JPH05339057A - Production of high purity beta silicon carbide sintered body - Google Patents

Production of high purity beta silicon carbide sintered body

Info

Publication number
JPH05339057A
JPH05339057A JP4147620A JP14762092A JPH05339057A JP H05339057 A JPH05339057 A JP H05339057A JP 4147620 A JP4147620 A JP 4147620A JP 14762092 A JP14762092 A JP 14762092A JP H05339057 A JPH05339057 A JP H05339057A
Authority
JP
Japan
Prior art keywords
carbon
purity
silicon carbide
sintered body
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4147620A
Other languages
Japanese (ja)
Other versions
JP3174622B2 (en
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Hiroaki Wada
宏明 和田
Tomoharu Yamada
知治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP14762092A priority Critical patent/JP3174622B2/en
Publication of JPH05339057A publication Critical patent/JPH05339057A/en
Application granted granted Critical
Publication of JP3174622B2 publication Critical patent/JP3174622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-purity beta silicon carbide sintered body having high productivity without losing demensional stability by adding a binder to high- purity beta silicon carbide-carbon mixture powder, compacting, hardening by heating, heat treating, impregnating the compact with a silicating agent of carbon, and then effecting the reaction for sintering. CONSTITUTION:A liquid high-purity silicon compd. (e.g. ethyl silicate) and a liquid high-purity compd. (e.g. phenol resin) having functional groups which produces carbon by heating are used as the source material. To this material, a polymn. or crosslinking catalyst which uniformly dissolves in the source material is added to effect the reaction to obtain a precursor material. The precursor is then heated and carbonized at 700-1100 deg.C in a nonoxidative atmosphere. Further, the carbonized material is baked at 1600-2200 deg.C in the same atmosphere as above to obtain a high-purity beta silicon carbide-carbon mixture powder (with <=10wt.% carbon content). A binder (e.g. resol-type phenol resin) is added to this powder and compacted, heated, and hardened. The compact is heat treated and impregnated with a silicating agent (e.g. molten liquid of high purity silicon) of carbon, and then subjected to the reaction for sintering at 1450-1600 deg.C. The obtd. sintered body contains <=1ppm impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複雑な形状の寸法安定
性を損なうことなく、炭化ケイ素の含有量が高く、高純
度であり、かつ生産性の高い、β型炭化ケイ素焼結体の
製造方法に関する。従って、高純度を要求される半導体
工業や光学素子製造等の耐熱部品として利用することが
できる。
The present invention relates to a β-type silicon carbide sintered body having a high content of silicon carbide, a high purity and a high productivity without impairing the dimensional stability of a complicated shape. It relates to a manufacturing method. Therefore, it can be used as a heat-resistant component in the semiconductor industry or in the manufacture of optical elements, which requires high purity.

【0002】[0002]

【従来の技術】炭化ケイ素は従来より耐熱性材料用とし
て使用されているが、共有結合性の物質であるため難焼
結性材料として知られている。炭化ケイ素の焼結法には
ホットプレス法、常圧焼結法、反応焼結法(RSSC)
が知られている。本発明が係わるRSSC法の一般的な
プロセスは以下の通りである。すなわち、この方法は
1.原料混合(炭化ケイ素粉末+炭素粉末) 2.成形
加工 3.反応焼結及び4.必要な場合、後加工の各工
程からなる。このRSSC法の特徴は前記3の焼結工程
において成形体の炭素粒子をケイ化せしめるものであ
り、成形体の寸法変化が少なく、焼結助剤を必要としな
い等の点にある。
2. Description of the Related Art Silicon carbide has been conventionally used for heat resistant materials, but is known as a non-sinterable material because it is a covalent bond substance. Hot pressing method, atmospheric pressure sintering method, and reactive sintering method (RSSC) are used for sintering silicon carbide.
It has been known. The general process of the RSSC method with which the present invention is concerned is as follows. That is, this method is 1. Raw material mixture (silicon carbide powder + carbon powder) 1. Molding 3. 3. Reaction sintering and 4. If necessary, it consists of post-processing steps. The characteristic of this RSSC method is that the carbon particles of the molded body are silicified in the above-mentioned 3 sintering step, the dimensional change of the molded body is small, and a sintering aid is not required.

【0003】この方法は通常、炭化ケイ素粉末に炭素粉
末を加え、機械的に混合して混合粉末を得て、これにバ
インダーを加えて成形し焼結して焼結体を得るものであ
るが、普通入手可能な炭素粉末は不純物を含み、混合工
程での不純物の混入も無視できず、また、バインダー等
の添加剤も不純物を含む可能性が大きい等、不純物の少
ない焼結体を得ることが容易でない点に大きな課題を有
する。また混合工程に長時間を要し、生産性がよくない
問題点もある。
According to this method, carbon powder is usually added to silicon carbide powder and mechanically mixed to obtain a mixed powder, and a binder is added to the mixed powder to shape and sinter to obtain a sintered body. , The commonly available carbon powder contains impurities, the mixing of impurities in the mixing process cannot be ignored, and the additives such as binders are also likely to contain impurities. However, there is a big problem in that it is not easy. Further, there is a problem that the mixing process requires a long time and the productivity is not good.

【0004】この不純物の少ない焼結体を得る方法とし
て、通常のRSSC法で用いられている方法に2つの純
化工程を加え、次のような6工程からなる方法が提案さ
れている(特開昭64−72964号)。すなわちこの
方法は1.原料混合(炭化ケイ素粉末+炭素粉末+バイ
ンダー等) 2.成形加工 3.仮焼 4.純化 5.
反応焼結及び6.再純化の各工程からなる。ここで述べ
られている純化とは仮焼された多孔質の成形体を100
0〜1200℃で塩化水素ガスを流し、不純物金属を塩
化物にして蒸発させ除去させる方法である。この方法を
反応焼結後も再度行っている。ここでいう不純物金属と
は、アルミニウム、鉄、ニッケル、クロム等である。
As a method for obtaining a sintered body containing a small amount of impurities, there has been proposed a method comprising the following 6 steps, which is obtained by adding two purification steps to the method used in the ordinary RSSC method (Japanese Patent Laid-Open No. 2000-242242). 64-72964). That is, this method is 1. Raw material mixture (silicon carbide powder + carbon powder + binder, etc.) 1. Molding 3. Calcination 4. Purification 5.
Reaction sintering and 6. It consists of each step of repurification. The purification described here means that the calcined porous compact is 100
This is a method in which hydrogen chloride gas is flowed at 0 to 1200 ° C., and the impurity metal is converted to chloride to be evaporated and removed. This method is performed again after the reaction sintering. The impurity metals referred to here are aluminum, iron, nickel, chromium and the like.

【0005】しかしこの方法では、アルカリ金属、アル
カリ土類金属、銅、希土類金属等はその塩化物の沸点が
高いため除去できない。また原料の炭化ケイ素結晶格子
中に存在するアルミニウム等の金属は除去できず、表面
のアルミニウム等の金属のみ除去されるに過ぎない。こ
のように、この方法によっても不純物の除去が十分とは
言えず、この問題は解決されていない。さらに、この方
法は工程的に見ても、また有毒性ガス使用等の点から
も、経済性、生産性に問題を内包している。
However, with this method, alkali metals, alkaline earth metals, copper, rare earth metals and the like cannot be removed because their chlorides have high boiling points. Further, the metal such as aluminum present in the raw material silicon carbide crystal lattice cannot be removed, but only the metal such as aluminum on the surface is removed. Thus, even with this method, the removal of impurities cannot be said to be sufficient, and this problem has not been solved. Furthermore, this method has problems in economic efficiency and productivity in terms of process steps and use of toxic gas.

【0006】[0006]

【発明が解決しようとする課題】このようにβ型炭化ケ
イ素焼結体の製造方法には種々の問題点があり、高純度
焼結体を得るには解決すべき課題が多い。
As described above, the method for producing a β-type silicon carbide sintered body has various problems, and there are many problems to be solved in order to obtain a high-purity sintered body.

【0007】本発明はRSSC法の特徴である複雑な形
状の寸法安定性を損なうことなく、高純度であり、かつ
生産性の高い、β型炭化ケイ素焼結体の製造方法を提供
することを目的とする。
The present invention aims to provide a method for producing a β-type silicon carbide sintered body which has a high purity and a high productivity without deteriorating the dimensional stability of the complicated shape which is a characteristic of the RSSC method. To aim.

【0008】[0008]

【課題を解決するための手段】請求項1記載の高純度β
型炭化ケイ素焼結体の製造方法は、液状の高純度ケイ素
化合物と、官能基を有し加熱により炭素を生成する液状
の高純度有機化合物を原料として、これに均一に溶化す
る高純度の重合又は架橋触媒を加え、重合又は架橋反応
させた前駆体物質を非酸化性雰囲気中で加熱炭化し、得
られた中間体生成物を非酸化性雰囲気中でさらに高温で
焼成し、得られた高純度β型炭化ケイ素−炭素混合粉末
に、バインダーを加え成形し、加熱硬化した成形体を熱
処理後、これに炭素のケイ化剤を含浸させ、これを反応
焼結させることからなるβ型炭化ケイ素焼結体の製造方
法において、該中間体生成物中の炭素/ケイ素のモル比
が2.2〜3.5であり、該高純度β型炭化ケイ素−炭
素混合粉末中の炭素量が10重量%以下であり、該バイ
ンダーが高純度のレゾール型又はノボラック型フェノー
ル樹脂であり、該炭素のケイ化剤が高純度ケイ素融液で
あり、該β型炭化ケイ素焼結体中の各不純物元素の含有
量が1ppm以下であることを特徴とする。
A high-purity β according to claim 1
The method for producing a silicon carbide sintered body is a high-purity polymerization in which a liquid high-purity silicon compound and a liquid high-purity organic compound that has a functional group and generates carbon when heated are used as raw materials Alternatively, a crosslinking catalyst is added, and the precursor substance obtained by the polymerization or crosslinking reaction is heated and carbonized in a non-oxidizing atmosphere, and the obtained intermediate product is calcined at a higher temperature in a non-oxidizing atmosphere. A β-type silicon carbide formed by adding a binder to a pure β-type silicon carbide-carbon mixed powder, molding the mixture, heat-treating the molded body, and then impregnating this with a silicifying agent for carbon and subjecting this to reaction sintering. In the method for producing a sintered body, the carbon / silicon molar ratio in the intermediate product is 2.2 to 3.5, and the amount of carbon in the high-purity β-type silicon carbide-carbon mixed powder is 10% by weight. % Or less, and the binder has a high purity level. Characterized in that it is a phenol type or novolac type phenol resin, the silicifying agent for the carbon is a high-purity silicon melt, and the content of each impurity element in the β-type silicon carbide sintered body is 1 ppm or less. And

【0009】すなわち、本発明者らはβ型炭化ケイ素焼
結体の製造方法において、不純物、炭化物(中間生成
物)の組成、β型炭化ケイ素−炭素混合粉体の組成等に
着目して、鋭意検討を重ねた結果、不純物元素が実質的
に含まれない、全工程に使用の物質、炭素/ケイ素モル
比の規定された中間体生成物、炭素量の規定された混合
粉体、本方法に適したバインダーや炭素のケイ化剤を用
いる等によって、目的を達成し、本発明を完成するに至
った。
That is, the present inventors have focused on impurities, composition of carbide (intermediate product), composition of β-type silicon carbide-carbon mixed powder, etc. in the method for producing β-type silicon carbide sintered body, As a result of extensive studies, substances that are substantially free of impurity elements, substances used in all steps, intermediate products with a specified carbon / silicon molar ratio, mixed powder with a specified amount of carbon, and this method By using a binder and a carbon silicifying agent suitable for the above, the object was achieved and the present invention was completed.

【0010】以下に本発明を詳細に説明する。本発明に
用いられる液状のケイ素化合物には、メチルシリケー
ト、エチルシリケート等のアルキルシリケート、ケイ酸
アルカリを脱アルカリして得られたケイ酸又はケイ酸ポ
リマー水溶液、水酸基を持つ有機化合物とケイ酸のエス
テル溶液等が挙げられる。中でもエチルシリケートモノ
マー及びオリゴマーが好適に用いられる。
The present invention will be described in detail below. The liquid silicon compound used in the present invention includes methyl silicate, alkyl silicate such as ethyl silicate, silicic acid or silicic acid polymer aqueous solution obtained by dealkalizing alkali silicate, and organic compound having a hydroxyl group and silicic acid. Examples thereof include ester solutions. Among them, ethyl silicate monomer and oligomer are preferably used.

【0011】本発明において、官能基を有し加熱により
炭素を生成する液状の高純度有機化合物としては、特に
残炭率が高く、触媒又は加熱により、重合又は架橋する
有機化合物、例えばフェノール樹脂、ニトリル樹脂、フ
ラン樹脂、ポリイミド樹脂、スチレン樹脂、キシレン樹
脂、ポリフェニレンオキシド、ポリフェニレンスルフィ
ド、ポリアニリン等の樹脂(高分子)のモノマーやプレ
ポリマーが挙げられる。中でもレゾール型又はノボラッ
ク型の液状フェノール樹脂、フルフリルアルコールが好
適である。
In the present invention, the liquid high-purity organic compound which has a functional group and produces carbon by heating has a particularly high residual carbon rate and is an organic compound which is polymerized or crosslinked by a catalyst or heating, such as a phenol resin, Examples include resins (polymers) such as nitrile resin, furan resin, polyimide resin, styrene resin, xylene resin, polyphenylene oxide, polyphenylene sulfide, and polyaniline, and prepolymers. Of these, resol type or novolak type liquid phenolic resins and furfuryl alcohol are preferable.

【0012】本発明で、原料に均一に溶化する重合又は
架橋触媒としては、原料としてフェノール樹脂又はフル
フリルアルコールを用いる場合、トルエンスルフォン
酸、塩酸、硫酸、シュウ酸等の酸類が好ましい。ニトリ
ル樹脂のモノマー又はオリゴマーと用いる場合は、過硫
酸アンモニウム、過酸化水素、各種ヒドロペルオキシド
類、過酸化アルキル類、過酸化エステル類、アゾ化合物
類等の通常用いられるラジカル重合開始剤が好適であ
る。また、他の有機化合物を用いる場合も通常用いられ
る重合又は架橋触媒を用いることができる。
In the present invention, as the polymerization or crosslinking catalyst which is uniformly dissolved in the raw material, when phenol resin or furfuryl alcohol is used as the raw material, acids such as toluenesulfonic acid, hydrochloric acid, sulfuric acid and oxalic acid are preferable. When used as a monomer or oligomer of a nitrile resin, commonly used radical polymerization initiators such as ammonium persulfate, hydrogen peroxide, various hydroperoxides, alkyl peroxides, peroxide esters, azo compounds are suitable. Also, when other organic compound is used, a polymerization or crosslinking catalyst which is usually used can be used.

【0013】本発明では高純度β型炭化ケイ素−炭素混
合粉末にバインダーを加え成形体を得る工程において、
バインダーとしては高純度のレゾール型又はノボラック
型フェノール樹脂、フラン樹脂、ニトリル樹脂等の残炭
性のある樹脂があるが、レゾール型又はノボラック型フ
ェノール樹脂が好ましい。このように残炭性のあるバイ
ンダーを用いるのは、熱処理後の成形体(仮焼体ともい
う)の強度を向上させ”われ”等を少なくするためであ
る。バインダーの添加量は混合粉末の10〜40重量%
が用いられる。本発明においては、バインダーと共に添
加剤が用いられる。これは成形体を多孔質(開気孔)と
し、炭素のケイ化剤の含浸を可能にするため必要なもの
であるので、添加剤は成形体の熱処理(脱脂、脱バイン
ダー)温度で分解または蒸発する揮発性物質であること
を要する。この開気孔は炭化工程でも得られているので
これも利用される。添加剤を例示すればアルキルフタレ
ート類、ワックス、ポリビニルアルコール、メタクリル
樹脂、ポリエチレン、ポリブチレン等の鎖状の炭化水
素、エチレン−酢酸ビニル樹脂、ビニルアルコール/エ
チレン/酢酸ビニル共重合体等の熱分解性樹脂等が挙げ
られる。添加剤の量は混合粉末の10重量%以下が通常
用いられる。
In the present invention, in the step of obtaining a molded product by adding a binder to the high-purity β-type silicon carbide-carbon mixed powder,
Examples of the binder include high-purity resol-type or novolac-type phenolic resins, furan resins, nitrile resins, and other resins having residual carbon properties. Resol-type or novolac-type phenolic resins are preferable. The reason why the binder having a residual carbon property is used is to improve the strength of the molded body (also referred to as a calcined body) after the heat treatment and reduce "breaks" and the like. Addition amount of binder is 10-40% by weight of mixed powder
Is used. In the present invention, an additive is used together with the binder. This is necessary in order to make the molded body porous (open pores) and to be able to impregnate the carbon silicifying agent, so the additives will decompose or evaporate at the heat treatment (degreasing, debinding) temperature of the molded body. It must be a volatile substance. This open pore is also used because it was obtained in the carbonization step. Examples of additives include alkyl phthalates, waxes, polyvinyl alcohol, methacrylic resins, chain hydrocarbons such as polyethylene and polybutylene, ethylene-vinyl acetate resins, and thermal decomposability of vinyl alcohol / ethylene / vinyl acetate copolymers. Resin etc. are mentioned. The amount of the additive is usually 10% by weight or less of the mixed powder.

【0014】また、本発明の混合粉末の成形体に含浸さ
れる炭素のケイ化剤は高純度のケイ素融液又はケイ素蒸
気が通常用いられるが、ケイ素融液が好ましい。
As the carbon silicifying agent to be impregnated into the mixed powder compact of the present invention, a high-purity silicon melt or silicon vapor is usually used, but a silicon melt is preferred.

【0015】本発明では混合粉末にバインダーを加え成
形体を得る工程において、各種の成型法が採用される
が、射出成型、押し出し成型、圧縮成型等いずれも使用
可能であり、バインダーとして液状フェノール樹脂を用
いれば鋳込成型も行うことができる。
In the present invention, various molding methods are adopted in the step of adding a binder to the mixed powder to obtain a molded body, but any of injection molding, extrusion molding, compression molding and the like can be used, and the liquid phenol resin is used as the binder. By using, it is possible to perform cast molding.

【0016】本発明において、原料を重合又は架橋反応
させて得られた前駆体物質は非酸化性雰囲気中で加熱炭
化されるが、その場合の炭化温度は700〜1100℃
が用いられ、好ましくは800〜1000℃が採用され
る。また該前駆体物質を炭化して得られた中間生成物は
非酸化性雰囲気中でさらに高温で焼成されるが、その場
合の温度は1600〜2200℃であり、1700〜2
000℃が好ましく用いられる。混合粉末にバインダー
を加え成形し、加熱硬化した成形体を熱処理後、反応焼
結させて焼結体が得られるが、該加熱硬化の温度、該熱
処理(脱脂、脱バインダー)温度及び該反応焼結温度は
各々、室温〜250℃、500〜900℃及び1450
〜1600℃が通常好適に用いられる。特に熱処理に際
しては成形体内部に存在する添加剤の分解蒸発により、
成形体にひび割れが生じないように、昇温速度は1℃/
分以下にする必要がある。
In the present invention, the precursor substance obtained by polymerizing or crosslinking reaction of the raw materials is heated and carbonized in a non-oxidizing atmosphere, and the carbonization temperature in that case is 700 to 1100 ° C.
Is used, and preferably 800 to 1000 ° C. is adopted. Further, the intermediate product obtained by carbonizing the precursor substance is fired at a higher temperature in a non-oxidizing atmosphere, and the temperature in that case is 1600 to 2200 ° C. and 1700 to 2
000 ° C. is preferably used. A binder is added to the mixed powder, and the mixture is molded and heat-treated to heat-treat it, followed by reaction sintering to obtain a sintered body. The temperature of the heat-curing, the heat treatment (degreasing and debinding) temperature, and the reaction baking The binding temperatures are room temperature to 250 ° C, 500 to 900 ° C and 1450, respectively.
A temperature of ~ 1600 ° C is usually suitable. Especially during heat treatment, due to the decomposition and evaporation of additives existing inside the molded body,
The temperature rising rate is 1 ℃ / so that the molded product will not crack.
Must be less than a minute.

【0017】本発明における重要な要素である不純物の
関連事項を次に述べる。前記β型炭化ケイ素焼結体は不
純物元素を実質的に含まないものであるが、含まれてい
ても各不純物元素の含有量は1ppm以下であることを
要する。また、前記β型炭化ケイ素−炭素混合粉末は、
不純物元素を実質的に含まないものであるが、含まれて
いても各不純物元素の含有量は1ppm以下とする必要
がある。また本発明に用いられる原料は不純物元素を実
質的に含まないものが使用されるが、含まれていても、
各不純物元素の含有量は0.5ppm以下で、好ましく
は0.1ppm以下であるが、焼成温度(1600〜2
200℃)で蒸発する元素又は元素の化合物については
この限りではない。さらに、本発明で使用される触媒、
バインダー、添加剤、炭素のケイ化剤、溶媒(水を含
む)等の全工程に使用の物質は、不純物を実質的に含ま
ない高純度品を用いる必要がある。また、原料、製品は
クラス1000以下のクリーン・ブース中で取り扱うの
が好ましい。
The matters related to impurities, which are important elements in the present invention, are described below. Although the β-type silicon carbide sintered body does not substantially contain the impurity element, the content of each impurity element needs to be 1 ppm or less even if it is contained. Further, the β-type silicon carbide-carbon mixed powder,
Although it does not substantially contain the impurity element, the content of each impurity element must be 1 ppm or less even if it is included. Further, the raw material used in the present invention is used that does not substantially contain the impurity element, even if it contains,
The content of each impurity element is 0.5 ppm or less, preferably 0.1 ppm or less, but the firing temperature (1600 to 2
This does not apply to elements or compounds of elements that evaporate at 200 ° C. Furthermore, the catalyst used in the present invention,
It is necessary to use a high-purity substance that does not substantially contain impurities as a substance used in all the steps such as a binder, an additive, a silicifying agent for carbon, and a solvent (including water). Further, it is preferable that raw materials and products are handled in a clean booth of class 1000 or less.

【0018】ここで不純物元素とは周期律表のIa〜 I
IIa族元素、Ib〜VIIIb族元素、IVa族の原子番号3
2以上の元素、Va族の原子番号33以上の元素及び希
土類元素をいう。
Here, the impurity elements are Ia to I in the periodic table.
IIa group element, Ib to VIIIb group element, IVa group atomic number 3
2 or more elements, elements of Va group atomic number 33 or more, and rare earth elements.

【0019】本発明において、前駆体物質を炭化して得
られる中間体生成物中の炭素/ケイ素のモル比は2.2
〜3.5であり、好ましくは2.3〜3.0である。こ
の範囲設定は、後の成形工程で加えられるバインダー例
えばフェノール樹脂が炭素源となることを考え併せてな
されたものである。少なくとも、このモル比が3.5を
大きく越えると、焼成後に生成する炭化ケイ素はβ型と
α型の混合物となり、反応焼結によって得られた焼結体
中にβ型とα型が混在することになり、焼結体の高温
(1000〜1300℃)強度が低下する。従って高温
強度が要求される製品には不適当である。
In the present invention, the carbon / silicon molar ratio in the intermediate product obtained by carbonizing the precursor substance is 2.2.
To 3.5, preferably 2.3 to 3.0. This range is set in consideration of the fact that a binder such as a phenol resin added in the subsequent molding step serves as a carbon source. At least when this molar ratio exceeds 3.5, the silicon carbide formed after firing becomes a mixture of β type and α type, and β type and α type are mixed in the sintered body obtained by reaction sintering. Therefore, the high temperature (1000 to 1300 ° C.) strength of the sintered body decreases. Therefore, it is not suitable for products requiring high temperature strength.

【0020】結局、本発明のこのモル比の範囲におい
て、焼成後の混合粉末は高温強度の高いβ型炭化ケイ素
と反応焼結に必要な10重量%以下の炭素を含有するこ
とになる。この炭素量は上記のように、バインダーが炭
素源となることが考慮されているので、この量で必要量
は充足されている。反応焼結の際に生成する炭化ケイ素
もβ型であるため、焼結体中の成分は未反応ケイ素以外
は全てβ型炭化ケイ素単相となるので、その含有量は極
めて高いことになる。
After all, in this molar ratio range of the present invention, the mixed powder after firing contains β-type silicon carbide having a high strength at high temperature and 10% by weight or less of carbon necessary for reaction sintering. Since it is considered that the binder serves as a carbon source as described above, this amount of carbon satisfies the necessary amount. Since the silicon carbide generated during the reaction sintering is also β-type, the components in the sintered body are all β-type silicon carbide single phase except unreacted silicon, so that the content thereof is extremely high.

【0021】本発明においては、ケイ素源として液状の
ケイ素化合物及び炭素源として液状の有機化合物の原料
に重合又は架橋反応を行っているので、得られた前駆体
物質はケイ素、炭素共に分子オーダーで均質に混合分散
されているため、炭化後の中間体生成物を経て、焼成後
の混合粉末は炭化ケイ素と炭素が均質に混合分散されて
おり、これを用いた反応焼結後の焼結体は優れた物性を
有することになる。上記のように、液状ケイ素源と炭素
源を所定量混合することによって、必要な炭化ケイ素と
炭素を有する混合粉末が得られるので、炭化ケイ素粉末
と炭素粉末を機械的に混合する方法等と異なり、生産性
よく混合粉末が得られると共に、混合中の不純物の混入
も防ぐことができ、結局、RSSC法の特徴である複雑
な形状の寸法安定性を損なうことなく、生産性よく目的
の高純度β型炭化ケイ素焼結体を得ることができる。
In the present invention, since the raw materials of the liquid silicon compound as the silicon source and the liquid organic compound as the carbon source are polymerized or crosslinked, the obtained precursor substance is a molecular order of both silicon and carbon. Since it is homogeneously mixed and dispersed, it passes through the intermediate product after carbonization, and the mixed powder after firing has silicon carbide and carbon uniformly mixed and dispersed, and the sintered body after reaction sintering using this Has excellent physical properties. As described above, by mixing the liquid silicon source and the carbon source in a predetermined amount, a mixed powder having the necessary silicon carbide and carbon can be obtained, which is different from the method of mechanically mixing the silicon carbide powder and the carbon powder. In addition to being able to obtain mixed powder with good productivity, it is possible to prevent mixing of impurities during mixing, and in the end, without sacrificing the dimensional stability of the complicated shape that is a characteristic of the RSSC method, the desired high purity can be achieved with good productivity. A β-type silicon carbide sintered body can be obtained.

【0022】[0022]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明するが、本実施の主旨を越えないかぎり本実施例
に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

【0023】〔実施例1〕液状ケイ素化合物としてSi
2 含有量40%の高純度エチルシリケートと、含水率
20%の高純度液状レゾール型フェノール樹脂及び触媒
として高純度p−トルエンスルフォン酸の25%水溶液
を表1に示す割合で混合し、効果・乾燥させて均質な樹
脂状固形物を得た。これを窒素雰囲気下に900℃で1
時間炭化した。得られた炭化物の炭素/ケイ素のモル比
は元素分析から表1に示す値であった。この炭化物をア
ルゴン雰囲気下で昇温速度40℃/分で1900℃まで
昇温、加熱し、45分間保持し、炭化ケイ素化反応を行
った。得られた粉末中の残存炭素量及びナトリウム、カ
ルシウム、鉄およびアルミニウムの不純物分析(ICP
−質量分析法、フレームレス原子吸光法)を行った結果
を表1に示す。またX線回折による炭化ケイ素の結晶形
はβ型(立法晶)であった。こうして得られたβ型炭化
ケイ素−炭素混合粉末を表1に示すように粉末A及び粉
末Bとする。粉末A及び粉末Bを用いた焼結体の実施例
を各々実施例−A及びBとする。
[Example 1] Si as a liquid silicon compound
High-purity ethyl silicate having an O 2 content of 40%, a high-purity liquid resol-type phenol resin having a water content of 20%, and a 25% aqueous solution of high-purity p-toluenesulfonic acid as a catalyst were mixed at a ratio shown in Table 1 to obtain the effect. -Drying gave a homogeneous resinous solid. 1 at 900 ℃ under nitrogen atmosphere
Charred for hours. The carbon / silicon molar ratio of the obtained carbide was the value shown in Table 1 from elemental analysis. This carbide was heated to 1900 ° C. at a temperature rising rate of 40 ° C./min in an argon atmosphere, heated and held for 45 minutes to carry out a silicon carbide reaction. Residual carbon content in the obtained powder and impurity analysis of sodium, calcium, iron and aluminum (ICP
Table 1 shows the results of performing mass spectrometry and flameless atomic absorption spectrometry. The crystal form of silicon carbide as determined by X-ray diffraction was β type (cubic crystal). The β-type silicon carbide-carbon mixed powders thus obtained are designated as powder A and powder B as shown in Table 1. Examples of the sintered body using the powder A and the powder B are referred to as Examples-A and B, respectively.

【0024】粉末A及び粉末Bに高純度ノボラック型フ
ェノール樹脂及び高純度DBPを表2に示された割合で
配合し、これに0.5%ステアリン酸及びエタノールを
加え、テフロンコーティングしたミルを使用して3時間
混合した後、押出機を用いて50メッシュ以下に造粒し
乾燥した。これを100℃に予熱した射出成型機で16
0℃に加熱された金型にて成形し、10分間熱硬化させ
た。得られた成形体の寸法は50mm×20mm、厚み
5mmであった。この成形体を炉に入れ、アルゴン雰囲
気中で25℃/時間の昇温速度で900℃まで加熱し、
45分保持した後、炉冷した。この炭化成形体をアルゴ
ン雰囲気中で1500℃で溶融した高純度ケイ素と接触
させ、1時間保持して反応焼結を行った。この焼結体の
表面に付着したケイ素を除去し、さらに高純度塩酸と高
純度硝酸で表面洗浄後、密度、残存ケイ素量及び不純物
分析を行った結果を表2に示す。また、この焼結体の炭
化ケイ素の結晶形はβ型であった。
High-purity novolac type phenolic resin and high-purity DBP were blended in powder A and powder B in the proportions shown in Table 2, 0.5% stearic acid and ethanol were added thereto, and a Teflon-coated mill was used. After mixing for 3 hours, it was granulated to 50 mesh or less using an extruder and dried. This was preheated to 100 ℃ with an injection molding machine 16
It was molded in a mold heated to 0 ° C. and heat-cured for 10 minutes. The dimensions of the obtained molded body were 50 mm × 20 mm and the thickness was 5 mm. This molded body is put into a furnace and heated to 900 ° C. at a heating rate of 25 ° C./hour in an argon atmosphere,
After holding for 45 minutes, the furnace was cooled. This carbonized compact was brought into contact with high-purity silicon melted at 1500 ° C. in an argon atmosphere and held for 1 hour for reaction sintering. The silicon adhering to the surface of this sintered body was removed, the surface was further washed with high-purity hydrochloric acid and high-purity nitric acid, and then the density, the amount of residual silicon and the impurity analysis were carried out. The crystal form of silicon carbide in this sintered body was β type.

【0025】〔比較例〕平均粒径6μmの市販のβ型炭
化ケイ素にカーボンブラック5重量%を加えた以外は、
実施例と同様の方法で、反応焼結体サンプルを得た。こ
れを実施例と同様の処理を行った後、密度、残存ケイ素
量及び不純物分性を行った結果を表2に示す。
[Comparative Example] Except that 5% by weight of carbon black was added to commercially available β-type silicon carbide having an average particle size of 6 μm.
A reaction sintered body sample was obtained in the same manner as in the example. Table 2 shows the results of the density, the amount of residual silicon, and the impurity content after the same treatment as in the example.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1及び表2の結果からわかるように、比
較例と対比して本実施例においては高純度のβ型炭化ケ
イ素−炭素混合粉末を用いて生産性よく得られる焼結体
は、密度、残存ケイ素量から炭化ケイ素の含有量が高い
こと、及び不純物含有量から高純度であることが明白と
なった。
As can be seen from the results of Tables 1 and 2, in comparison with the comparative example, the sintered body obtained in this example with high productivity using the β-type silicon carbide-carbon mixed powder of high purity is as follows. It was revealed from the density and the amount of residual silicon that the content of silicon carbide was high, and from the content of impurities that the purity was high.

【0029】[0029]

【発明の効果】本発明の高純度β型炭化ケイ素焼結体の
製造方法は、上記構成としたので、複雑な形状の寸法安
定性を損なうことなく、炭化ケイ素の含有量が高く、高
純度でり、かつ生産性の高い焼結体が製造できるという
優れた効果を有する。
EFFECTS OF THE INVENTION Since the method for producing a high-purity β-type silicon carbide sintered body of the present invention has the above-mentioned constitution, it has a high content of silicon carbide and a high purity without impairing the dimensional stability of a complicated shape. It has an excellent effect that a sintered body having high productivity can be manufactured.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月28日[Submission date] October 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】ここで不純物元素とは周期律表のIa〜
IIa族元素、VIII族元素、Ib〜IIIb族元
素、IVb族の原子番号32以上の元素及びVb族の原
子番号33以上の元素をいう。
Here, the impurity elements are Ia to V in the periodic table.
IIa group elements, VIII group elements, Ib~ IIIb group element, refers to an atomic number 33 or more elemental atomic number 32 or more elements and Group Vb of group IVb.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】〔実施例1〕液状ケイ素化合物としてSi
含有量40%の高純度エチルシリケートと、含水率
20%の高純度液状レゾール型フェノール樹脂及び触媒
として高純度p−トルエンスルフォン酸の25%水溶液
を表1に示す割合で混合し、硬化・乾燥させて均質な樹
脂状固形物を得た。これを窒素雰囲気下に900℃で1
時間炭化した。得られた炭化物の炭素/ケイ素のモル比
は元素分析から表1に示す値であった。この炭化物をア
ルゴン雰囲気下で昇温速度40℃/分で1900℃まで
昇温、加熱し、45分間保持し、炭化ケイ素化反応を行
った。得られた粉末中の残存炭素量及びナトリウム、カ
ルシウム、鉄及びアルミニウムの不純物分析(ICP−
質量分析法、フレームレス原子吸光法)を行った結果を
表1に示す。またX線回折による炭化ケイ素の結晶形は
β型(立晶)であった。こうして得られたβ型炭化ケ
イ素−炭素混合粉末を表1に示すように粉末A及び粉末
Bとする。粉末A及び粉末Bを用いた焼結体の実施例を
各々実施例−A及びBとする。
[Example 1] Si as a liquid silicon compound
High-purity ethyl silicate having an O 2 content of 40%, a high-purity liquid resol-type phenol resin having a water content of 20% and a 25% aqueous solution of high-purity p-toluenesulfonic acid as a catalyst were mixed at a ratio shown in Table 1 and cured. -Drying gave a homogeneous resinous solid. 1 at 900 ℃ under nitrogen atmosphere
Charred for hours. The carbon / silicon molar ratio of the obtained carbide was the value shown in Table 1 from elemental analysis. This carbide was heated to 1900 ° C. at a temperature rising rate of 40 ° C./min in an argon atmosphere, heated and held for 45 minutes to carry out a silicon carbide reaction. Residual carbon content in the obtained powder and impurity analysis of sodium, calcium, iron and aluminum (ICP-
The results of mass spectrometry and flameless atomic absorption spectrometry are shown in Table 1. The crystalline form of silicon carbide by X-ray diffraction was β-type (standing orthorhombic). The β-type silicon carbide-carbon mixed powders thus obtained are designated as powder A and powder B as shown in Table 1. Examples of the sintered body using the powder A and the powder B are referred to as Examples-A and B, respectively.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液状の高純度ケイ素化合物と、官能基を
有し加熱により炭素を生成する液状の高純度有機化合物
を原料として、これに均一に溶化する高純度の重合又は
架橋触媒を加え、重合又は架橋反応させた前駆体物質を
非酸化性雰囲気中で加熱炭化し、得られた中間体生成物
を非酸化性雰囲気中でさらに高温で焼成し、得られた高
純度β型炭化ケイ素−炭素混合粉末に、バインダーを加
え成形し、加熱硬化した成形体を熱処理後、これに炭素
のケイ化剤を含浸させ、これを反応焼結させることから
なるβ型炭化ケイ素焼結体の製造方法において、該中間
体生成物中の炭素/ケイ素のモル比が2.2〜3.5で
あり、該高純度β型炭化ケイ素−炭素混合粉末中の炭素
量が10重量%以下であり、該バインダーが高純度のレ
ゾール型又はノボラック型フェノール樹脂であり、該炭
素のケイ化剤が高純度ケイ素融液であり、該β型炭化ケ
イ素焼結体中の各不純物元素の含有量が1ppm以下で
あることを特徴とする高純度β型炭化ケイ素焼結体の製
造方法。
1. A liquid high-purity silicon compound and a liquid high-purity organic compound which has a functional group and produces carbon by heating are used as raw materials, and a high-purity polymerization or crosslinking catalyst which is uniformly solubilized is added thereto, The precursor substance that has been polymerized or cross-linked is heated and carbonized in a non-oxidizing atmosphere, and the obtained intermediate product is calcined at a higher temperature in a non-oxidizing atmosphere. A method for producing a β-type silicon carbide sintered body, which comprises adding a binder to carbon mixed powder, molding the mixture, heat-treating the molded body, and then impregnating this with a silicifying agent for carbon and subjecting this to reaction sintering. In the intermediate product, the carbon / silicon molar ratio is 2.2 to 3.5, and the carbon amount in the high-purity β-type silicon carbide-carbon mixed powder is 10% by weight or less, The binder is a high-purity resol type or novolac High-purity, which is a phenolic phenol resin, the carbon silicifying agent is a high-purity silicon melt, and the content of each impurity element in the β-type silicon carbide sintered body is 1 ppm or less. Manufacturing method of β-type silicon carbide sintered body.
JP14762092A 1992-06-08 1992-06-08 Method for producing high-purity β-type silicon carbide sintered body Expired - Lifetime JP3174622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14762092A JP3174622B2 (en) 1992-06-08 1992-06-08 Method for producing high-purity β-type silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14762092A JP3174622B2 (en) 1992-06-08 1992-06-08 Method for producing high-purity β-type silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH05339057A true JPH05339057A (en) 1993-12-21
JP3174622B2 JP3174622B2 (en) 2001-06-11

Family

ID=15434447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14762092A Expired - Lifetime JP3174622B2 (en) 1992-06-08 1992-06-08 Method for producing high-purity β-type silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP3174622B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171181A (en) * 1997-06-20 1999-03-16 Bridgestone Corp Member for semiconductor production unit
WO2004011690A1 (en) * 2002-07-30 2004-02-05 Bridgestone Corporation Sputtering target
EP2700625A4 (en) * 2011-04-21 2015-05-27 Bridgestone Corp Ceramic sintered body and method for producing ceramic sintered body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916270B1 (en) * 2011-06-24 2018-11-07 엘지이노텍 주식회사 Method of fabricating silicon carbide powder
KR101897037B1 (en) * 2011-06-24 2018-09-12 엘지이노텍 주식회사 Method of fabricating silicon carbide powder
KR20130014969A (en) * 2011-08-01 2013-02-12 엘지이노텍 주식회사 Method of fabricating silicon carbide
KR20130024634A (en) * 2011-08-31 2013-03-08 엘지이노텍 주식회사 Method of fabricating silicon carbide
WO2013094934A1 (en) * 2011-12-21 2013-06-27 Lg Innotek Co., Ltd. Method of fabricating silicon carbide powder
KR101349502B1 (en) * 2011-12-28 2014-01-08 엘지이노텍 주식회사 Method for manufacturing of silicon carbide powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171181A (en) * 1997-06-20 1999-03-16 Bridgestone Corp Member for semiconductor production unit
WO2004011690A1 (en) * 2002-07-30 2004-02-05 Bridgestone Corporation Sputtering target
JPWO2004011690A1 (en) * 2002-07-30 2005-11-24 株式会社ブリヂストン Sputtering target
JP4619118B2 (en) * 2002-07-30 2011-01-26 株式会社ブリヂストン Sputtering target and manufacturing method thereof
EP2700625A4 (en) * 2011-04-21 2015-05-27 Bridgestone Corp Ceramic sintered body and method for producing ceramic sintered body
US9522849B2 (en) 2011-04-21 2016-12-20 Bridgestone Corporation Ceramic sintered body and method of manufacturing ceramic sintered body

Also Published As

Publication number Publication date
JP3174622B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
IE43834B1 (en) Sintered silicon carbide ceramic body
JPH05186266A (en) Production of carbon fiber-reinforced silicon carbide composite ceramic
JPH05339057A (en) Production of high purity beta silicon carbide sintered body
JP2735151B2 (en) Method for producing fiber-reinforced silicon carbide composite ceramics molded body
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JPH0616404A (en) Production of high-purity carbon powder, high-purity carbide powder and high-purity nitride powder and sintered compact of the powders
JPS5829269B2 (en) Manufacturing method of carbonaceous bricks
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
JP2973762B2 (en) Method for producing silicon carbide sintered body for semiconductor production
JPH01148768A (en) Method for manufacturing molded fire-proof article of carbon-bonded and molded article manufactured by this method
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH0224789B2 (en)
JPS60186473A (en) Silicon nitride sintered body and manufacture
JP2621192B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0624847A (en) Production of high density and high strength carbonaceous material
JPS5823344B2 (en) Manufacturing method of silicon carbide sintered body
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JPH01172272A (en) Production of aln ceramic
JP2623026B2 (en) Method for producing high-purity glassy carbon material
JP2000290075A (en) Production of silicon carbide ceramics
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12