JPH05337813A - Method of polishing inner surface of nonmagnetic pipe and device therefor - Google Patents

Method of polishing inner surface of nonmagnetic pipe and device therefor

Info

Publication number
JPH05337813A
JPH05337813A JP16855392A JP16855392A JPH05337813A JP H05337813 A JPH05337813 A JP H05337813A JP 16855392 A JP16855392 A JP 16855392A JP 16855392 A JP16855392 A JP 16855392A JP H05337813 A JPH05337813 A JP H05337813A
Authority
JP
Japan
Prior art keywords
magnetic
tube
polishing
magnetic tube
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16855392A
Other languages
Japanese (ja)
Other versions
JP2648715B2 (en
Inventor
Toshiki Iizuka
敏志己 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOEI DENKO KK
Original Assignee
KYOEI DENKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOEI DENKO KK filed Critical KYOEI DENKO KK
Priority to JP4168553A priority Critical patent/JP2648715B2/en
Publication of JPH05337813A publication Critical patent/JPH05337813A/en
Application granted granted Critical
Publication of JP2648715B2 publication Critical patent/JP2648715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To widely control internal surface polishing conditions for a nonmagnetic pipe, and aim at enhancing the polishing efficiency and at maintaining the polishing characteristic. CONSTITUTION:Guide holes 21 are formed in a rotary ring 21 adapted to be rotated around a nonmagnetic pipe 1, and a magnet 23B is attached to the rotary ring 21. The nonmagnetic pipe 1 is rotated by a chuck 32 which is rotated by a motor 35 through the intermediary of a rotary cylinder 32 and a gripping cylinder 31, And a movable base 30 is reciprocated by link mechanisms 45, 46. The gripping cylinder 31 is attached to the rotary cylinder 33, slidably in the axial direction, through spline-joint, and is superposed thereto with high frequency vibration by a piezoelectric vibrator 39. A polishing pressure and a polishing peripheral speed can be set independent from each other due to the combination of the rotational speed of the rotary ring 21 and the rotational speed of the nonmagnetic pipe 1, and further, the superposition of the high frequency vibration enhances the polishing efficiency so as to maintain the polishing characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非磁性管の内面を研磨す
る方法及び装置に係り、特に非磁性管の材質や径に応じ
た研磨条件の最適化や研磨効率の向上を図る技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for polishing the inner surface of a non-magnetic tube, and more particularly to a technique for optimizing polishing conditions and improving polishing efficiency according to the material and diameter of the non-magnetic tube.

【0002】[0002]

【従来の技術】従来の非磁性管の研磨方法としては、管
内に磁性体からなる研磨工具などを収容し、外部から磁
場を印加して磁性体を回転させるものがあった。この場
合、磁性体はマグネットの回転又は電磁コイルにより発
生する回転磁界で回転させられる。これらの研磨方法の
利点は、磁気作用によって駆動機構とは非接触で研磨で
きるため機構が簡単かつ調整容易で、管内の特定部分の
みを研磨できること等である。
2. Description of the Related Art As a conventional method for polishing a non-magnetic tube, there has been a method in which a polishing tool made of a magnetic material is housed in the tube and a magnetic field is applied from the outside to rotate the magnetic material. In this case, the magnetic body is rotated by the rotation of the magnet or the rotating magnetic field generated by the electromagnetic coil. The advantage of these polishing methods is that the mechanism can be polished without contact with the drive mechanism by magnetic action, the mechanism is simple and easy to adjust, and only a specific portion in the tube can be polished.

【0003】[0003]

【発明が解決しようとする課題】ところで、非磁性管に
は用途に応じてステンレス鋼、アルミニウム、黄銅を始
めとして種々の合金を材料とするものがあり、しかも近
年は管径の小さなものが多くなってきており、これら種
々の材質や管径に応じて研磨条件を最適化する必要があ
る。また、近年の管内面研磨に対する要求は年々厳しく
なっており、粗研磨から最終仕上げに至るまでそれぞれ
最適条件でしかも効率良く処理することが望まれてい
る。さらに、磁気研磨の利点である部分研磨にしても従
来よりも微細領域のみを高効率で処理できる方法が必要
とされている。そこで、本発明は上記問題点に鑑み、管
の材質や径に応じて研磨条件を最適化し易いとともに研
磨効率を高めることが可能であり、高品質の内面処理が
可能な磁気研磨方法及び装置を得ることを目的とする。
By the way, there are some non-magnetic tubes made of various alloys such as stainless steel, aluminum and brass depending on the application, and in recent years, many of them have a small tube diameter. It is becoming more and more necessary to optimize polishing conditions according to these various materials and tube diameters. Further, in recent years, the demands on the inner surface of the pipe have become stricter year by year, and it is desired to perform the processing efficiently under the optimum conditions from the rough polishing to the final finishing. Furthermore, even with partial polishing, which is an advantage of magnetic polishing, there is a need for a method capable of processing only fine regions with higher efficiency than in the past. Therefore, in view of the above problems, the present invention provides a magnetic polishing method and apparatus capable of easily optimizing the polishing conditions according to the material and diameter of the tube and enhancing the polishing efficiency, and capable of high quality inner surface treatment. The purpose is to get.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が講じた手段は、磁界を非磁性管の軸線まわり
に回転させるとともに非磁性管を軸線まわりに自転させ
て研磨するものである。また、磁界を非磁性管に対し相
対的に非磁性管の軸線まわりに回転させるとともに、相
対的に軸線方向に往復動させ、さらに往復動よりも小振
幅かつ高周波数の高周波振動を管の軸線方向に重畳させ
て研磨するものである。
Means for Solving the Problems The means taken by the present invention to achieve the above object is to rotate a magnetic field around the axis of a non-magnetic tube and rotate the non-magnetic tube around its axis to polish the magnetic field. is there. In addition, the magnetic field is rotated about the axis of the non-magnetic tube relative to the non-magnetic tube, and is reciprocated relatively in the axial direction, and high-frequency vibration with a smaller amplitude and higher frequency than the reciprocating motion is applied to the axis of the tube. It is to be superposed in the direction and polished.

【0005】[0005]

【作用】かかる手段によれば、磁界を回転させて管内の
磁性体を駆動する際に非磁性管自体も自転するので、回
転速度と自転速度との和で決定される磁性体の非磁性管
に対する周速度と、回転速度のみで決定される磁性体に
加わる遠心力とを独立に設定できる。磁界の回転を実現
する手段としては、放射状に配置された複数の案内径部
を有する回転リングに、その案内径部に沿って移動可能
にマグネットを取付けるようにすると、簡易な構造で種
々の磁性体、管の材質及び管径などに対応できる。軸線
方向の往復動に高周波振動を重畳させると、研磨条件を
変化させることができ、磁性体の運動量が増大するとと
もに磁性体が液体又は粉体の場合には磁性体内部に高周
波振動が伝播する。
According to such means, since the non-magnetic tube itself rotates when the magnetic field in the tube is driven by rotating the magnetic field, the non-magnetic tube of magnetic material determined by the sum of the rotation speed and the rotation speed. It is possible to independently set the peripheral speed with respect to and the centrifugal force applied to the magnetic body, which is determined only by the rotation speed. As a means for realizing the rotation of the magnetic field, when a magnet is attached to a rotating ring having a plurality of guide diameter portions radially arranged so as to be movable along the guide diameter portions, various magnetism can be obtained with a simple structure. It can be used for body and pipe material and pipe diameter. When high-frequency vibration is superimposed on the axial reciprocating motion, the polishing conditions can be changed, the momentum of the magnetic body increases, and when the magnetic body is liquid or powder, the high-frequency vibration propagates inside the magnetic body. .

【0006】[0006]

【実施例】次に、本発明の実施例を図面を参照して説明
する。この実施例は本発明に係る研磨方法及び装置を実
現するための研磨装置の一例であり、図1に示すよう
に、ベース10上に回転磁界を形成するための磁場形成
部2、非磁性管1を把持して回転させるための回転駆動
部3、及び非磁性管1をその軸線方向に駆動するための
軸方向駆動部4が設けられている。
Embodiments of the present invention will now be described with reference to the drawings. This embodiment is an example of a polishing apparatus for realizing the polishing method and apparatus according to the present invention. As shown in FIG. 1, a magnetic field forming unit 2 for forming a rotating magnetic field on a base 10 and a non-magnetic tube. A rotation drive unit 3 for gripping and rotating 1 and an axial drive unit 4 for driving the non-magnetic tube 1 in its axial direction are provided.

【0007】磁場形成部2には円板状の回転リング21
が回転自在に取付けられており、中心孔21bに非磁性
管1を貫通させた状態で駆動モータ26によりベルト2
5、プーリー24を介して回転される。この回転リング
21には、図2に示すように半径方向に延長した案内孔
21aが22.5度間隔で放射状に形成されている。案
内孔21aの径方向における任意位置には固定具22が
ボルトによって取付けられ、この固定具にマグネット2
3A,23Bがボルト固定されている。図示の例では2
つのマグネット23A,23Bは対向位置(180度間
隔)に取付けられ、互の逆極が内向するようになってい
る。このマグネットは、磁束分布を均一化しかつ管内の
磁束密度を大きくさせるために、先端がやや絞りこまれ
た砲弾形状で稜線を持たない滑らかな表面をもつ。
The magnetic field forming unit 2 has a disk-shaped rotating ring 21.
Is rotatably attached, and the belt 2 is driven by the drive motor 26 with the non-magnetic tube 1 passing through the center hole 21b.
5, rotated via the pulley 24. As shown in FIG. 2, guide holes 21a extending in the radial direction are radially formed in the rotating ring 21 at intervals of 22.5 degrees. A fixture 22 is attached by a bolt at an arbitrary position in the radial direction of the guide hole 21a, and the magnet 2 is attached to this fixture.
3A and 23B are fixed by bolts. 2 in the illustrated example
The two magnets 23A and 23B are attached at opposing positions (at intervals of 180 degrees) so that their opposite poles face inward. This magnet has a shell-like shape with a slightly narrowed tip and a smooth surface without ridges in order to make the magnetic flux distribution uniform and increase the magnetic flux density in the tube.

【0008】マグネット23A,23Bの配置は、非磁
性管1の管径と内部に収容される磁性体の種類によって
変えることが望ましい。管径によりマグネットの位置を
径方向に移動させることは当然であるが、回転方向に延
長した形状の磁性体工具を管内に収容した場合には充分
な同期トルクを得るために研磨工具の回転方向の長さと
磁極間隔を整合させる必要があり、マグネットの相互角
をも変える必要が生ずる。また、発明者の実験によれ
ば、磁性粉体や磁性流体中に砥粒を混合して用いる場合
にも管径によってマグネットの最適な角度間隔が変化
し、例えば管径が大きい場合には60〜90度程度、管
径が小さくなるに従って120〜180度が駆動効率上
最適であることが確認されている。なお、条件によって
は3個以上のマグネットを配置してもよい。上記回転リ
ングには案内孔21aを設けたが、半径方向に移動可能
にマグネットを案内できるものであれば、孔に限らずリ
ブやスライド軸など任意の構成を選択できる。また、本
発明に係る磁界を回転させる手段としては上記方法に限
定されるものではなく、電磁コイルの発生する回転磁界
を用いても構わない。
It is desirable that the arrangement of the magnets 23A and 23B be changed depending on the tube diameter of the non-magnetic tube 1 and the type of magnetic material housed inside. It is natural to move the position of the magnet in the radial direction depending on the pipe diameter, but in the case where a magnetic tool extended in the rotational direction is housed in the pipe, in order to obtain sufficient synchronous torque, the rotational direction of the polishing tool It is necessary to match the magnetic pole length with the magnetic pole spacing, and it is necessary to change the mutual angle of the magnets. Further, according to the experiments by the inventor, even when the abrasive particles are mixed and used in the magnetic powder or the magnetic fluid, the optimum angular interval of the magnets changes depending on the tube diameter. It has been confirmed that 120 to 180 degrees is optimal in terms of driving efficiency as the tube diameter decreases to about 90 degrees. Depending on the conditions, three or more magnets may be arranged. Although the guide hole 21a is provided in the rotary ring, any structure such as a rib or a slide shaft can be selected as long as it can guide the magnet so as to be movable in the radial direction. The means for rotating the magnetic field according to the present invention is not limited to the above method, and a rotating magnetic field generated by an electromagnetic coil may be used.

【0009】回転駆動部3には、非磁性管1を把持する
三爪連動チャック32を備えた把持筒31と、この把持
筒31にスプラインで接合された回転筒33と、回転筒
33をギア34を介して駆動するモータ35と、把持筒
31の係合部36に係合する振動板37と、振動板37
に嵌合した軸心部38を出力部とする圧電バイブレータ
39とを備える。この圧電バイブレータ39は周波数可
変のファンクションジェネレータ等に接続されて任意の
周波数で軸心部38を出没させ、振動板37及び把持筒
31を介して非磁性管1に軸線方向の高周波振動を印加
する。もちろん必要な振幅及び周波数に応じて例えばエ
アバイブレータ等の他の手段を用いることも可能であ
る。そして、回転駆動部3は可動部30に収容され、全
体がスライド軸42に沿って移動できるようになってい
る。軸方向駆動部4は、可動部30を摺動自在に支持す
るスライド軸42を取付けた可動ベース41と、可動部
30を往復動させるリンク45,46とモータ47から
なるリンク機構と、可動ベース41を軸線方向に移動さ
せるボールねじ43及びモータ44とから構成され、非
磁性管1を把持した可動部30を軸線方向に所定振幅及
び周期で往復動させながら前進させられるようになって
いる。なお、可動軸受11は、非磁性管1の半径方向に
移動可能な3つの部分からなり、異なる径の非磁性管を
支承できるようになっている。
The rotary drive unit 3 has a grip cylinder 31 having a three-jaw interlocking chuck 32 for gripping the non-magnetic tube 1, a rotary cylinder 33 splined to the grip cylinder 31, and a rotary cylinder 33 as a gear. A motor 35 driven via 34, a vibration plate 37 that engages with an engagement portion 36 of the grip cylinder 31, and a vibration plate 37.
The piezoelectric vibrator 39 having the shaft center part 38 fitted to the output part as an output part. The piezoelectric vibrator 39 is connected to a variable frequency function generator or the like to cause the shaft center portion 38 to project and retract at an arbitrary frequency, and applies high frequency vibration in the axial direction to the non-magnetic tube 1 via the vibration plate 37 and the grip cylinder 31. . Of course, other means such as an air vibrator may be used depending on the required amplitude and frequency. The rotary drive unit 3 is housed in the movable unit 30 so that the entire rotary drive unit 3 can move along the slide shaft 42. The axial drive section 4 includes a movable base 41 having a slide shaft 42 slidably supporting the movable section 30, a link mechanism including links 45 and 46 for reciprocating the movable section 30 and a motor 47, and a movable base. It is composed of a ball screw 43 for moving 41 in the axial direction and a motor 44, and can move forward the movable portion 30 holding the non-magnetic tube 1 while reciprocating in the axial direction at a predetermined amplitude and cycle. The movable bearing 11 is composed of three parts that can move in the radial direction of the non-magnetic tube 1, and can support non-magnetic tubes having different diameters.

【0010】この装置に用いられる磁性体は、管の内面
の曲率に合致した延長形状の磁性体又はマグネットから
なる研磨工具、磁性流体にダイヤモンド粒等の砥粒を混
合させたもの、或いは磁性粉やこれに砥粒を混合させた
ものなどである。延長形状の磁性体又はマグネットは回
転磁界に対する同期化力が大きく研磨効率が高くなる。
一方、延長形状でない磁性流体や粉体ではすべりが発生
し同期化力が小さいので、仕上げ工程に適している。こ
のことに鑑み、本発明人は粗研磨においては上記研磨工
具や延長形状(針状)の磁性粉体を用いて効率良く研磨
し、最終工程には一般の磁性流体や粉体を使用すること
で、研磨効率と研磨面の品位とを両立させている。
The magnetic material used in this apparatus is a polishing tool consisting of an extended magnetic material or magnet that matches the curvature of the inner surface of the tube, a magnetic fluid mixed with abrasive particles such as diamond particles, or magnetic powder. Or a mixture of these with abrasive grains. The extended magnetic body or magnet has a large synchronizing force with respect to the rotating magnetic field and has a high polishing efficiency.
On the other hand, magnetic fluids or powders that are not in the extended shape cause slippage and have a small synchronizing force, which makes them suitable for finishing processes. In view of this, the present inventor uses the above-mentioned polishing tool or the extended shape (needle-shaped) magnetic powder in rough polishing to efficiently perform the polishing, and uses a general magnetic fluid or powder in the final step. Therefore, both the polishing efficiency and the quality of the polished surface are compatible.

【0011】本実施例では、回転リング21の回転によ
り非磁性管1内に収容された磁性工具や磁性粒体が回転
駆動されるが、同時に回転駆動部3によって非磁性管1
そのものを自転させられるようになっている。非磁性管
1に対する工具又は流体の周速は双方の回転量の和で決
定されるが、工具又は流体の回転による遠心力は回転リ
ング21の回転磁界によってのみ決定される。したがっ
て、双方の回転速度を調整すれば研磨部材の周速と遠心
力とを独立に設定できる。例えば、回転リング21の回
転と非磁性管1の自転とを逆方向にすると遠心力を抑制
しながら工具又は砥粒の周速を上げることができるが、
両者を同方向に回転させると周速を押さえながら遠心力
を増大できる。この遠心力は研磨圧に影響を与えるか
ら、従来よりも研磨条件を広範囲に調整することができ
る。また、磁性流体(粉体)を用いた場合には遠心力に
より流体(粉体)が管内の軸線方向に広がるが、上記の
ように本実施例では遠心力を周速とは独立に設定できる
ので、流体の拡がり範囲をも調整でき、例えば溶接部分
など管内の狭い範囲のみを他の部分に影響を与えずに研
磨することができる。
In the present embodiment, the rotation of the rotary ring 21 drives the magnetic tools and magnetic particles contained in the non-magnetic tube 1 to rotate. At the same time, the rotary drive unit 3 drives the non-magnetic tube 1 to rotate.
It can rotate itself. The peripheral speed of the tool or fluid with respect to the non-magnetic tube 1 is determined by the sum of both rotation amounts, but the centrifugal force due to the rotation of the tool or fluid is determined only by the rotating magnetic field of the rotating ring 21. Therefore, the peripheral speed and the centrifugal force of the polishing member can be set independently by adjusting the rotation speeds of both. For example, if the rotation of the rotary ring 21 and the rotation of the non-magnetic tube 1 are reversed, the peripheral speed of the tool or abrasive grains can be increased while suppressing the centrifugal force.
When both are rotated in the same direction, the centrifugal force can be increased while suppressing the peripheral speed. Since this centrifugal force affects the polishing pressure, the polishing conditions can be adjusted over a wider range than in the past. Further, when a magnetic fluid (powder) is used, the fluid (powder) spreads in the axial direction of the tube due to the centrifugal force, but as described above, the centrifugal force can be set independently of the peripheral speed in this embodiment. Therefore, the spreading range of the fluid can also be adjusted, and for example, only a narrow area in the pipe such as a welded portion can be polished without affecting other portions.

【0012】上記装置による研磨は、磁場形成部2及び
回転駆動部3による工具又は流体(粉体)の回転運動と
リンク機構による往復動とが、研磨布や砥粒を管内で螺
旋運動させる。通常は回転の周速度と往復動の振幅及び
周期によって決定される螺旋軌道の交差角(管の円周と
研磨部材の軌道とのなす角)を管の材質により変えて最
適な値を探索し、研磨条件を最適化することができる。
本装置では、さらに回転駆動部3に高周波振動を重畳す
る圧電バイブレータ39を設けたので、上記回転と自転
並びに往復動の組合わせと同様に、管内面の表面あらさ
や平滑度を高次元で達成するための条件設定の自由度が
向上して研磨条件を広範囲に設定できるうえ、回転速度
や往復動を増大させることなく工具や砥粒の運動量を増
加できるので研磨効率を向上させることができる。特に
磁性流体又は磁性粉体もしくはこれらの中に砥粒を混合
して用いる場合には、この高周波振動はこれら流体や粉
体中に混入する研磨くずを分散させたり、砥粒から研磨
くずを分離させたりする効果があり、初期の研磨効率及
び研磨特性を長時間維持させることができる。なお高周
波振動の振幅及び周波数は、管の材質、磁性体の種類、
回転及び自転速度、往復動の振幅及び周期などにより適
宜設定されるべきであるが、振幅はミクロンオーダーの
値とし、周波数は振動による変位ベクトルの回転方向成
分が無視できる程度の高周波数であることが望ましい。
In the polishing by the above apparatus, the rotational movement of the tool or fluid (powder) by the magnetic field forming unit 2 and the rotation driving unit 3 and the reciprocating movement by the link mechanism cause the polishing cloth and the abrasive grains to spiral in the tube. Optimum value is searched for by changing the crossing angle of the spiral orbit (the angle between the circumference of the tube and the path of the polishing member), which is usually determined by the peripheral speed of rotation, the amplitude of reciprocating motion, and the cycle, depending on the material of the tube. The polishing conditions can be optimized.
In this device, since the piezoelectric vibrator 39 that superimposes high-frequency vibrations is further provided on the rotation drive unit 3, the surface roughness and smoothness of the inner surface of the pipe are achieved in a high degree, like the combination of the rotation, rotation and reciprocation. The degree of freedom in setting the conditions for improving the polishing conditions can be increased, and the polishing conditions can be set in a wide range, and the momentum of the tool and the abrasive grains can be increased without increasing the rotation speed and the reciprocating motion, so that the polishing efficiency can be improved. Especially when using magnetic fluid or magnetic powder or abrasive particles mixed in these, this high-frequency vibration disperses polishing debris mixed in these fluids or powder, or separates abrasive debris from the abrasive particles. It has the effect of causing the above-mentioned effects, and the initial polishing efficiency and polishing characteristics can be maintained for a long time. Note that the amplitude and frequency of high-frequency vibration depend on the material of the tube, the type of magnetic material,
It should be set appropriately according to the rotation and rotation speeds, the amplitude and cycle of reciprocating motion, etc., but the amplitude should be of the order of microns and the frequency should be high enough to ignore the rotational direction component of the displacement vector due to vibration. Is desirable.

【0013】なお、本発明に係る研磨方法は、実施例で
示した直管に限らず、径の変化した異径管(レデューサ
ー)にも使用でき、曲管にも適用可能である。また、装
置の往復動は非磁性管を駆動する場合に限られず、磁場
形成手段すなわち回転リングを往復移動させてもよく、
さらに高周波振動も回転磁場と非磁性管の間に印加され
れば足りるので、磁場形成手段側に印加してもよい。
The polishing method according to the present invention can be applied not only to the straight pipe shown in the embodiment but also to a different diameter pipe (reducer) having a different diameter, and also to a curved pipe. Further, the reciprocation of the device is not limited to the case of driving the non-magnetic tube, and the magnetic field forming means, that is, the rotating ring may be reciprocated.
Further, since it is sufficient for the high frequency vibration to be applied between the rotating magnetic field and the non-magnetic tube, it may be applied to the magnetic field forming means side.

【0014】[0014]

【発明の効果】以上説明したように、本発明は磁界を回
転させる手段と非磁性管を回転させる手段とを併用又は
併設すること、及び磁場と非磁性管間の往復運動に高周
波振動を重畳させること又は重畳させる手段を設けたこ
とに特徴を有するので、以下の効果を奏する。 磁界を回転させるとともに非磁性管を自転させるこ
とによって、研磨工具や砥粒の非磁性管内面に対する周
速と、研磨工具や砥粒の遠心力とを独立に設定できるの
で、遠心力の独立設定により研磨圧並びに磁性流体又は
粉体の軸線方向の拡がりの制御が可能であり、研磨条件
を広範囲に調整することができる。 非磁性管の軸線方向の往復動に高周波振動を加える
と、研磨条件の調整が容易になるとともに、磁性体の運
動量が増大して研磨効率が向上する。また、磁性流体又
は粉体を用いる場合には、高周波振動により研磨くずの
分散や砥粒からの研磨くずの分離が促進され、研磨効率
及び研磨特性を長時間維持させることができる。
As described above, according to the present invention, the means for rotating the magnetic field and the means for rotating the non-magnetic tube are used together or provided side by side, and high frequency vibration is superimposed on the reciprocating motion between the magnetic field and the non-magnetic tube. Since it is characterized in that it is provided with a means for causing or superimposing it, the following effects are achieved. By rotating the magnetic field and rotating the non-magnetic tube, the peripheral speed of the polishing tool and abrasive grains with respect to the inner surface of the non-magnetic tube and the centrifugal force of the polishing tool and abrasive grains can be set independently, so the centrifugal force can be set independently. With this, the polishing pressure and the spread of the magnetic fluid or powder in the axial direction can be controlled, and the polishing conditions can be adjusted in a wide range. When high frequency vibration is applied to the reciprocating motion of the non-magnetic tube in the axial direction, the polishing conditions can be easily adjusted, and the momentum of the magnetic material is increased to improve the polishing efficiency. When a magnetic fluid or powder is used, high-frequency vibration promotes dispersion of polishing debris and separation of polishing debris from abrasive grains, and polishing efficiency and polishing characteristics can be maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非磁性管の内面研磨装置の構成を
示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing the configuration of an inner surface polishing apparatus for a non-magnetic tube according to the present invention.

【図2】同装置の回転リングの構造を示す正面図であ
る。
FIG. 2 is a front view showing the structure of a rotary ring of the same device.

【符号の説明】[Explanation of symbols]

1 非磁性管 2 磁場形成部 21 回転リング 21a 案内孔 23A,23B マグネット 3 回転駆動部 31 把持筒 33 回転筒 39 圧電バイブレータ 4 軸方向駆動部 DESCRIPTION OF SYMBOLS 1 Non-magnetic tube 2 Magnetic field forming part 21 Rotating ring 21a Guide hole 23A, 23B Magnet 3 Rotation drive part 31 Grasping cylinder 33 Rotation cylinder 39 Piezoelectric vibrator 4 Axial direction drive part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非磁性管の外部から作用させる磁界によ
り管内の磁性体を駆動して非磁性管の内面を研磨する方
法において、 磁界を非磁性管の軸線まわりに回転させるとともに、非
磁性管を軸線まわりに自転させることを特徴とする非磁
性管の内面研磨方法。
1. A method for driving a magnetic substance in a non-magnetic tube by a magnetic field applied from the outside of the non-magnetic tube to polish the inner surface of the non-magnetic tube, wherein the magnetic field is rotated around an axis of the non-magnetic tube and the non-magnetic tube is rotated. A method for polishing the inner surface of a non-magnetic tube, which comprises rotating the magnet around an axis.
【請求項2】 非磁性管の外部から作用させる磁界によ
り管内の磁性体を駆動して非磁性管の内面を研磨する方
法において、 磁界を非磁性管に対し相対的に非磁性管の軸線まわりに
回転させるとともに相対的に非磁性管の軸線方向に往復
動させ、さらに該往復動よりも小振幅かつ高周波数の高
周波振動を該軸線方向に重畳させることを特徴とする非
磁性管の内面研磨方法。
2. A method for polishing an inner surface of a non-magnetic tube by driving a magnetic material in the tube by a magnetic field applied from the outside of the non-magnetic tube, wherein the magnetic field is around the axis of the non-magnetic tube relative to the non-magnetic tube. The inner surface of the non-magnetic tube is polished while being relatively reciprocated in the axial direction of the non-magnetic tube, and high-frequency vibration having a smaller amplitude and a higher frequency than the reciprocating movement is superimposed in the axial direction. Method.
【請求項3】 請求項1又は請求項2において、前記磁
性体は磁性流体又は磁性粉体であることを特徴とする非
磁性管の内面研磨方法。
3. The method for polishing an inner surface of a non-magnetic tube according to claim 1, wherein the magnetic material is magnetic fluid or magnetic powder.
【請求項4】 非磁性管の外部から作用させる磁界によ
り管内の磁性体を駆動して非磁性管の内面を研磨する装
置において、 非磁性管周囲に配置され非磁性管内に軸線まわりの回転
磁界を形成する磁界回転手段と、非磁性管を回転させる
回転駆動手段と、非磁性管を軸線方向に移動可能な軸線
方向駆動手段とを有することを特徴とする非磁性管の内
面研磨装置。
4. An apparatus for polishing a inner surface of a non-magnetic tube by driving a magnetic material in the non-magnetic tube by a magnetic field applied from the outside of the non-magnetic tube. An inner surface polishing apparatus for a non-magnetic tube, comprising: a magnetic field rotating means for forming a magnetic field; a rotation driving means for rotating the non-magnetic tube; and an axial direction driving means capable of moving the non-magnetic tube in an axial direction.
【請求項5】 請求項4において、前記磁界回転手段
は、非磁性管を中心孔に貫通させた状態に配置され半径
方向に延伸する複数の案内径部を放射状に備えた回転リ
ングと、回転リングの案内径部に沿って移動可能に取付
けられた磁石とを有することを特徴とする非磁性管の内
面研磨装置。
5. The rotating ring according to claim 4, wherein the magnetic field rotating means includes a rotating ring radially arranged with a plurality of guide diameter portions extending in a radial direction, the rotating ring being arranged in a state where the non-magnetic tube penetrates the center hole. An inner surface polishing apparatus for a non-magnetic tube, comprising a magnet mounted so as to be movable along a guide diameter portion of the ring.
【請求項6】 非磁性管の外部から作用させる磁界によ
り管内の磁性体を駆動して非磁性管の内面を研磨する装
置において、 非磁性管に対してその軸線まわりに相対的に回転する磁
界を形成する磁界形成手段と、該磁界に対して非磁性管
をその軸線方向に相対的に往復動可能な軸線方向駆動手
段と、該往復動よりも小振幅かつ高周波数の高周波数振
動を非磁性管の軸線方向に重畳させる振動印加手段とを
有することを特徴とする非磁性管の内面研磨装置。
6. An apparatus for polishing a inner surface of a non-magnetic tube by driving a magnetic material inside the tube by a magnetic field applied from the outside of the non-magnetic tube, wherein the magnetic field rotates relative to the non-magnetic tube about its axis. Magnetic field forming means for forming a magnetic field, an axial driving means capable of relatively reciprocating a non-magnetic tube in the axial direction with respect to the magnetic field, and a high frequency vibration having a small amplitude and a high frequency than the reciprocating motion. An inner surface polishing apparatus for a non-magnetic tube, comprising: a vibration applying unit that is superposed in the axial direction of the magnetic tube.
JP4168553A 1992-06-03 1992-06-03 Non-magnetic tube inner surface polishing equipment Expired - Fee Related JP2648715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4168553A JP2648715B2 (en) 1992-06-03 1992-06-03 Non-magnetic tube inner surface polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4168553A JP2648715B2 (en) 1992-06-03 1992-06-03 Non-magnetic tube inner surface polishing equipment

Publications (2)

Publication Number Publication Date
JPH05337813A true JPH05337813A (en) 1993-12-21
JP2648715B2 JP2648715B2 (en) 1997-09-03

Family

ID=15870163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4168553A Expired - Fee Related JP2648715B2 (en) 1992-06-03 1992-06-03 Non-magnetic tube inner surface polishing equipment

Country Status (1)

Country Link
JP (1) JP2648715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512097B2 (en) 2007-09-14 2013-08-20 Strecon A/S Polishing arrangement and method of polishing a workpiece surface
CN111906626A (en) * 2020-08-11 2020-11-10 杨洲 Full cladding formula burring device of plank edge
CN114599761A (en) * 2019-10-28 2022-06-07 3M创新有限公司 System and method for modifying metal surfaces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221965A (en) * 1987-03-06 1988-09-14 Kureha Chem Ind Co Ltd Method and device for polishing pipe material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221965A (en) * 1987-03-06 1988-09-14 Kureha Chem Ind Co Ltd Method and device for polishing pipe material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512097B2 (en) 2007-09-14 2013-08-20 Strecon A/S Polishing arrangement and method of polishing a workpiece surface
CN114599761A (en) * 2019-10-28 2022-06-07 3M创新有限公司 System and method for modifying metal surfaces
CN111906626A (en) * 2020-08-11 2020-11-10 杨洲 Full cladding formula burring device of plank edge

Also Published As

Publication number Publication date
JP2648715B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JP6878605B2 (en) Processing equipment
JP2000107996A (en) Surface processing method using magnetic anisotropic tool and its device
JPH05337813A (en) Method of polishing inner surface of nonmagnetic pipe and device therefor
SU1071411A1 (en) Apparatus for three-dimensional polishing
US3273288A (en) Ultrasonic grinding and honing
US5813901A (en) Method and device for magnetic-abrasive machining of parts
JP3761791B2 (en) Magnetically assisted polishing method and apparatus for bent pipe inner surface
CN108544306A (en) The ultrasonic finishing batch processing method and equipment of metal casting
JP3462268B2 (en) Surface treatment equipment
JP3434003B2 (en) Surface treatment device by magnetic force
JP2648675B2 (en) Non-magnetic tube inner surface polishing method and inner surface polishing apparatus
US4541204A (en) Apparatus for manufacturing substantially spherical objects to a high degree of roundness
JPH07251369A (en) Internal treatment for nonmagnetic tube and its device
JPH04256569A (en) Method and device for magnetic polishing
RU2042494C1 (en) Device for finishing planes
JP2002192453A (en) Magnetism applied machining method and device for the same
JPH0691506A (en) Spherical body grinding device
CN208231431U (en) A kind of ultrasound finishing equipment
SU435927A1 (en) METHOD FOR TREATMENT OF INTERNAL SURFACES OF TUBES
RU2202461C1 (en) Apparatus for polishing surfaces
SU1240561A1 (en) Method of cleaning abrasive wheel when grinding ferromagnetic materials
JP2002239879A (en) Ultrasonic vibration machining method
JPS61192470A (en) Method of magnetic polishing
JPS61252056A (en) Method of vibration polishing
JPH07156046A (en) Vibration grinder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees