JPH05339019A - Method for forming optical element - Google Patents

Method for forming optical element

Info

Publication number
JPH05339019A
JPH05339019A JP4171720A JP17172092A JPH05339019A JP H05339019 A JPH05339019 A JP H05339019A JP 4171720 A JP4171720 A JP 4171720A JP 17172092 A JP17172092 A JP 17172092A JP H05339019 A JPH05339019 A JP H05339019A
Authority
JP
Japan
Prior art keywords
sleeve
optical element
lens
upper die
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4171720A
Other languages
Japanese (ja)
Other versions
JP3176717B2 (en
Inventor
Eiji Kawamura
英司 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP17172092A priority Critical patent/JP3176717B2/en
Publication of JPH05339019A publication Critical patent/JPH05339019A/en
Application granted granted Critical
Publication of JP3176717B2 publication Critical patent/JP3176717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/60Aligning press die axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To improve the accuracy of the outside diameter of an optical element by pressing a vertically movable sleeve which loosely fits an upper die in the direction where the deviation in the outside diameter of the optical element is min. and pressing the sleeve while determining the relative position of dies and the sleeve. CONSTITUTION:The upper die 1 and the lower die 2 are disposed to face each other in a forming chamber. The lower die 2 is vertically movable and the sleeve 3 is loosely fitted onto the upper die 1 and a clearance t of a prescribed size is set. A glass blank material is then heated and is transported to the spacing between the dies 1 and 2 to provide the prescribed radius of curvature, radius of curvature of the lower die and thickness. While the position of the sleeve 3 is regulated in such a manner that the center of the outer peripheral circle of the lens 18 exists on the optical axis 4 connecting the centers O1 and O2 of curvature, the dies are pressed for several tens seconds. The sleeve 3 is then slid by a cylinder and the lens 18 is removed from the upper die 1 and the lower die 2, by which the lens 18 having the high accuracy of the outside diameter is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学素子の成形方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding an optical element.

【0002】[0002]

【従来の技術】従来、光学素子の成形方法としては、例
えば特開平1−138144号公報記載の発明がある。
上記発明は、ガラス素材を切断する切断部材が光学素子
の外周側面を成形する型として機能を有しており、これ
が型外周を摺動して光学素子の成形を行う方法である。
2. Description of the Related Art Conventionally, as a method of molding an optical element, there is an invention described in Japanese Patent Laid-Open No. 1-138144.
In the above invention, the cutting member for cutting the glass material has a function as a mold for molding the outer peripheral side surface of the optical element, and this is a method of sliding the outer circumference of the mold to mold the optical element.

【0003】[0003]

【発明が解決しようとする課題】しかるに、前記従来技
術には以下のような欠点がある。すなわち、切断部材と
型との間には切断部材が摺動するためのクリアランスが
必要であり、このクリアランスが高精度な外径精度を達
成するための障害となっていた。また、クリアランスを
小さくしすぎると、特に高温状態においていわゆるこじ
りが生じやすくなり、摺動できなくなることもあった。
However, the above-mentioned prior art has the following drawbacks. That is, a clearance is required for the cutting member to slide between the cutting member and the mold, and this clearance has been an obstacle to achieving a highly accurate outer diameter accuracy. Further, if the clearance is too small, so-called twisting is likely to occur especially in a high temperature state, and sliding may not be possible.

【0004】因って、本発明は前記従来技術における欠
点に鑑み開発されたもので、充分な摺動クリアランスを
有した外周形成部材を用いて高精度な外径精度を達成で
きる光学素子成形方法の提供を目的とする。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art, and an optical element molding method capable of achieving a high precision of outer diameter by using an outer peripheral member having a sufficient sliding clearance. For the purpose of providing.

【0005】[0005]

【課題を解決するための手段および作用】本発明は、一
対の上下成形型と、光学素子の外周側面を成形する型部
を有して上型を遊嵌する上下動可能なスリーブとにより
押圧する光学素子成形方法において、光学素子の外径振
れが最小となる方向に前記スリーブを上型に押しつけ、
型とスリーブとの相対位置を出しつつ押圧する方法であ
る。
SUMMARY OF THE INVENTION According to the present invention, a pair of upper and lower molding dies and a vertically movable sleeve having a mold portion for molding the outer peripheral side surface of an optical element and having an upper mold loosely fitted therein are pressed. In the optical element molding method, the outer diameter runout of the optical element is pressed against the upper mold in a direction that minimizes,
This is a method of pressing while making the relative position between the mold and the sleeve.

【0006】図1は本発明を示す概念図である。図に示
す如く、光軸4に対してスリーブ3のスリーブ軸17を
一致させる様に、スリーブ3の位置および上型1,下型
2の位置により光軸4の位置の制御を行う。
FIG. 1 is a conceptual diagram showing the present invention. As shown in the figure, the position of the optical axis 4 is controlled by the position of the sleeve 3 and the positions of the upper die 1 and the lower die 2 so that the sleeve axis 17 of the sleeve 3 is aligned with the optical axis 4.

【0007】外径振れは光軸4に対するレンズ18の外
周円中心のズレ量で決まる。光軸4はレンズ18の各面
の曲率中心O1 ,O2 を結んだ軸であるため、例えば型
に対してクリアランスの無い締りバメでスリーブを固定
したとしても、必ずしも高精度な外径振れは得られな
い。
The outer diameter runout is determined by the amount of deviation of the center of the outer circumferential circle of the lens 18 from the optical axis 4. Since the optical axis 4 is an axis connecting the centers of curvature O 1 and O 2 of the respective surfaces of the lens 18, even if the sleeve is fixed to the mold with a tightening fit without clearance, for example, the outer diameter deflection is highly accurate. Can't get

【0008】外径振れを良くするためには、光軸4上に
レンズ18の外周円中心が存在する様にすれば良い。す
なわち、スリーブ3の位置または光軸4の位置を制御す
れば良い。スリーブ3は位置を制御するために、上型1
との間にクリアランスが必要であり、それを摺動クリア
ランスtとすることで、摺動クリアランスtが外径振れ
に与える影響を無くすることができる。
In order to improve the outer diameter runout, the center of the outer circumference of the lens 18 may be located on the optical axis 4. That is, the position of the sleeve 3 or the position of the optical axis 4 may be controlled. The sleeve 3 has an upper mold 1 for controlling the position.
And a clearance is required between them and the sliding clearance t, so that it is possible to eliminate the influence of the sliding clearance t on the outer diameter runout.

【0009】[0009]

【実施例1】図2および図3は本実施例を示し、図2は
一部を省略した縦断面図、図3は要部拡大断面図であ
る。成形室(図示省略)内には上型1と下型2とが対向
して配置されており、下型2は上下動可能に設けられて
いる。上型1の外周にはスリーブ3が遊嵌されており、
そのクリアランスは20μmに設定されている。
Embodiment 1 FIGS. 2 and 3 show the present embodiment, FIG. 2 is a vertical sectional view with a part omitted, and FIG. 3 is an enlarged sectional view of an essential part. An upper die 1 and a lower die 2 are arranged to face each other in a molding chamber (not shown), and the lower die 2 is provided so as to be vertically movable. A sleeve 3 is loosely fitted around the upper die 1,
The clearance is set to 20 μm.

【0010】スリーブ3は固定リング12および4本の
支持棒5を介して支持されている。成形室外のベース台
6上にはユニット19が設置され、ユニット19の上部
内面にはシリンダ7が固定されており、シリンダ7は前
記支持棒5を上下動可能に支持している。
The sleeve 3 is supported by a fixing ring 12 and four support rods 5. A unit 19 is installed on the base 6 outside the molding chamber, and a cylinder 7 is fixed to the inner surface of the upper portion of the unit 19, and the cylinder 7 supports the support rod 5 so as to be vertically movable.

【0011】ベース台6上には上型1の中心軸を軸とし
て回転可能なエンコーダ付きのモータ8が設置されてい
る。モータ8上には両ロッドのシリンダ9が固定されて
おり、そのロッド先端部には支持棒5に設けられた円周
状の受け板10を精度良く押すための押し板11が設置
されている。
A motor 8 with an encoder, which is rotatable about the central axis of the upper mold 1, is installed on the base 6. Cylinders 9 of both rods are fixed on the motor 8, and a push plate 11 for accurately pushing a circumferential receiving plate 10 provided on the support rod 5 is installed at the tip of the rod. ..

【0012】以上の構成から成る装置を用いて、本実施
例では上型曲率半径R100,下型曲率半径R150,
肉厚3mmのガラスレンズを押圧にて成形した。まず、
ガラス素材13を搬送アーム14に載置して加熱する。
加熱後、ガラス素材13を型間1,2に搬送し、スリー
ブ3にて外周部を規制しながら数十秒間押圧する。押圧
後、スリーブ3はシリンダ7により上下に摺動し、レン
ズを表出して自然落下または吸引治具で上型1およびス
リーブ3より取り外して回収する。
In the present embodiment, by using the apparatus having the above structure, the upper die radius of curvature R100, the lower die radius of curvature R150,
A glass lens having a wall thickness of 3 mm was molded by pressing. First,
The glass material 13 is placed on the transfer arm 14 and heated.
After heating, the glass material 13 is conveyed between the molds 1 and 2 and pressed for several tens of seconds while the sleeve 3 regulates the outer peripheral portion. After the pressing, the sleeve 3 slides up and down by the cylinder 7, the lens is exposed, and the lens 3 is naturally dropped or removed from the upper mold 1 and the sleeve 3 by a suction jig to be collected.

【0013】スリーブ3は、ガラス素材13が押圧され
る前にシリンダ9により受け板10を介して一定の方向
に押し付けられるとともに、また上型1よりも少なくと
もレンズのコバ厚以上その先端部が突出された状態で固
定されており、押圧終了までその状態が保持される。
The sleeve 3 is pressed in a fixed direction by the cylinder 9 via the receiving plate 10 before the glass material 13 is pressed, and the tip of the sleeve 3 protrudes from the upper mold 1 by at least the edge thickness of the lens. It is fixed in the pressed state and is held in that state until the pressing is completed.

【0014】レンズ取り出しの際の摺動時には、スリー
ブ3はシリンダ9による押圧力が解除され、容易に摺動
できる様に設定されている。押圧したレンズは、やとい
工具により回転させ、偏芯測定機によって光像の振れ量
を求め、外径の振れ量と方向が測定される。
At the time of sliding when taking out the lens, the sleeve 3 is set so that the pressing force by the cylinder 9 is released and the sleeve 3 can easily slide. The pressed lens is rotated by a sharp tool, the shake amount of the optical image is obtained by an eccentricity measuring device, and the shake amount and direction of the outer diameter are measured.

【0015】押圧時にシリンダ9にてスリーブ3を押し
付けた方向とレンズ外周のズレ方向を図3に示す。P1
がスリーブ3の中心であり、レンズ外径中心となる。O
1 ,O2 は型1,2の曲率中心であり、型1,2の外周
面の中心となる。スリーブ3と上型1の差で示すtは摺
動クリアランスであり、前述の通り20μmである。P
2 は上型1と下型2との位置で決められる光軸上の点で
あり、P1 ,P2 で示すδは外径ズレ量である。
FIG. 3 shows the direction in which the sleeve 3 is pressed by the cylinder 9 during pressing and the direction in which the lens outer circumference deviates. P 1
Is the center of the sleeve 3 and the center of the lens outer diameter. O
1 and O 2 are the centers of curvature of the molds 1 and 2, and are the centers of the outer peripheral surfaces of the molds 1 and 2. The difference t between the sleeve 3 and the upper die 1 is a sliding clearance, which is 20 μm as described above. P
2 is a point on the optical axis determined by the position of the upper mold 1 and lower mold 2, the δ shown by P 1, P 2 is an outer diameter deviation amount.

【0016】スリーブ3の中心であるP1 をP2 の方向
に移動してやると、外径ズレ量δが減少する。そこで、
スリーブ3を移動してP1 ,P2 とを一致させるため、
シリンダ9をモータ8により所望の方向へ向けてスリー
ブ3を上型1に押し付ける。外径ズレ量δは25.3μ
mであったので、摺動クリアランスt=20μmより押
し付ける方向を変えることで、P1 ,P2 は計算上5.
3μmとなる。そこで、シリンダ9の方向が決定し、そ
の後は外径ズレ量の少ないレンズを得ることができる。
押圧方向変更後、上記と同様な成形を行い、前記の偏芯
測定機にて外径ズレ量δを測定した所、計算値とは誤差
を含むため一致しないが4.7μmであった。その後も
同様な外径ズレ量のレンズを成形することができた。
When P 1 which is the center of the sleeve 3 is moved in the direction of P 2 , the outer diameter deviation amount δ decreases. Therefore,
To move the sleeve 3 to match P 1 and P 2 ,
The cylinder 3 is directed in a desired direction by the motor 8 and the sleeve 3 is pressed against the upper mold 1. Outer diameter deviation δ is 25.3μ
Since the sliding clearance was t = 20 μm, P 1 and P 2 were calculated to be 5.
It becomes 3 μm. Therefore, the direction of the cylinder 9 is determined, and thereafter, a lens having a small amount of deviation in outer diameter can be obtained.
After changing the pressing direction, the same molding as above was carried out, and the outer diameter deviation amount δ was measured by the above-mentioned eccentricity measuring machine. As a result, although it did not match the calculated value, it was 4.7 μm. Even after that, it was possible to mold a lens having a similar outer diameter deviation.

【0017】本実施例によれば、摺動クリアランスt=
20μmは外径精度に誤差を与えることが無くなる。従
って、摺動して成形レンズの取り出しを行なう構成にし
ても、外径精度へ影響を与えない成形が行なえる。ま
た、常に衝面に押し付けているため、バラツキの少ない
成形が行なえる。
According to this embodiment, the sliding clearance t =
20 μm does not give an error to the outer diameter accuracy. Therefore, even if the molded lens is taken out by sliding, molding can be performed without affecting the accuracy of the outer diameter. Also, since it is always pressed against the impact surface, it is possible to perform molding with little variation.

【0018】尚、最初の外径ズレ量δが大きすぎて、摺
動クリアランスt=20μmでは後加工不要の外周精度
が得られない場合、スリーブ径または型径を変更し、摺
動クリアランスtを変更して対処することができる。
If the outer diameter deviation δ is too large and the sliding clearance t = 20 μm does not provide the outer peripheral accuracy that does not require post-processing, the sleeve diameter or the die diameter is changed to change the sliding clearance t. Can be changed and dealt with.

【0019】[0019]

【実施例2】図4および図5は本実施例を示し、図4は
一部を省略した縦断面図、図5は要部拡大断面図であ
る。本実施例では、上型1がX−Y方向へ移動可能な様
に、ベース台6は本体部16上に搭載されており、本体
部16にはベース台6を移動させるための押し付けユニ
ット15が設置されている。以下、前記実施例1と同様
な構成であり、同一番号を付してその説明を省略する。
[Embodiment 2] FIGS. 4 and 5 show the present embodiment, FIG. 4 is a longitudinal sectional view with a part omitted, and FIG. 5 is an enlarged sectional view of an essential part. In the present embodiment, the base 6 is mounted on the main body 16 so that the upper die 1 can be moved in the XY directions, and the main body 16 has a pressing unit 15 for moving the base 6. Is installed. Hereinafter, the configuration is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted.

【0020】上記構成の装置を用いて、前記実施例1と
同様な両凸のガラスレンズを押圧にて成形した。前記実
施例1と同様にシリンダ9にてスリーブ3を上型1に押
し付けて成形し、偏芯測定機で外径の振れ量を測定した
結果を図5に示す。P1 ,P2 が外径ズレ量δであり、
tが摺動クリアランスである。
The same biconvex glass lens as in Example 1 was pressed by using the apparatus having the above structure. The sleeve 3 is pressed against the upper die 1 by the cylinder 9 in the same manner as in the first embodiment, and the outer diameter runout is measured by an eccentricity measuring machine. The results are shown in FIG. P 1 and P 2 are the outer diameter deviation amount δ,
t is a sliding clearance.

【0021】スリーブ3は図に示す方向へ上型1に対し
て押し付けられており、P1 をP2の方向へ移動したい
が不可能である。外周ズレ量δは測定の結果16μmと
大きくて精度上限界であった。そこで、スリーブ3の押
し付け方向を一定とし、上型1をベース台6の移動によ
り平行移動させる。
The sleeve 3 is pressed against the upper mold 1 in the direction shown in the figure, and it is impossible to move P 1 in the direction P 2 . The outer peripheral displacement amount δ was as large as 16 μm as a result of the measurement, and was a limit on accuracy. Therefore, the pressing direction of the sleeve 3 is kept constant, and the upper die 1 is moved in parallel by the movement of the base 6.

【0022】上型1をP2 の方向へ移動することで、P
1 をP2 方向に移動させ、P1 をP2 上とほぼ一致する
様な位置にする。P2 もO1 の移動にともなってシフト
するが、曲率半径よりその量が相殺される移動量を計算
し、上型1をP2 方向へ30μm移動させて成形した
所、外径ズレ量は3.2μmと精度が向上した。
By moving the upper die 1 in the direction of P 2 , P
1 is moved in the P 2 direction so that P 1 is positioned so as to almost coincide with P 2 . P 2 also shifts with the movement of O 1 , but the amount of movement that offsets that amount is calculated from the radius of curvature, and when the upper die 1 is moved by 30 μm in the P 2 direction and molded, the outer diameter deviation amount is Accuracy improved to 3.2 μm.

【0023】本実施例によれば、摺動クリアランスが2
0μmでも外径精度の良好な成形が行なえる。また、摺
動クリアランスは20μm以上でも良く、シリンダ9で
押し付けることと、型の移動等とを組立て合わせること
により外径精度の良好な成形が行なえる。
According to this embodiment, the sliding clearance is 2
Even with 0 μm, molding with good outer diameter accuracy can be performed. The sliding clearance may be 20 μm or more, and pressing with the cylinder 9 and movement of the mold are combined to perform molding with good outer diameter accuracy.

【0024】[0024]

【発明の効果】以上説明した様に、本発明に係る光学素
子成形方法によれば、摺動クリアランスを有したスリー
ブと型とによる構成においても、光軸のズレの補正が行
なえることにより、外径精度の良好な成形が行なえる。
As described above, according to the optical element molding method of the present invention, it is possible to correct the deviation of the optical axis even in the configuration of the sleeve having the sliding clearance and the mold. Molding with good outer diameter accuracy can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】実施例1を示す縦断面図である。FIG. 2 is a vertical sectional view showing the first embodiment.

【図3】実施例1を示す要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part showing the first embodiment.

【図4】実施例2を示す縦断面図である。FIG. 4 is a vertical sectional view showing a second embodiment.

【図5】実施例2を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing a second embodiment.

【符号の説明】[Explanation of symbols]

1 上型 2 下型 3 スリーブ 4 光軸 17 スリーブ軸 1 Upper mold 2 Lower mold 3 Sleeve 4 Optical axis 17 Sleeve axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の上下成形型と、光学素子の外周側
面を成形する型部を有して上型を遊嵌する上下動可能な
スリーブとにより押圧する光学素子成形方法において、
光学素子の外径振れが最小となる方向に前記スリーブを
上型に押しつけ、型とスリーブとの相対位置を出しつつ
押圧することを特徴とする光学素子成形方法。
1. An optical element molding method in which a pair of upper and lower molding dies and a vertically movable sleeve having a mold portion for molding an outer peripheral side surface of the optical element and having an upper mold loosely fitted therein are pressed.
A method for molding an optical element, characterized in that the sleeve is pressed against an upper mold in a direction in which the deflection of the outer diameter of the optical element is minimized and the relative position between the mold and the sleeve is taken out.
JP17172092A 1992-06-05 1992-06-05 Optical element molding method Expired - Fee Related JP3176717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17172092A JP3176717B2 (en) 1992-06-05 1992-06-05 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17172092A JP3176717B2 (en) 1992-06-05 1992-06-05 Optical element molding method

Publications (2)

Publication Number Publication Date
JPH05339019A true JPH05339019A (en) 1993-12-21
JP3176717B2 JP3176717B2 (en) 2001-06-18

Family

ID=15928424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17172092A Expired - Fee Related JP3176717B2 (en) 1992-06-05 1992-06-05 Optical element molding method

Country Status (1)

Country Link
JP (1) JP3176717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058237A1 (en) * 2021-10-08 2023-04-13 オリンパス株式会社 Mold for optical element molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058237A1 (en) * 2021-10-08 2023-04-13 オリンパス株式会社 Mold for optical element molding

Also Published As

Publication number Publication date
JP3176717B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP2006330210A (en) Method and device for collimating lens
JPH05339019A (en) Method for forming optical element
JPH09202625A (en) Mold positioning device and mold positioning
JPH01157424A (en) Method and apparatus for making of optical element
JP2686109B2 (en) Optical element molding machine with centering mechanism
JP2502718B2 (en) Optical element molding die, optical element molding method, and optical element
JPH03155512A (en) Manufacture of lens
JP4574831B2 (en) Lens frame centering machine
JP3618983B2 (en) Optical element molding method and apparatus
JP2580432Y2 (en) Phase difference measuring device after intermediate processing of internal thread
JPH01126232A (en) Formation of optical element
JPH06320376A (en) Method and device for centering lens
JP2511269B2 (en) Lens molding press die
JP3636211B2 (en) Glass lens molding equipment
JPH04330403A (en) Glass optical element
JPH10122849A (en) Method and mechanism for automatically centering lens of lens centering and edging machine
RU2181190C2 (en) Optical device to measure diameters of large-sized parts
JPH0375494B2 (en)
JPH02169209A (en) Die molding thickness setting device for molding plastic lens
JP3333245B2 (en) Lens alignment machine and lens alignment method
JPH0421611B2 (en)
JPH0379300B2 (en)
JP2005330153A (en) Forming method and forming die for optical element
JPH0158136B2 (en)
JPH10236830A (en) Method for forming optical element and device therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees