JPH05338480A - Power feeding method for ac electric railway - Google Patents
Power feeding method for ac electric railwayInfo
- Publication number
- JPH05338480A JPH05338480A JP17609592A JP17609592A JPH05338480A JP H05338480 A JPH05338480 A JP H05338480A JP 17609592 A JP17609592 A JP 17609592A JP 17609592 A JP17609592 A JP 17609592A JP H05338480 A JPH05338480 A JP H05338480A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- phase power
- voltage
- phase
- seats
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、3相電源をスコット結
線変圧器により単相電源に変換して電鉄の列車負荷に給
電する交流電鉄の給電方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power feeding method for an AC railway which converts a three-phase power source into a single-phase power source by a Scott connection transformer and feeds the train load of the railway.
【0002】[0002]
【従来の技術】従来、東海道新幹線等の交流電鉄におい
ては、列車負荷が単相負荷であるため、3相電源をスコ
ット結線変圧器により単相電源に変換し、この変圧器の
2次側のM座,T座の単相電源を上り,下りの列車等の
列車負荷(以下M座,T座の列車負荷という)に給電す
る。2. Description of the Related Art Conventionally, in an AC railway such as the Tokaido Shinkansen, since the train load is a single-phase load, a three-phase power source is converted into a single-phase power source by a Scott connection transformer, and the secondary side of this transformer is converted. The M- and T-seat single-phase power supplies go up, and power is supplied to train loads such as down trains (hereinafter, M-seat and T-seat train loads).
【0003】そして、スコット結線変圧器は両座の列車
負荷が等しいときに、変圧器の1次側で3相電源に対し
て3相平衡負荷となり、電源電圧に悪影響を与えない利
点がある。The Scott connection transformer has the advantage that when the train loads on both seats are equal, it becomes a three-phase balanced load for the three-phase power source on the primary side of the transformer and does not adversely affect the power source voltage.
【0004】[0004]
【発明が解決しようとする課題】前記スコット結線変圧
器を用いる従来の給電方法の場合、両座の列車負荷の不
平衡に伴う3相電源の不平衡な電圧変動を防止するた
め、給電設備と別個の大規模,高価な補償装置を要する
問題点がある。In the case of the conventional power feeding method using the Scott connection transformer, the power feeding equipment is used to prevent the unbalanced voltage fluctuation of the three-phase power source due to the unbalanced train load on both seats. There is a problem that a separate large-scale and expensive compensator is required.
【0005】すなわち、両座の各列車は停止から走行に
移る加速時に最大電力を要する変動負荷であり、しか
も、通常の運行状態においては、両座の列車数が等しく
なく、各列車の状態も個々に異なる。That is, each train on both seats is a fluctuating load that requires the maximum electric power at the time of acceleration from stop to travel, and in normal operating conditions, the number of trains on both seats is not equal and the condition of each train is also Individually different.
【0006】そのため、この種交流電鉄においては、ス
コット結線変圧器の両座の列車負荷が等しくない事態が
容易に発生し、この負荷の不平衡により3相電源の不平
衡な電圧変動が生じる。なお、M座の列車負荷の変動に
よって3相電源のU,W相の電流が増減し、T座の列車
負荷の変動によって3相電源のV相の電流が増減し、3
相電源の電圧が不平衡になる。Therefore, in this type of AC electric railway, a situation in which the train loads on both seats of the Scott connection transformer are not equal to each other easily occurs, and the unbalance of the loads causes an unbalanced voltage fluctuation of the three-phase power supply. It should be noted that changes in the train load of the M seat cause the U and W phase currents of the three-phase power supply to increase and decrease, and changes in the train load of the T seat cause the V phase current of the three-phase power supply to increase and decrease.
The voltage of the phase power supply becomes unbalanced.
【0007】そして、この電圧不平衡を防止するため、
従来は、給電設備とは別個にスコット結線変圧器の2次
側に両座の負荷変動を抑制する大規模,高価なコンデン
サ設備等の補償装置を設ける必要がある。本発明は、従
来の補償装置を設けることなく、給電設備により両座の
列車負荷の不平衡に伴う3相電源の不平衡な電圧変動を
防止することを目的とする。In order to prevent this voltage imbalance,
Conventionally, it is necessary to provide a compensating device such as a large-scale and expensive capacitor facility that suppresses load fluctuation of both seats on the secondary side of the Scott connection transformer separately from the power feeding facility. It is an object of the present invention to prevent unbalanced voltage fluctuations of a three-phase power supply due to unbalanced train loads on both seats by a power supply facility without providing a conventional compensator.
【0008】[0008]
【課題を解決するための手段】前記の目的を達成するた
め、本発明の交流電鉄の給電方法においては、スコット
結線変圧器のM座,T座の単相電源の電圧を監視し、電
圧不平衡の発生時に、両座の単相電源のうちの低電圧側
の電源と列車負荷との間に高電圧側の電源から形成した
不足補償電源を直列注入し、両座の単相電源の電圧不平
衡を阻止して3相電源の不平衡電圧変動を抑制する。In order to achieve the above-mentioned object, in the AC electric power feeding method of the present invention, the voltage of the single-phase power source of the M-seat and the T-seat of the Scott connection transformer is monitored and the voltage unbalanced. When equilibrium occurs, the shortage compensating power supply formed from the power supply on the high voltage side is injected in series between the power supply on the low voltage side and the train load of the single-phase power supply on both sides, and the voltage of the single-phase power supply on both sides is injected. Prevents unbalance and suppresses unbalanced voltage fluctuations in the three-phase power supply.
【0009】[0009]
【作用】前記のように構成された本発明の交流電鉄の給
電方法の場合、スコット結線変圧器の2次側のM座,T
座の列車負荷が不平衡になり電圧不平衡が生じると、こ
の電圧不平衡の監視,検出に基づき、低電圧側すなわち
重負荷側の単相電源と列車負荷との間に、高電圧側すな
わち軽負荷側の単相電源から形成された不足補償電源が
直列注入され、この補償電源により重負荷側の単相電源
の給電不足が補われ、両座の電圧不平衡が阻止される。In the case of the AC electric power feeding method of the present invention having the above-described structure, the M seat, T on the secondary side of the Scott connection transformer is used.
When the train load in the seat becomes unbalanced and voltage imbalance occurs, based on the monitoring and detection of this voltage imbalance, the high voltage side, that is, the high voltage side, A shortage compensating power supply formed from a single-phase power supply on the light load side is injected in series. This compensating power supply compensates for the insufficient power supply of the single-phase power supply on the heavy load side, and prevents voltage imbalance between the two seats.
【0010】そして、両座の電圧不平衡が阻止される
と、列車負荷の不平衡に伴うスコット結線変圧器の1次
側の3相電圧の不平衡が防止され、上流の3相電源の不
平衡な電圧変動が抑制される。そのため、従来のような
大規模,高価なコンデンサ設備等の補償装置を設けるこ
となく、両座の単相電源のエネルギをその過不足に応じ
てやりとりする給電方法により、簡単かつ安価にスコッ
ト結線変圧器の2次側の列車負荷の不平衡に伴う上流の
3相電源の不平衡な電圧変動が抑制される。When the voltage imbalance between the two seats is prevented, the imbalance of the three-phase voltage on the primary side of the Scott connection transformer due to the imbalance of the train load is prevented, and the imbalance of the upstream three-phase power supply is prevented. Balanced voltage fluctuations are suppressed. Therefore, a Scott connection transformer can be easily and inexpensively provided by a power feeding method that exchanges the energy of the single-phase power source of both seats according to the excess and deficiency without providing a large-scale and expensive condenser equipment such as the conventional one. The unbalanced voltage fluctuation of the upstream three-phase power supply due to the unbalanced train load on the secondary side of the equipment is suppressed.
【0011】[0011]
【実施例】1実施例について、図1及び図2を参照して
説明する。図1において、1は上流の3相電源(系統電
源)、2はスコット結線変圧器であり、1次巻線2iが
3相電源1のU,V,Wの各相に接続され、2次側のM
座,T座の2巻線2m,2tに電圧位相差90゜の単相
電源が発生する。EXAMPLE One example will be described with reference to FIGS. In FIG. 1, 1 is an upstream three-phase power supply (system power supply), 2 is a Scott connection transformer, and a primary winding 2i is connected to each phase of U, V, W of the three-phase power supply 1 M on the side
A single-phase power source with a voltage phase difference of 90 ° is generated in the two windings 2m and 2t of the Z and T seats.
【0012】3m,3tはM座,T座の列車負荷、4
m,4tは2巻線2m,2tと両座の架線5m,5tと
の間に設けられた給電路開閉用の常閉のバイパススイッ
チ、6m,6tは2巻線2m,2tの出力電圧(変圧器
2次側電圧)V1,V2を検出する変圧器、7m,7t
はスイッチ4m,4tより負荷側の列車負荷電圧V3,
V4を検出する変圧器である。3m and 3t are train loads of M seat and T seat, 4
m and 4t are normally closed bypass switches for opening and closing the power supply line provided between the two windings 2m and 2t and the overhead lines 5m and 5t of both seats, and 6m and 6t are output voltages of the two windings 2m and 2t ( Transformer secondary side voltage) Transformer for detecting V1, V2, 7m, 7t
Is the train load voltage V3 on the load side of the switches 4m and 4t.
It is a transformer that detects V4.
【0013】8m,8tはインバータであり、巻線2
m,2tの単相電源が充電用変圧器9m,9t及び整
流,平滑用のダイオード10m,10t,コンデンサ1
1m,11tを介して供給される。12m,12tはイ
ンバータ8m,8tの出力を架線5m,5tに直列注入
する注入用変圧器であり、2次側がスイッチ4m,4t
に並列に設けられている。Reference numerals 8m and 8t denote inverters, and the winding 2
m, 2t single-phase power source is charging transformers 9m, 9t and rectifying / smoothing diodes 10m, 10t, capacitor 1
It is supplied via 1m and 11t. 12m and 12t are injection transformers for injecting the outputs of the inverters 8m and 8t in series to the overhead lines 5m and 5t, and the secondary side is a switch 4m and 4t.
Are installed in parallel.
【0014】13はスイッチ4m,4tの開閉及びイン
バータ8m,8tの動作を制御する制御装置であり、変
圧器6m,6t及び7m,7tの検出電圧の信号が供給
される。また、制御装置13は図2に示すように構成さ
れ、同図において、14m,14t及び15m,15t
は平滑回路、16,17は減算器、18は開閉及び発停
の指令回路、19m,19tはスイッチ4m,4tの開
閉制御回路、20は駆動量演算回路、21m,21tは
インバータ8m,8tの駆動回路である。Reference numeral 13 is a control device for controlling the opening / closing of the switches 4m, 4t and the operation of the inverters 8m, 8t, and is supplied with signals of the detection voltages of the transformers 6m, 6t and 7m, 7t. Further, the control device 13 is configured as shown in FIG. 2, and in the figure, 14m, 14t and 15m, 15t.
Is a smoothing circuit, 16 and 17 are subtractors, 18 is an opening / closing and start / stop command circuit, 19m and 19t are opening / closing control circuits of switches 4m and 4t, 20 is a drive amount calculation circuit, and 21m and 21t are inverters 8m and 8t. It is a drive circuit.
【0015】そして、列車負荷3m,3tが等しく平衡
しているときは、V1=V2になり、制御装置13の指
令回路18がインバータ8m,8tの停止指令を出力
し、この指令が開閉制御回路19m,19tに閉指令と
して供給され、スイッチ4m,4tが共に閉成保持され
る。このとき、従来と同様に巻線2m,2tのM座,T
座の単相電源が架線5m,5tを介してそれぞれの列車
負荷3m,3tに給電される。When the train loads 3m and 3t are equally balanced, V1 = V2, the command circuit 18 of the control device 13 outputs a stop command for the inverters 8m and 8t, and this command is used to open / close the control circuit. 19m and 19t are supplied as a close command, and the switches 4m and 4t are both closed and held. At this time, as in the conventional case, the M seat and T of the windings 2m and 2t are
The single-phase power source of the seat is fed to the respective train loads 3m and 3t via the overhead lines 5m and 5t.
【0016】また、制御装置13において、変圧器6
m,6tの出力電圧V1,V2の検出信号は平滑回路1
4m,14tにより平均化されて減算器16に供給さ
れ、この減算器16によりV1−V2が演算される。こ
の減算器16のV1−V2の出力信号は指令回路18に
供給され、この回路18により減算器16の出力信号か
らM座,T座の単相電源の電圧が監視される。Further, in the controller 13, the transformer 6
The detection signals of the output voltages V1 and V2 of m and 6t are smoothed by the smoothing circuit 1.
The signals are averaged by 4m and 14t and supplied to the subtractor 16, which calculates V1-V2. The V1-V2 output signal of the subtractor 16 is supplied to the command circuit 18, and the circuit 18 monitors the voltages of the M-phase and T-phase single-phase power supplies from the output signal of the subtracter 16.
【0017】さらに、変圧器7m,7tの列車負荷電圧
V3,V4の検出信号は平滑回路15m,15tにより
平均化されて減算器17に供給され、この減算器17に
よりV3−V4が演算される。この減算器17のV3−
V4の出力信号は駆動演算回路20に供給され、この演
算回路20により不平衡発生時のインバータ8m又は8
tの駆動量(出力電力量)が求められる。Further, the detection signals of the train load voltages V3 and V4 of the transformers 7m and 7t are averaged by the smoothing circuits 15m and 15t and supplied to the subtractor 17, and the subtractor 17 calculates V3-V4. .. V3-of this subtracter 17
The output signal of V4 is supplied to the driving arithmetic circuit 20, and the arithmetic circuit 20 causes the inverter 8m or 8
The driving amount (output power amount) of t is obtained.
【0018】そして、例えば列車負荷3mが列車負荷3
tより重負荷になる不平衡が発生し、V1〈V2の電圧
変動が生じて減算器16の出力信号の極性が負になる
と、指令回路18が軽負荷側のインバータ8tに起動指
令を出力してインバータ8tが起動されると同時に、こ
の指令が開閉制御回路19mに開指令として供給され、
スイッチ4mが開放されて巻線2mと架線5mとの間が
開放される。Then, for example, a train load of 3 m is a train load 3
When an unbalance occurs in which the load becomes heavier than t, the voltage fluctuation of V1 <V2 occurs, and the polarity of the output signal of the subtractor 16 becomes negative, the command circuit 18 outputs a start command to the inverter 8t on the light load side. At the same time that the inverter 8t is activated, this command is supplied to the switching control circuit 19m as an open command,
The switch 4m is opened to open the space between the winding 2m and the overhead wire 5m.
【0019】また、減算器17の出力信号に基づき演算
回路20はM座の単相電源の不足量をインバータ8tの
駆動量として求め、この駆動量の制御を駆動回路21t
に通知し、この通知に基づき駆動回路21tがインバー
タ8tを駆動する。Further, based on the output signal of the subtractor 17, the arithmetic circuit 20 obtains the shortage amount of the single-phase power source of the M-slot as the driving amount of the inverter 8t, and the driving circuit 21t controls this driving amount.
And the drive circuit 21t drives the inverter 8t based on this notification.
【0020】そして、巻線2tの単相電源が変圧器4t
及びダイオード10t,コンデンサ11tにより直流電
源に変換されてインバータ8tに供給され、インバータ
8tにより前記不足量の交流が不足補償電源として形成
され、この電源が注入用変圧器12tを介してスイッチ
4mの両端間に注入される。The single-phase power source for the winding 2t is the transformer 4t.
Also, the diode 10t and the capacitor 11t convert it into a direct current power source and supply it to the inverter 8t. The inverter 8t forms the insufficient amount of alternating current as a shortage compensating power source, and this power source is supplied to both ends of the switch 4m via the injection transformer 12t. Injected in between.
【0021】この注入により巻線2mの単相電源と不足
補償電源とが直列合成されて列車負荷3mに給電され、
列車負荷3mに対する巻線2mの単相電源の不足が不足
補償電源で補われ、列車負荷電圧V3が上昇して出力電
圧V1が上昇する。なお、演算回路20の演算により、
不足補償電源はV3=V4になるように可変して形成さ
れる。By this injection, the single-phase power source of the winding 2m and the shortage compensating power source are combined in series and fed to the train load 3m,
The shortage of the single-phase power supply for the winding 2m with respect to the train load 3m is compensated by the shortage compensating power supply, and the train load voltage V3 rises and the output voltage V1 rises. By the calculation of the arithmetic circuit 20,
The shortage compensation power source is variably formed so that V3 = V4.
【0022】そして、列車負荷3mが軽負荷に戻り、不
足補償電源が零になると、演算回路20からの通知の基
づき、指令回路18は停止指令を出力してインバータ8
tの出力を停止するとともにスイッチ4mを閉成する。
このとき、巻線2m,2tの単相電源が列車負荷3m,
3tそれぞれに給電される元の状態に戻るとともに、V
1=V2かつV3=V4になる。When the train load 3 m returns to a light load and the shortage compensating power source becomes zero, the command circuit 18 outputs a stop command and the inverter 8 based on the notification from the arithmetic circuit 20.
The output of t is stopped and the switch 4m is closed.
At this time, the single-phase power source of the windings 2m and 2t is connected to the train load 3m,
While returning to the original state in which power is supplied to each 3t, V
1 = V2 and V3 = V4.
【0023】つぎに、列車負荷3tが列車負荷3mより
重負荷になる不平衡が発生し、V1>V2の電圧変動が
生じて減算器16の出力信号の極性が正になるときは、
軽負荷側のインバータ8mが起動されるとともに重負荷
側のスイッチ4tが開放され、巻線2tの単相電源とイ
ンバータ8mにより形成された不足補償電源とが直列合
成されて列車負荷3tに給電され、列車負荷3tに対す
る巻線2tの単相電源の不足が不足補償電源で補われ
る。この場合も、不足補償電源はV3=V4になるよう
に可変して形成され、不足補償電源が零になると、イン
バータ8mの出力が停止するとともにスイッチ4tが開
放されて元の状態に戻る。Next, when an unbalance occurs in which the train load 3t becomes a heavier load than the train load 3m, a voltage fluctuation of V1> V2 occurs, and the polarity of the output signal of the subtractor 16 becomes positive,
The inverter 8m on the light load side is activated and the switch 4t on the heavy load side is opened, and the single-phase power supply of the winding 2t and the shortage compensating power supply formed by the inverter 8m are combined in series to supply power to the train load 3t. The shortage of the single-phase power supply of the winding 2t with respect to the train load 3t is compensated by the shortage compensation power supply. Also in this case, the shortage compensating power supply is variably formed so that V3 = V4, and when the shortage compensating power supply becomes zero, the output of the inverter 8m is stopped and the switch 4t is opened to return to the original state.
【0024】そのため、列車負荷3m,3tの不平衡が
生じると、軽負荷側の巻線2m又は2tの単相電源のエ
ネルギがインバータ8m又は8tを介して重負荷側に融
通されて等価的に両列車負荷3m,3tの均等化が図ら
れ、両座の電圧不平衡が阻止され、変圧器2の1次巻線
2iの3相電圧の不平衡が防止され、大規模,高価なコ
ンデンサ設備等の不平衡の補償設備を変圧器2の2次側
に設けることなく、両座の列車負荷3m,3tの不平衡
に伴う3相電源1の不平衡な電圧変動が抑制される。Therefore, when the train loads 3m and 3t are unbalanced, the energy of the single-phase power source of the winding 2m or 2t on the light load side is exchanged to the heavy load side via the inverter 8m or 8t and equivalently. Both train loads 3m and 3t are equalized, voltage imbalance between both seats is blocked, and imbalance of three-phase voltage of the primary winding 2i of the transformer 2 is prevented. The unbalanced voltage fluctuation of the three-phase power supply 1 due to the unbalanced train loads 3m and 3t on both seats is suppressed without providing unbalanced compensation equipment such as the above on the secondary side of the transformer 2.
【0025】このとき、インバータ8m又は8tにより
巻線2m又は2tの単相電源の不足量に相当する不足補
償電源を形成し、この電源を直列注入するため、インバ
ータ8m,8t等が比較的小容量のものでよく、小型か
つ安価に形成される。そして、回路構成等は実施例に限
定されるものでなく、例えば巻線2m,2tの単相電源
のやりとりにインバータを用いなくてもよい。At this time, the inverter 8m or 8t forms a shortage compensating power source corresponding to the shortage of the single-phase power source of the winding 2m or 2t, and this power source is injected in series, so that the inverter 8m, 8t or the like is relatively small. It suffices to have a capacity, and it is formed small and inexpensive. The circuit configuration and the like are not limited to those in the embodiment, and for example, an inverter may not be used for exchanging the single-phase power supply for the windings 2m and 2t.
【0026】[0026]
【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。スコット結
線変圧器2の2次側のM座,T座の列車負荷3m,3t
が不平衡になり電圧不平衡が生じると、この電圧不平衡
の監視,検出に基づき、低電圧側すなわち重負荷側の単
相電源と列車負荷3m又は3tとの間に、高電圧側すな
わち軽負荷側の単相電源から形成された不足補償電源が
直列注入され、この補償電源により重負荷側の単相電源
の給電不足が補われ、両座の電圧不平衡が阻止され、こ
の阻止により列車負荷3m,3tの不平衡に伴う変圧器
2の1次側の3相電圧の不平衡が防止され、上流の3相
電源1の不平衡な電圧変動が抑制される。Since the present invention is configured as described above, it has the following effects. Train load 3m, 3t for M seat and T seat on the secondary side of Scott connection transformer 2
Becomes unbalanced and voltage imbalance occurs, based on the monitoring and detection of this voltage imbalance, the high voltage side, that is, the light load, between the single-phase power supply on the low voltage side, that is, the heavy load side, and the train load 3m or 3t. A shortage compensating power supply formed from the load-side single-phase power supply is injected in series, and this compensating power supply compensates for the power supply shortage of the heavy-load single-phase power supply and prevents voltage imbalance between the two seats. The unbalance of the three-phase voltage on the primary side of the transformer 2 due to the unbalance of the loads 3m and 3t is prevented, and the unbalanced voltage fluctuation of the upstream three-phase power supply 1 is suppressed.
【0027】そのため、従来のような大規模,高価なコ
ンデンサ設備等の補償装置を設けることなく、両座の単
相電源のエネルギをその過不足に応じてやりとりする給
電方法により、簡単かつ安価に変圧器2の2次側の列車
負荷3m,3tの不平衡に伴う上流の3相電源1の不平
衡な電圧変動を抑制することができる。Therefore, the power supply method for exchanging the energy of the single-phase power supply of both seats according to the excess or deficiency of the power supply can be easily and inexpensively provided without providing a compensating device such as a large-scale and expensive capacitor equipment as in the prior art. It is possible to suppress unbalanced voltage fluctuations in the upstream three-phase power supply 1 due to unbalanced train loads 3m and 3t on the secondary side of the transformer 2.
【図1】本発明の交流電鉄の給電方法の1実施例のブロ
ック結線図である。FIG. 1 is a block connection diagram of one embodiment of a power feeding method for an AC railway according to the present invention.
【図2】図1の一部の詳細なブロック結線図である。2 is a detailed block connection diagram of a part of FIG. 1. FIG.
1 3相電源 2 スコット結線変圧器 2m,2t M座,T座の巻線 3m,3t 列車負荷 1 3 phase power supply 2 Scott connection transformer 2m, 2t M seat, T seat winding 3m, 3t Train load
Claims (1)
座,T座の単相電源に変換し、該両座の単相電源を両座
の列車負荷それぞれに給電する交流電鉄の給電方法にお
いて、 前記両座の単相電源の電圧を監視し、電圧不平衡の発生
時に、前記両座の単相電源のうちの低電圧側の電源と列
車負荷との間に高電圧側の電源から形成した不足補償電
源を直列注入し、前記両座の単相電源の電圧不平衡を阻
止して前記3相電源の不平衡電圧変動を抑制することを
特徴とする交流電鉄の給電方法。1. A three-phase power supply is connected by a Scott connection transformer to an M
In the AC electric railway power feeding method of converting the single-phase power sources of the Z-seat and the T-seat, and feeding the single-phase power sources of the two-seats to the train loads of the two-seats, the voltage of the single-phase power source of the two-seats is monitored to obtain a voltage. When an imbalance occurs, a shortage compensating power supply formed from a power supply on the high voltage side is injected in series between the power supply on the low voltage side and the train load of the single-phase power supplies on the two seats, and the single-phase power supply on both the seats An AC power feeding method, characterized in that the voltage imbalance of the power supply is prevented to suppress the unbalanced voltage fluctuation of the three-phase power supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17609592A JP3248246B2 (en) | 1992-06-09 | 1992-06-09 | AC railway power supply method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17609592A JP3248246B2 (en) | 1992-06-09 | 1992-06-09 | AC railway power supply method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05338480A true JPH05338480A (en) | 1993-12-21 |
JP3248246B2 JP3248246B2 (en) | 2002-01-21 |
Family
ID=16007613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17609592A Expired - Fee Related JP3248246B2 (en) | 1992-06-09 | 1992-06-09 | AC railway power supply method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248246B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101229935B1 (en) * | 2010-07-21 | 2013-02-06 | 한국과학기술원 | Variable inductance compensation device for cross segment power supply line |
CN114649815A (en) * | 2022-04-08 | 2022-06-21 | 沈阳农业大学 | Flexible load demand response method and device based on three-phase load unbalance |
-
1992
- 1992-06-09 JP JP17609592A patent/JP3248246B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101229935B1 (en) * | 2010-07-21 | 2013-02-06 | 한국과학기술원 | Variable inductance compensation device for cross segment power supply line |
CN114649815A (en) * | 2022-04-08 | 2022-06-21 | 沈阳农业大学 | Flexible load demand response method and device based on three-phase load unbalance |
CN114649815B (en) * | 2022-04-08 | 2023-10-10 | 沈阳农业大学 | Flexible load demand response method and device based on three-phase load unbalance |
Also Published As
Publication number | Publication date |
---|---|
JP3248246B2 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8223515B2 (en) | Pre-charging an inverter using an auxiliary winding | |
EP1273091B1 (en) | An improved electrical substation | |
US6118676A (en) | Dynamic voltage sag correction | |
EP2394356B1 (en) | A hybrid distribution transformer with ac&dc power capabilities | |
US20210091660A1 (en) | Power conversion device | |
US20140103725A1 (en) | Digital control method for operating ups systems in parallel | |
CA1216625A (en) | Current source sine wave inverter | |
KR950013353B1 (en) | Power converter apparatus for an electric vehicle | |
JPS63253833A (en) | Non-interrupted electric source | |
KR0151250B1 (en) | Apparatus & method for controlling a step down ratio of an autotransformer in response to an input voltage | |
JPH09163607A (en) | Return feeder voltage compensation method and device | |
JP2001047894A (en) | Alternate current feeding device and control method for the same | |
JPH05338480A (en) | Power feeding method for ac electric railway | |
JPS635400Y2 (en) | ||
CN111186449B (en) | Electric drive system | |
JPH0543800U (en) | Inverter device | |
JP2909820B2 (en) | Load starting method using AC uninterruptible power supply | |
JP2019062660A (en) | Voltage adjusting device | |
JP2680385B2 (en) | Auxiliary power supply for electric vehicles | |
CN113746194B (en) | Double-flexible straight unit distribution power transmission system and electric connection method thereof | |
JP2597592B2 (en) | Superconducting transformer monitoring device | |
JPH0754984Y2 (en) | Automatic voltage adjustment transformer | |
JPH0984359A (en) | Power converter | |
JP2001275255A (en) | Voltage compensating device | |
CN213906308U (en) | Ship power supply system of dynamic voltage restorer based on superconducting energy storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |