JPH05339030A - Silica glass composite material - Google Patents

Silica glass composite material

Info

Publication number
JPH05339030A
JPH05339030A JP26787692A JP26787692A JPH05339030A JP H05339030 A JPH05339030 A JP H05339030A JP 26787692 A JP26787692 A JP 26787692A JP 26787692 A JP26787692 A JP 26787692A JP H05339030 A JPH05339030 A JP H05339030A
Authority
JP
Japan
Prior art keywords
silica glass
ceramic
glass composite
composite material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26787692A
Other languages
Japanese (ja)
Other versions
JP2968892B2 (en
Inventor
Shigeru Yamagata
茂 山形
Tsukasa Sakaguchi
司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP26787692A priority Critical patent/JP2968892B2/en
Publication of JPH05339030A publication Critical patent/JPH05339030A/en
Application granted granted Critical
Publication of JP2968892B2 publication Critical patent/JP2968892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To improve heat-stability by compounding silica glass with a specified amount of nonreactive, and high purity ceramic. CONSTITUTION:High purity synthesized silica glass is pulverized, and controlled to a prescribed grain size. The high purity ceramic fiber consisting essentially of nonreactive ceramic such as >=97wt.% Al2O3 ceramic or ZrO2 ceramic is controlled to prescribed fiber length. Then, the synthesized silica glass powder and the ceramic fiber are mixed by a prescribed weight ratio, and melted by heating, the excellent heat resistance silica glass composite material containing 0.01-40wt.% ceramic based on silica glass, having >=10<13.5> poise viscosity at 1150 deg.C and >=10<11.8> poise viscosity at 128 deg.C is obtained. Among these composite materials, the composite material having >=60% light-transmittance of 588nm wavelength in 1mm thickness is suitable as the glass for an electric-discharge tube.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、耐熱性に優れたシリカ
ガラス複合体に関する。 【0002】 【従来の技術】従来、石英ガラスは、高い純度を有し、
熱膨張率が極めて小さく耐急熱急冷性に優れ、かつ光特
に紫外線透過率が大きいところから、半導体工業用石英
ガラス、光学用透明石英ガラス、ランプ用石英ガラス、
熱処理治具用石英ガラス等多方面に使用されてきた。そ
してその原料としては透明石英ガラスでは天然の水晶等
が、また不透明石英ガラスではケイ石等が用いられてい
た。 【0003】近年、高純度のシリカを人工的に合成する
技術が確立し、四塩化ケイ素等を原料として高純度のシ
リカガラスが作られるようになった。しかしながら、こ
のシリカガラス(以下合成シリカガラスという)は、水
晶等の結晶質石英を溶融した溶融石英ガラス(以下溶融
石英ガラスという)に比べ、純度等の点で優れているも
のの、耐熱性に劣るという欠点を有していた。 【0004】 【発明が解決しようとする課題】上記事情に鑑み、本発
明者等は、合成シリカガラスで溶融石英ガラス以上の耐
熱性を有するシリカガラスを提供すべく鋭意研究を重ね
たところ、合成シリカガラスに特定のセラミックスを複
合することにより前記欠点が解決できることを発見し
た。 【0005】本発明の目的は、耐熱性に優れた新規なシ
リカガラス複合体を提供することにある。 【0006】 【課題を解決するための手段】上記目的を達成する本発
明は、シリカガラスマトリックスと非反応性の高純度セ
ラミックスとからなるシリカガラス複合体に係る。 【0007】本発明の「セラミックス」とは、融点が約
2000℃以上であって、シリカガラスとの屈折率差ま
たは膨張率差が小さいセラミックスをいう。そして、こ
のセラミックスの形状は好ましくは長繊維、短繊維、ウ
イスカ−がよいが、粒子状でも同様な効果を得ることが
できる。 【0008】また「非反応性」とは、高温においてシリ
カガラスと化学反応をしない性質、特に反応ガスを生成
しない性質をいう。 【0009】 含めて扱うものとする。 【0010】他方、「低純度」とは、アルカリ金属元素
および遷移金属元素を3wt.%以上含有するセラミッ
クスをいう。 【0011】前記非反応性の高純度セラミックスとして
は各種のセラミックスが挙げられるが、好ましくはマグ
ネシア系セラミックス、アルミナ系セラミックス、ジル
コニア系セラミックス等がよい。そしてこれら複合させ
るセラミックスは、高純度である必要がある。不純物が
存在すると、高温下で再結晶化が起こったり、あるいは
不純物が外部へ拡散することがある。前記不純物として
最も問題になる元素は、アルカリ金属のLi,Na,
K,および遷移金属元素のCr,Cu,Zn等である。
好ましいセラミックスであるファイバ−形状のセラミッ
クスと塊状透明合成シリカガラスの基本的な物性値を表
1に示す。 【0012】 【表1】※ 上記表1のシリカガラスの融点は軟化点を表す。 【0013】本発明のシリカガラス複合体は、高純度の
セラミックスを0.01〜40wt.%、好ましくは
0.1〜10wt.%含有し、1150℃における粘 る。そして、この合成シリカガラス複合体のうち、その
光透過率が厚さ1mm,波長588nmにおいて60%
以上であるシリカガラス複合体は、特に透明メタルハラ
イドランプ用放電管用ガラスとして有用である。 【0014】上記シリカガラス複合体において、高純度
セラミックの含有量が40wt.%以上では、透明ガラ
ス化が困難となり、またシリカガラスとセラミックスの
熱膨張率差によりクラックの発生が起こり易くなる。高
純度セラミックの含有量が0.01wt.%以下では粘
度の向上が見られない。 【0015】上記シリカガラス複合体において粘度が上
記範囲以下では高温使用時の熱変形が大きく、その使用
が制限される。 【0016】上記シリカガラス複合体が高純度の要求さ
れない分野に使用される場合には、必ずしもシリカマト
リックスを合成シリカガラスとする必要がなく、溶融石
英ガラスを使用しても良い。この場合、シリカガラス複
合体の耐熱性は一層向上する。 【0017】上述のとおり本発明のシリカガラス複合体
は、高い粘性を示すところから、半導体工業用ガラス、
熱処理用治具用ガラス等として有用であり、またその透
明性が優れているところからメタルハライドランプ放電
管用ガラス、水銀ランプ放電管用としても有用である。 【0018】本発明のシリカガラス複合体は、例えば原
料のシリカガラスを粉砕し、その粒度を調整し、これに
予め長さ等を調整した非反応性の高純度セラミックスを
均一混合し、加熱溶融しガラス化する等の製造法により
製造することができる。 【0019】物性の測定 (1) 透過率測定 : HITACHI Model
U−3210分光光度計により、厚さ1mmの両面研
磨仕上げ試料に波長588nmの光を透過して測定し
た。 (2) 粘度測定 : ASTMのNo.C598に
準じビームベンデイング法により、1150℃と128
0℃における粘度を測定した。 【0020】 【実施例1〜7】純度99.9999wt.%の合成シ
リカガラスを粉砕機で粉砕し、粒度を#60〜150
(タイラ−メッシュ 0.25mm〜0.105mm)
に調整した。 【0021】 得られたシリカガラス複合体の物性値を表2に示す。 【0022】 【参考例1】【0023】 【表2】 【0024】 【実施例8】 得られたシリカガラス複合体の物性値を表3に示す。 【0025】 【実施例9】 【0026】 【実施例10】 【0027】 【参考例2】 【0028】 【参考例3】 【0029】 【表3】注) 参考例4のシリカガラスは市販の超高純度合成シ
リカガラスであり、また参考例5のシリカガラスは半導
体工業用石英ガラスとして市販されているガラスであ
る。 【0030】 【実施例11〜14】実施例1の合成シリカガラス粉体
に純度99.99wt.%のアルミナ粉体(粒径0.5
〜5μm)を各0wt.%、0.1wt.%、1wt.
%、および10wt.%を加え、V型ミキサーで均一に
混合した。これらの混合体を真空炉内に設置し約180
0℃の温度にて溶融透明ガラス化し、シリカガラス複合
体を得た。 【0031】得られたシリカガラス複合体の外観検査、
光透過率、および1150℃における粘度測定を行っ
た。その結果を表4に示す。 【0032】 【実施例15】純度99.99wt.%のマグネシア粉
体(粒径0.5〜5μm)を実施例1の合成シリカガラ
スとV型ミキサーで均一混合し、この混合物を加熱溶融
し、透明ガラス化した。 【0033】得られたシリカガラス複合体の外観検査、
光透過率、および1150℃における粘度測定を行っ
た。その結果を表4に示す。 【0034】 【実施例16】 【0035】得られたシリカガラス複合体の外観検査、
光透過率、および1150℃における粘度測定を行っ
た。その結果を表4に示す。 【0036】 【表4】 【0037】 【発明の効果】本発明は、上記実施例から明らかなよう
に非反応性の高純度セラミックスを0.01〜40w
t.%合成シリカガラスに配合した複合体は透明性が高
いとともに粘度も著しく向上していることがわかる。特
に、セラミックスファイバ−を0.1〜10wt.%混
入した合成シリカガラス複合体は、高い透明性を有し、
かつ溶融石英ガラス以上の優れた耐熱性を示す。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica glass composite having excellent heat resistance. [0002] Conventionally, quartz glass has a high purity,
Quartz glass for semiconductor industry, transparent quartz glass for optics, quartz glass for lamps, because of its extremely small coefficient of thermal expansion and excellent resistance to rapid heating and quenching, and high light transmittance, particularly ultraviolet light.
It has been used in various fields such as quartz glass for heat treatment jigs. As the raw material, natural quartz or the like was used for transparent quartz glass, and silica stone or the like was used for opaque quartz glass. In recent years, a technique for artificially synthesizing high-purity silica has been established, and high-purity silica glass has been produced using silicon tetrachloride or the like as a raw material. However, this silica glass (hereinafter referred to as synthetic silica glass) is superior to fused silica glass obtained by melting crystalline quartz such as quartz (hereinafter referred to as fused silica glass) in purity and the like, but is inferior in heat resistance. It had the drawback. In view of the above circumstances, the inventors of the present invention have earnestly studied to provide a silica glass which is a synthetic silica glass having heat resistance higher than that of fused silica glass. It has been discovered that the above drawbacks can be solved by compounding silica glass with a specific ceramic. An object of the present invention is to provide a novel silica glass composite having excellent heat resistance. The present invention for achieving the above object relates to a silica glass composite comprising a silica glass matrix and a non-reactive high purity ceramic. The "ceramics" of the present invention means ceramics having a melting point of about 2000 ° C. or higher and a small difference in refractive index or expansion coefficient from silica glass. The shape of this ceramic is preferably long fiber, short fiber, or whisker, but the same effect can be obtained even in the particle form. The term "non-reactive" refers to the property of not chemically reacting with silica glass at high temperature, particularly the property of not generating a reaction gas. [0009] It shall be included. On the other hand, "low purity" means that the alkali metal element and the transition metal element are 3 wt. % Ceramics. As the non-reactive high-purity ceramics, various kinds of ceramics can be mentioned, but magnesia type ceramics, alumina type ceramics, zirconia type ceramics and the like are preferable. The ceramics to be composited must have high purity. In the presence of impurities, recrystallization may occur at high temperature or impurities may diffuse to the outside. The most problematic elements as the impurities are alkali metals Li, Na,
K, and transition metal elements such as Cr, Cu, and Zn.
Table 1 shows basic physical property values of fiber-shaped ceramics and lump transparent synthetic silica glass which are preferable ceramics. [Table 1] * The melting point of silica glass in Table 1 above represents the softening point. The silica glass composite of the present invention contains 0.01 to 40 wt. %, Preferably 0.1-10 wt. %, And the viscosity at 1150 ° C. It The light transmittance of the synthetic silica glass composite is 60% at a thickness of 1 mm and a wavelength of 588 nm.
The silica glass composite described above is particularly useful as glass for discharge tubes for transparent metal halide lamps. In the above silica glass composite, the content of high-purity ceramic is 40 wt. %, It becomes difficult to form a transparent glass, and cracks easily occur due to the difference in thermal expansion coefficient between silica glass and ceramics. The content of high-purity ceramic is 0.01 wt. % Or less, no improvement in viscosity is observed. When the viscosity of the silica glass composite is less than the above range, the thermal deformation thereof at the time of high temperature use is large, and the use thereof is limited. When the silica glass composite is used in a field where high purity is not required, the silica matrix does not necessarily have to be synthetic silica glass, and fused silica glass may be used. In this case, the heat resistance of the silica glass composite is further improved. As described above, the silica glass composite of the present invention shows high viscosity,
It is useful as glass for heat treatment jigs and the like, and because of its excellent transparency, it is also useful as glass for metal halide lamp discharge tubes and mercury lamp discharge tubes. The silica glass composite of the present invention is obtained by, for example, pulverizing raw material silica glass, adjusting the particle size thereof, uniformly mixing with it non-reactive high-purity ceramics whose length and the like have been adjusted beforehand, and heating and melting It can be manufactured by a manufacturing method such as vitrification. Measurement of physical properties (1) Measurement of transmittance: HITACHI Model
A U-3210 spectrophotometer was used to measure light having a wavelength of 588 nm through a double-side polished sample having a thickness of 1 mm. (2) Viscosity measurement: ASTM No. Beam bending method according to C598, 1150 ℃ and 128
The viscosity at 0 ° C was measured. Examples 1 to 7 Purity 99.9999 wt. % Synthetic silica glass is crushed with a crusher to obtain a particle size of # 60-150.
(Tyler-mesh 0.25 mm to 0.105 mm)
Adjusted to. [0021] Table 2 shows the physical property values of the obtained silica glass composite. [Reference Example 1] [Table 2] [Embodiment 8] Table 3 shows the physical property values of the obtained silica glass composite. [Embodiment 9] [Embodiment 10] [Reference Example 2] [Reference Example 3] [Table 3] Note) The silica glass of Reference Example 4 is a commercially available ultra-high purity synthetic silica glass, and the silica glass of Reference Example 5 is a glass commercially available as quartz glass for the semiconductor industry. Examples 11 to 14 The synthetic silica glass powder of Example 1 has a purity of 99.99 wt. % Alumina powder (particle size 0.5
.About.5 .mu.m) for each 0 wt. %, 0.1 wt. %, 1 wt.
%, And 10 wt. %, And mixed uniformly with a V-type mixer. The mixture is placed in a vacuum furnace for about 180
Melt transparent vitrification was performed at a temperature of 0 ° C. to obtain a silica glass composite. Appearance inspection of the obtained silica glass composite,
The light transmittance and the viscosity at 1150 ° C. were measured. The results are shown in Table 4. Example 15 Purity 99.99 wt. % Magnesia powder (particle size 0.5 to 5 μm) was uniformly mixed with the synthetic silica glass of Example 1 in a V-type mixer, and the mixture was heated and melted to form a transparent vitrification. Visual inspection of the obtained silica glass composite,
The light transmittance and the viscosity at 1150 ° C. were measured. The results are shown in Table 4. [Embodiment 16] Visual inspection of the obtained silica glass composite,
The light transmittance and the viscosity at 1150 ° C. were measured. The results are shown in Table 4. [Table 4] According to the present invention, as is apparent from the above-mentioned embodiment, 0.01 to 40 w of non-reactive high-purity ceramics is used.
t. % It can be seen that the composite compounded with synthetic silica glass has high transparency and significantly improved viscosity. In particular, 0.1 to 10 wt. % Synthetic silica glass composite has high transparency,
Moreover, it exhibits excellent heat resistance superior to that of fused silica glass.

Claims (1)

【特許請求の範囲】 【請求項1】 シリカガラスからなるマトリックスと、
非反応性の高純度セラミックスとからなるシリカガラス
複合体。 【請求項2】 非反応性の高純度セラミックスがシリカ
ガラスに対し0.01〜40wt.%含有することを特
徴とする請求項1記載のシリカガラス複合体。 【請求項4】 請求項1記載のシリカガラス複合体にお
いて、光透過率が厚さ1mm,波長588nmにおいて
60%以上であることを特徴とする放電管用複合体。
Claims: 1. A matrix made of silica glass,
A silica glass composite composed of non-reactive high-purity ceramics. 2. A non-reactive high-purity ceramic is contained in an amount of 0.01 to 40 wt. %, The silica glass composite according to claim 1. 4. The silica glass composite according to claim 1, wherein the light transmittance is 60% or more at a thickness of 1 mm and a wavelength of 588 nm.
JP26787692A 1992-04-10 1992-09-11 Silica glass composite Expired - Fee Related JP2968892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26787692A JP2968892B2 (en) 1992-04-10 1992-09-11 Silica glass composite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-116787 1992-04-10
JP11678792 1992-04-10
JP26787692A JP2968892B2 (en) 1992-04-10 1992-09-11 Silica glass composite

Publications (2)

Publication Number Publication Date
JPH05339030A true JPH05339030A (en) 1993-12-21
JP2968892B2 JP2968892B2 (en) 1999-11-02

Family

ID=26455037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26787692A Expired - Fee Related JP2968892B2 (en) 1992-04-10 1992-09-11 Silica glass composite

Country Status (1)

Country Link
JP (1) JP2968892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900381A (en) * 1997-08-26 1999-05-04 General Electric Company Opaque silica composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900381A (en) * 1997-08-26 1999-05-04 General Electric Company Opaque silica composition

Also Published As

Publication number Publication date
JP2968892B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP5167073B2 (en) Silica container and method for producing the same
JPH08143329A (en) High purity opaque quartz glass, its production and its use
JP4229334B2 (en) Manufacturing method of optical glass, glass material for press molding, manufacturing method of glass material for press molding, and manufacturing method of optical element
CN109734322A (en) A kind of eucryptite devitrified glass and preparation method thereof
US3331731A (en) Method of and article formed by sealing alumina ceramic to a metal with a sealant glass
JP4966527B2 (en) Transparent silica sintered body and method for producing the same
JPH05339030A (en) Silica glass composite material
JP2968890B2 (en) Mullite ceramic reinforced silica glass
Zhang et al. Effect of TiO2 on crystallization and mechanical properties of MgO–Al2O3–SiO2 glasses containing P2O5
JP3192013B2 (en) UV transparent glass
JPH05254882A (en) Opaque quartz glass
JP2968891B2 (en) Spinel ceramic reinforced silica glass
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP2931742B2 (en) Opal glass ceramic and method for producing the same
JPH0912322A (en) High-purity transparent quartz glass and its production
JPS63166730A (en) Production of quartz glass
Lai et al. BERYLLIUM GLASS 1
JP2006008452A (en) Manufacturing method for highly pure quartz glass
JP2947703B2 (en) Ceramics composite opaque silica glass and method for producing the same
JPH04342437A (en) Ultraviolet ray transmitting glass
JP2784870B2 (en) Partially crystallized silica glass and method for producing the same
Niessen et al. Solidification of two fused cast Al2O3–ZrO2–SiO2 materials in an aero acoustic levitator
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
SU763280A1 (en) Raw mixture for producing facing material
JP2000344535A (en) Method for recycling quartz glass molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees