranoside
JPS61282390A (en) S-neuraminic acid derivative
JP3638644B2 (en) Method for producing optically active chroman compound
US5300634A (en) Process for producing maltooligosaccharide derivative
JPS633875B2 (en)
Barrett Amide transacylation in penicillin and cephalosporin derivatives
SU1497185A1 (en) Method of producing prostaglandins
JPS60130539A (en) Preparation of optically active styrene halohydrin
JPH0372493A (en) Production of 2'-o-substituted-adenosine-3',5'-cyclic phosphoric acid or its salt
KR930005870B1 (en) Deoxyinosine by enzymatic deamination of dideoxyadenosine
WO1995032211A1 (en) Ganglioside having fluorescence-labelled ceramide portion and process for producing the same
JPS6230798A (en) Proruction of griseolic acid derivative
JPS6150995A (en) Preparation of tunicamycin and derivative thereof and novel tunicamycin derivative