JP3638644B2 - Method for producing optically active chroman compound - Google Patents

Method for producing optically active chroman compound Download PDF

Info

Publication number
JP3638644B2
JP3638644B2 JP27851694A JP27851694A JP3638644B2 JP 3638644 B2 JP3638644 B2 JP 3638644B2 JP 27851694 A JP27851694 A JP 27851694A JP 27851694 A JP27851694 A JP 27851694A JP 3638644 B2 JP3638644 B2 JP 3638644B2
Authority
JP
Japan
Prior art keywords
lipase
optically active
formula
manufactured
sangyo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27851694A
Other languages
Japanese (ja)
Other versions
JPH08119958A (en
Inventor
裕祐 高畑
正浩 鳥原
洋進 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27851694A priority Critical patent/JP3638644B2/en
Publication of JPH08119958A publication Critical patent/JPH08119958A/en
Application granted granted Critical
Publication of JP3638644B2 publication Critical patent/JP3638644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、医薬品、農薬の中間体となるクロマン化合物の光学活性体の製造方法に関する。
【0002】
【従来の技術】
光学活性なクロマン化合物の製造方法としては、式(4)の2−ヒドロキシエチルクロマン化合物を酵素により不斉加水分解するか、あるいは不斉アシル化することによって得る方法が知られている(特開平4−190795号公報)。
【0003】
【化4】

Figure 0003638644
【0004】
また、式(5)に示すカルボン酸を光学活性アミンを用いて、光学分割する方法も知られている(Helvetica Chimica Acta,vol.59,290(1976))。
【0005】
【化5】
Figure 0003638644
【0006】
ところが、式(2)および式(3)で表されるクロマン化合物についてはその光学活性体自体および製造方法は知られていない。
【0007】
【化6】
Figure 0003638644
【0008】
【化7】
Figure 0003638644
【0009】
【発明が解決しようとする課題】
発明の目的は、医薬品、農薬の中間体として重要な式(2)および式(3)で表されるクロマン化合物の光学活性体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題につき鋭意検討の結果、本発明に到達した。すなわち本発明は、式(1)
【0011】
【化8】
Figure 0003638644
【0012】
で表される化合物に、リパーゼ・266(名糖産業社製)、リパーゼ・QL(名糖産業社製)、リパーゼ・QLG(名糖産業社製)、リパーゼ・AY「アマノ」30(天野製薬社製)およびリパーゼ・MY(名糖産業社製)からなる群から選ばれる少なくとも1種の不斉加水分解能を有する酵素を水系溶媒中で作用させることにより該化合物を加水分解し、光学活性な式(2)
【0013】
【化9】
Figure 0003638644
【0014】
で表されるクロマン化合物とその対掌体のエステルである式(3)
【0015】
【化10】
Figure 0003638644
【0016】
で表される光学活性なクロマン化合物を得ることを特徴とする光学活性クロマン化合物の製造方法に関する。
【0017】
本反応により、反応原料である光学異性体のうちの一方のみが加水分解されて式(2)で表される光学活性なクロマン化合物となり、他方は未反応のまま式(3)で表される光学活性なクロマン化合物として残るので、両者の化合物を物性(極性等)の違いを利用して分離することで、目的とする光学活性クロマン化合物を得ることができる。
【0018】
これらの式中、アラルキル基としてはベンジル基、フェネチル基等が挙げられ、アルカノイル基としてはアセル基等が挙げられ、アロイル基としてはベンゾイル基等が挙げられる。
【0019】
本発明において用いられる、式(1)で表わされる化合物を不斉加水分解する活性を有する素としては、リパーゼ・266(アルカリゲネス属由来、名糖産業社製)、リパーゼ・QL(アルカリゲネス属由来、名糖産業社製)、リパーゼ・QLG(リパーゼ・QLの固定化酵素、名糖産業社製)、リパーゼ・AY「アマノ」30(キャンディダ属由来、天野製薬社製)およびリパーゼ・MY(キャンディダ属由来、名糖産業社製)が挙げられる
【0020】
本発明において反応原料として用いられる式(1)で表される化合物は、先に本発明者らの一部が特願平5−264186号で提案した方法にしたがって、式(6)で表されるフェノール化合物、
【0021】
【化11】
Figure 0003638644
【0022】
ホルムアルデヒド類およびメタリルアルコールをジブチルアミンなどの第二級アミンおよび酢酸などの酸の存在下に反応させることによって式(7)で表されるクロマン骨格を有する化合物を得、次いで該化合物中の水酸基をアルカノイロキシ基又はアロイロキシ基に変換することにより容易に製造することができる。
【0023】
【化12】
Figure 0003638644
【0024】
不斉加水分解反応は、水系溶媒中、式(1)で表される化合物と酵素とを混合して、撹拌または振とうし、温度は10〜70℃程度、pHは5〜8付近で行われる。水系溶媒としては、基質の分散をよくするためにアセトン、アセトニトリル等の有機溶媒と水を混合したものを使用するのがよい。また、加水分解によって生じたカルボン酸から反応液のpHを一定に保つため、緩衝液の使用が好ましい。反応時間は、1時間から1週間程度である。基質濃度は反応液に対して0.1〜20重量%、酵素量は基質の重量に対して0.1〜100重量%で用いられる。
【0025】
反応後の生成物および残存基質の単離、精製方法としては、反応液から酵素をろ別した後、溶媒抽出、減圧濃縮、シリカゲルクロマトグラフィー等の工程を経ることによって行うことができる。
【0026】
【実施例】
以下に実施例を示す。
【0027】
なお、実施例中の化合物の光学純度の分析は、光学活性体分離用カラムを装着した高速液体クロマトグラフィー(HPLC)を用いて行った。分析条件は以下の通りである。
【0028】
カラム;CHIRALPAK AS 4.6 φmm×250 mm(ダイセル化学社製)
溶離液;ヘキサン:イソプロピルアルコール=20:1
流速 ;1.0 ml/分
検出 ;UV 254 nm
転化率については、前記条件で内標分析によって行った。収率については、生成物および、残存基質を単離、精製することによって求めた。
【0029】
参考例
(1)6−アセトキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンの合成
特願平5−264186号の方法にしたがって反応を行った。
【0030】
トリメチルヒドロキノン(以下、TMHQと記す)304gとトリエチルアミン486gを塩化メチレン700mlに溶解し、無水酢酸491gを滴下した。15℃で4時間撹拌した後、洗浄、減圧濃縮、再結晶を行い、TMHQのジアセテート461gを得た。TMHQのジアセテート461gと二亜硫酸ナトリウム25gをメタノール1500mlに溶解し、22重量%炭酸カリウム水溶液313gを滴下し、35℃で1時間撹拌した。抽出、洗浄、減圧濃縮、再結晶を行い、TMHQのモノアセテート354gを得た。TMHQのモノアセテート55gとパラホルムアルデヒド1.1当量、ジブチルアミン0.1当量、酢酸0.5当量、メタリルアルコール5当量をオートクレーブに入れ、170℃で加圧下4時間撹拌した。抽出、洗浄、減圧濃縮を行い、シリカゲルクロマトグラフィーで精製し、6−アセトキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマン67gを得た。
【0031】
(2)6−ヒドロキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンの合成
上記(1)で得た6−アセトキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマン30gをメタノール60gに溶解し、10重量%水酸化ナトリウム水溶液54gを滴下し、50℃で3時間撹拌した。中和、抽出、洗浄、減圧濃縮を行った後、再結晶によって精製し、6−ヒドロキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマン22gを得た。
【0032】
(3)6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンの合成
上記(2)で合成した6−ヒドロキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマン10gをジメチルフォルムアミド70gに溶解し、水素化ナトリウム1当量を含むジメチルフォルアミド懸濁液70ml中に滴下した。室温で1時間攪拌した後、氷冷しながら塩化ベンジル5.4gを滴下し、室温に戻して3時間攪拌した。水30mlを添加して反応を終了し、酢酸エチルで抽出し、5%硫酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。ろ過後、シリカゲルカラムクロマトグラフィーにて精製し、結晶12.8gを得た。この結晶は、下記のNMRの分析値を示し6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンと同定した。
【0033】
H−NMR(CDClδ:1.27(3H,s),2.14(3H,s),2.21(3H,s),2.25(3H,s),2.68(2H,t),3.66(2H,m),4.72(2H,s),7.2〜7.6(5H,m)
【0034】
(4)6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマンの合成
上記(3)で合成した6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマン5gをピリジン30mlに溶解し、1.5当量の塩化アセチルを滴下した後、室温で6時間撹拌した。酢酸エチルと5%硫酸水を加えて抽出を行い、酢酸エチル層を飽和重曹水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した後、ろ過を行い、減圧濃縮した。残査をシリカゲルカラムクロマトグラフィーにて精製し、結晶5.59gを得た。この結晶は、下記のNMRの分析値を示し、6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマンと同定した。
【0035】
H−NMR(CDClδ:1.33(3H,s),2.12(6H,s),2.20(3H,s),2.25(3H,s),2.66(2H,t),4.15(2H,m),4.72(2H,s),7.2〜7.6(5H,m)
【0036】
実施例1
6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマン1.5gをアセトニトリル5mlに溶解し、燐酸カリウム緩衝液(pH)45mlを加え、リパーゼ・266 0.5gを添加し、37℃で34時間撹拌した。酵素をろ別した後、酢酸エチルで抽出し、カラムクロマトグラフィーにて精製したところ、高極性物質と低極性物質の2種類が回収された。NMRで分析したところ、高極性物質は、以下のような分析値を示し、生成物6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンであることがわかった。
【0037】
H−NMR(CDClδ:1.27(3H,s),2.14(3H,s),2.21(3H,s),2.25(3H,s),2.68(2H,t),3.66(2H,m),4.72(2H,s),7.2〜7.6(5H,m)
また、低極性物質は、以下のような分析値を示し、残存基質6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマンであることがわかった。
【0038】
H−NMR(CDClδ:1.33(3H,s),2.12(6H,s),2.20(3H,s),2.25(3H,s),2.66(2H,t),4.15(2H,m),4.72(2H,s),7.2〜7.6(5H,m)
HPLCで分析したところ、転化率69.4%、残存基質6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマンの光学純度は38.6%eeで、生成物6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンの光学純度は77.9%eeであった。また、残存基質の収率は54.7%、生成物の収率は41.2%であった。
【0039】
実施例2
6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマン0.28gをアセトニリル1mlに溶解後、燐酸カリウム緩衝液(pH7)9mlを加え、リパーゼ・MY 0.2gを添加し、37℃で56時間攪拌した。生成物および残存基質を酢酸エチルで抽出し、HPLCで分析したところ、転化率41.7%、残存基質6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマンの光学純度は19.1%ee、生成物6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンの光学純度は27.7%eeであった。
【0040】
実施例3
6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマン0.28gをアセトニリル1mlに溶解後、燐酸カリウム緩衝液(pH7)9mlを加え、リパーゼ・AY「アマノ」30 0.2gを添加し、37℃で27時間攪拌した。生成物および残存基質を酢酸エチルで抽出し、HPLCで分析したところ、転化率54.3%、残存基質6−ベンジルオキシ−2−アセトキシメチル−2,5,7,8−テトラメチルクロマンの光学純度は44.9%ee、生成物6−ベンジルオキシ−2−ヒドロキシメチル−2,5,7,8−テトラメチルクロマンの光学純度は24.0%eeであった。
【0041】
【発明の効果】
本発明によれば、医薬品、農薬の中間体となるクロマン化合物の光学活性体を効率よく製造することができる。[0001]
[Industrial application fields]
The present invention relates to a method for producing an optically active chroman compound which is an intermediate for pharmaceuticals and agricultural chemicals.
[0002]
[Prior art]
As a method for producing an optically active chroman compound, a method is known in which the 2-hydroxyethyl chroman compound of the formula (4) is obtained by asymmetric hydrolysis or asymmetric acylation with an enzyme (Japanese Patent Laid-Open No. Hei. 4-190795).
[0003]
[Formula 4]
Figure 0003638644
[0004]
In addition, a method for optical resolution of a carboxylic acid represented by the formula (5) using an optically active amine is also known (Helvetica Chimica Acta, vol. 59, 290 (1976)).
[0005]
[Chemical formula 5]
Figure 0003638644
[0006]
However, for the chroman compounds represented by the formulas (2) and (3), the optically active substance itself and the production method are not known.
[0007]
[Chemical 6]
Figure 0003638644
[0008]
[Chemical 7]
Figure 0003638644
[0009]
[Problems to be solved by the invention]
An object of the invention is to provide a method for producing an optically active substance of a chroman compound represented by the formulas (2) and (3), which is important as an intermediate for pharmaceuticals and agricultural chemicals.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have arrived at the present invention as a result of intensive studies on the above problems. That is, the present invention provides the formula (1)
[0011]
[Chemical 8]
Figure 0003638644
[0012]
Lipase · 266 (manufactured by Meika Sangyo Co., Ltd.), lipase QL (manufactured by Meishoku Sangyo Co., Ltd.), lipase · QLG (manufactured by Meito Sugar Sangyo Co., Ltd.), lipase AY “Amano” 30 (Amano Pharmaceutical) And lipase MY (manufactured by Meisei Sangyo Co., Ltd.), the compound is hydrolyzed by reacting at least one enzyme selected from the group consisting of asymmetric hydrolytic ability in an aqueous solvent. Formula (2)
[0013]
[Chemical 9]
Figure 0003638644
[0014]
A chroman compound represented by the formula (3)
[0015]
[Chemical Formula 10]
Figure 0003638644
[0016]
It is related with the manufacturing method of the optically active chroman compound characterized by obtaining the optically active chroman compound represented by these.
[0017]
By this reaction, only one of the optical isomers as a reaction raw material is hydrolyzed to become an optically active chroman compound represented by the formula (2), and the other is unreacted and represented by the formula (3). Since it remains as an optically active chroman compound, the target optically active chroman compound can be obtained by separating the two compounds using the difference in physical properties (polarity, etc.).
[0018]
In these formulas, the benzyl group as the aralkyl group, phenethyl group and the like, such as acetate Chi le group and the like as alkanoyl group, the aroyl group and the like benzoyl group.
[0019]
Used in the present invention, in the enzyme with a compound having an asymmetric hydrolyzing activity represented by the formula (1), lipase 266 (Alcaligenes genus, manufactured by Meito Sangyo Co., Ltd.), lipase QL (Alcaligenes Genus, manufactured by Meika Sangyo Co., Ltd., lipase QLG (lipase / QL immobilized enzyme, Meika Sangyo Co., Ltd.), lipase AY “Amano” 30 (Candida genus, Amano Pharmaceutical Co., Ltd.) and lipase MY (derived from the genus Candida, manufactured by Meisei Sangyo Co., Ltd. ) .
[0020]
The compound represented by the formula (1) used as a reaction raw material in the present invention is represented by the formula (6) according to a method previously proposed by some of the inventors in Japanese Patent Application No. 5-264186. Phenolic compounds,
[0021]
Embedded image
Figure 0003638644
[0022]
A compound having a chroman skeleton represented by formula (7) is obtained by reacting formaldehyde and methallyl alcohol in the presence of a secondary amine such as dibutylamine and an acid such as acetic acid, and then a hydroxyl group in the compound is obtained. the it can be more easily produced in converting the alkanoyloxy group or Aroirokishi group.
[0023]
Embedded image
Figure 0003638644
[0024]
The asymmetric hydrolysis reaction is performed by mixing the compound represented by the formula (1) and an enzyme in an aqueous solvent, stirring or shaking, the temperature is about 10 to 70 ° C., and the pH is about 5 to 8. Is called. As the aqueous solvent, a mixture of water and an organic solvent such as acetone or acetonitrile is preferably used in order to improve the dispersion of the substrate. Further, it is preferable to use a buffer solution in order to keep the pH of the reaction solution constant from the carboxylic acid generated by hydrolysis. The reaction time is about 1 hour to 1 week. The substrate concentration is 0.1 to 20% by weight with respect to the reaction solution, and the enzyme amount is 0.1 to 100% by weight with respect to the weight of the substrate.
[0025]
The product after the reaction and the remaining substrate can be isolated and purified by separating the enzyme from the reaction solution and then performing steps such as solvent extraction, concentration under reduced pressure, and silica gel chromatography.
[0026]
【Example】
Examples are shown below.
[0027]
In addition, the analysis of the optical purity of the compound in an Example was performed using the high performance liquid chromatography (HPLC) equipped with the column for optically active substance isolation | separation. The analysis conditions are as follows.
[0028]
Column; CHIRALPAK AS 4.6 φmm × 250 mm (manufactured by Daicel Chemical Industries)
Eluent; hexane: isopropyl alcohol = 20: 1
Flow rate; 1.0 ml / min detection; UV 254 nm
About the conversion rate, it carried out by the internal standard analysis on the said conditions. The yield was determined by isolating and purifying the product and the remaining substrate.
[0029]
Reference Example (1) Synthesis of 6-acetoxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman The reaction was carried out according to the method of Japanese Patent Application No. 5-264186.
[0030]
304 g of trimethylhydroquinone (hereinafter referred to as TMHQ) and 486 g of triethylamine were dissolved in 700 ml of methylene chloride, and 491 g of acetic anhydride was added dropwise. After stirring at 15 ° C. for 4 hours, washing, concentration under reduced pressure, and recrystallization were performed to obtain 461 g of TMHQ diacetate. 461 g of TMHQ diacetate and 25 g of sodium disulfite were dissolved in 1500 ml of methanol, 313 g of 22 wt% potassium carbonate aqueous solution was added dropwise, and the mixture was stirred at 35 ° C. for 1 hour. Extraction, washing, concentration under reduced pressure, and recrystallization were performed to obtain 354 g of TMHQ monoacetate. 55 g of TMHQ monoacetate, 1.1 equivalents of paraformaldehyde, 0.1 equivalents of dibutylamine, 0.5 equivalents of acetic acid, and 5 equivalents of methallyl alcohol were placed in an autoclave and stirred at 170 ° C. under pressure for 4 hours. Extraction, washing, concentration under reduced pressure and purification by silica gel chromatography gave 67 g of 6-acetoxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman.
[0031]
(2) Synthesis of 6-hydroxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman 6-Acetoxy-2-hydroxymethyl-2,5,7,8-tetra obtained in (1) above 30 g of methylchroman was dissolved in 60 g of methanol, 54 g of a 10 wt% aqueous sodium hydroxide solution was added dropwise, and the mixture was stirred at 50 ° C. for 3 hours. After neutralization, extraction, washing and concentration under reduced pressure, purification by recrystallization gave 22 g of 6-hydroxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman.
[0032]
(3) Synthesis of 6-benzyloxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman 6-hydroxy-2-hydroxymethyl-2,5,7,8- synthesized in (2) above tetramethyl chroman 10g was dissolved in dimethylformamide 70 g, was added dropwise to dimethyl folder arm amide suspension in 70ml containing sodium hydride 1 eq. After stirring at room temperature for 1 hour, 5.4 g of benzyl chloride was added dropwise while cooling with ice, and the mixture was returned to room temperature and stirred for 3 hours. The reaction was terminated by adding 30 ml of water, extracted with ethyl acetate, washed with 5% aqueous sulfuric acid, saturated aqueous sodium hydrogen carbonate, and saturated brine, and then dried over anhydrous magnesium sulfate. After filtration, the product was purified by silica gel column chromatography to obtain 12.8 g of crystals. This crystal showed the following NMR analysis value and was identified as 6-benzyloxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman.
[0033]
1 H-NMR (CDCl 3 ) δ: 1.27 (3H, s), 2.14 (3H, s), 2.21 (3H, s), 2.25 (3H, s), 2.68 ( 2H, t), 3.66 (2H, m), 4.72 (2H, s), 7.2 to 7.6 (5H, m)
[0034]
(4) Synthesis of 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethylchroman 6-benzyloxy-2-hydroxymethyl-2,5,7,8 synthesized in (3) above -5 g of tetramethylchroman was dissolved in 30 ml of pyridine, 1.5 equivalents of acetyl chloride was added dropwise, and the mixture was stirred at room temperature for 6 hours. Extraction was performed by adding ethyl acetate and 5% aqueous sulfuric acid, and the ethyl acetate layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain 5.59 g of crystals. This crystal showed the following NMR analysis value and was identified as 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethylchroman.
[0035]
1 H-NMR (CDCl 3 ) δ: 1.33 (3H, s), 2.12 (6H, s), 2.20 (3H, s), 2.25 (3H, s), 2.66 ( 2H, t), 4.15 (2H, m), 4.72 (2H, s), 7.2 to 7.6 (5H, m)
[0036]
Example 1
Dissolve 1.5 g of 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethylchroman in 5 ml of acetonitrile, add 45 ml of potassium phosphate buffer (pH), and add 0.5 g of lipase 266 And stirred at 37 ° C. for 34 hours. After the enzyme was filtered off, it was extracted with ethyl acetate and purified by column chromatography. As a result, two types of highly polar substances and low polarity substances were recovered. Analysis by NMR revealed that the highly polar substance showed the following analytical value and was the product 6-benzyloxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman.
[0037]
1 H-NMR (CDCl 3 ) δ: 1.27 (3H, s), 2.14 (3H, s), 2.21 (3H, s), 2.25 (3H, s), 2.68 ( 2H, t), 3.66 (2H, m), 4.72 (2H, s), 7.2 to 7.6 (5H, m)
Moreover, the low polar substance showed the following analytical values and was found to be the residual substrate 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethylchroman.
[0038]
1 H-NMR (CDCl 3 ) δ: 1.33 (3H, s), 2.12 (6H, s), 2.20 (3H, s), 2.25 (3H, s), 2.66 ( 2H, t), 4.15 (2H, m), 4.72 (2H, s), 7.2 to 7.6 (5H, m)
As a result of analysis by HPLC, the conversion was 69.4%, the optical purity of the residual substrate 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethylchroman was 38.6% ee, and the product 6 The optical purity of -benzyloxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman was 77.9% ee. The yield of the remaining substrate was 54.7%, and the yield of the product was 41.2%.
[0039]
Example 2
After dissolving 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethyl-chroman 0.28g in Asetoni preparative drill 1 ml, potassium phosphate buffer (pH 7) 9 ml was added, lipase · MY 0.2 g Was added and stirred at 37 ° C. for 56 hours. The product and the remaining substrate were extracted with ethyl acetate and analyzed by HPLC. The conversion was 41.7% and the remaining substrate 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethylchroman was optically analyzed. The purity was 19.1% ee and the optical purity of the product 6-benzyloxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman was 27.7% ee.
[0040]
Example 3
After dissolving 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethyl-chroman 0.28g in Asetoni preparative drill 1 ml, potassium phosphate buffer (pH 7) 9 ml was added, Lipase · AY "Amano" 30 0.2g was added and it stirred at 37 degreeC for 27 hours. The product and residual presence substrates and extracted with ethyl acetate, was analyzed by HPLC, conversion of 54.3%, residual substrate 6-benzyloxy-2-acetoxymethyl-2,5,7,8-tetramethyl The optical purity of chroman was 44.9% ee, and the optical purity of the product 6-benzyloxy-2-hydroxymethyl-2,5,7,8-tetramethylchroman was 24.0% ee.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the optically active body of the chroman compound used as an intermediate body of a pharmaceutical and an agricultural chemical can be manufactured efficiently.

Claims (1)

式(1)
Figure 0003638644
で表される化合物に、リパーゼ・266(名糖産業社製)、リパーゼ・QL(名糖産業社製)、リパーゼ・QLG(名糖産業社製)、リパーゼ・AY「アマノ」30(天野製薬社製)およびリパーゼ・MY(名糖産業社製)からなる群から選ばれる少なくとも1種の不斉加水分解能を有する酵素を水系溶媒中で作用させることにより該化合物を加水分解し、光学活性な式(2)
Figure 0003638644
で表されるクロマン化合物とその対掌体のエステルである式(3)
Figure 0003638644
で表される光学活性なクロマン化合物を得ることを特徴とする光学活性クロマン化合物の製造方法。
Formula (1)
Figure 0003638644
Lipase · 266 (manufactured by Meika Sangyo Co., Ltd.), lipase QL (manufactured by Meishoku Sangyo Co., Ltd.), lipase · QLG (manufactured by Meito Sugar Sangyo Co., Ltd.), lipase AY “Amano” 30 (Amano Pharmaceutical) And lipase MY (manufactured by Meisei Sangyo Co., Ltd.), the compound is hydrolyzed by reacting at least one enzyme selected from the group consisting of asymmetric hydrolytic ability in an aqueous solvent. Formula (2)
Figure 0003638644
A chroman compound represented by the formula (3)
Figure 0003638644
A method for producing an optically active chroman compound, comprising obtaining an optically active chroman compound represented by the formula:
JP27851694A 1994-10-18 1994-10-18 Method for producing optically active chroman compound Expired - Fee Related JP3638644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27851694A JP3638644B2 (en) 1994-10-18 1994-10-18 Method for producing optically active chroman compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27851694A JP3638644B2 (en) 1994-10-18 1994-10-18 Method for producing optically active chroman compound

Publications (2)

Publication Number Publication Date
JPH08119958A JPH08119958A (en) 1996-05-14
JP3638644B2 true JP3638644B2 (en) 2005-04-13

Family

ID=17598381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27851694A Expired - Fee Related JP3638644B2 (en) 1994-10-18 1994-10-18 Method for producing optically active chroman compound

Country Status (1)

Country Link
JP (1) JP3638644B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239045B1 (en) * 2001-02-21 2010-08-25 DSM IP Assets B.V. Process for the manufacture of a vitamin E intermediate
JP4826133B2 (en) * 2005-04-28 2011-11-30 三菱瓦斯化学株式会社 S-(-)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid and process for producing the same
JP4826132B2 (en) * 2005-04-28 2011-11-30 三菱瓦斯化学株式会社 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid and process for producing the same

Also Published As

Publication number Publication date
JPH08119958A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
EP0439779B1 (en) Process for producing optically active hydroxy lactones
US5312950A (en) Method for purification of alcohols
JPH01311080A (en) Esterification and ester cleavage by lipase or esterase
JP3638644B2 (en) Method for producing optically active chroman compound
KR20030042018A (en) Method of purifying pravastatin
EP0844230B1 (en) Optical resolution method of (plus, minus)-3,4-dihydroxybutanoic acid
US5254756A (en) Process for the production of (2R,3E)-4-halo-3-buten-2-ols
JPH06256278A (en) Optically active alpha-carbamoylalkanoic acid derivative and its production
EP0239122B1 (en) Process for the enzymatic resolution of racemic 2-amino-1-alkanols
EP0169614B1 (en) Process for the preparation of l-carnitine
US20070077632A1 (en) Method for preparing (s)-indoline-2-carboxylic acid and (s)-indoline-2-carboxylic acid methyl ester using hydrolytic enzyme
JP3129776B2 (en) Method for producing optically active α-hydroxyalkene derivative
JP3583798B2 (en) Method for producing optically active 2-methylbutanoic acid and derivatives thereof
EP0372891B1 (en) Optically active compounds and a process for producing these compounds
JPH07184685A (en) Method for synthesizing optionally pure tetraquinoline derivative
JP2756790B2 (en) Method for producing optically active cyclopentenol derivative
JP3673603B2 (en) Process for producing optically active 2,4,4-trimethyl-2-cyclohexen-1-ol and esters thereof
EP1290208A1 (en) Method for optically resolving a racemic alpha-substituted heterocyclic carboxylic acid using enzyme
JPH08119957A (en) Production of optically active chroman compound
US20070238885A1 (en) Method for the Manufacture of Lovastatin
JP3410452B2 (en) Production method of optically active inositol triphosphate
JP3173850B2 (en) Method for producing optically active inositol derivative
JPH06192221A (en) Production of optically active 1-@(3754/24)4-t.-butylphenyl)-5-oxo-3-pyrrolidinecarboxylic acid
JP2689211B2 (en) Process for producing optically active 3-hydroxytetradecanoic acid ester
US20060275880A1 (en) Selective enzymatic esterfication and solvolysis of epimeric vitamin D analog and separation and epimerization of the epimers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041206

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110121

LAPS Cancellation because of no payment of annual fees