JPH05337630A - Base material for piston and production thereof - Google Patents

Base material for piston and production thereof

Info

Publication number
JPH05337630A
JPH05337630A JP4172076A JP17207692A JPH05337630A JP H05337630 A JPH05337630 A JP H05337630A JP 4172076 A JP4172076 A JP 4172076A JP 17207692 A JP17207692 A JP 17207692A JP H05337630 A JPH05337630 A JP H05337630A
Authority
JP
Japan
Prior art keywords
graphite
piston
aluminum alloy
porosity
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4172076A
Other languages
Japanese (ja)
Other versions
JP3082152B2 (en
Inventor
Masaru Akiyama
勝 秋山
Minoru Fukazawa
稔 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP04172076A priority Critical patent/JP3082152B2/en
Priority to DE19934318193 priority patent/DE4318193A1/en
Publication of JPH05337630A publication Critical patent/JPH05337630A/en
Application granted granted Critical
Publication of JP3082152B2 publication Critical patent/JP3082152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PURPOSE:To provide a graphite-aluminum alloy composite series base material for piston and a manufacturing method thereof having light wt. and providing low thermal expansion and also excellent material strength characteristic. CONSTITUTION:This base material for piston is the graphite-aluminum series material dispersing the aluminum alloy in porous structure of isotropic graphite material and has the vol. ratio of the graphite possessed in this composite series material in the range of 60-95% and provides composition characteristic of <=10% porosity of this material. In this method for manufacturing the base material for piston, the molten aluminum alloy is pressurized and impregnated to the isotropic graphite material having 5-40% porosity at >=100kg/cm<2> pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽量で低い熱膨張性と
優れた材質強度を兼備する内燃機関のピストン用素材と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a piston of an internal combustion engine which is lightweight and has a low thermal expansion property and excellent material strength, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】比較的多量の珪素成分を含むAl−Si
系のアルミニウム合金(JIS AC8A、A4032
等)は軽量で低熱膨張率を有しているため、従来から内
燃機関のピストン用素材として多用されている。しか
し、近年、ピストン部材には低燃費化、高出力化、低騒
音化などを対象とした一層厳しい性能付与が要求されて
おり、これに伴って機関内の温度や回転数が高まること
からアルミニウム合金製のピストン素材では特性的に対
応が困難となっている。
Al-Si containing a relatively large amount of silicon component
Type aluminum alloy (JIS AC8A, A4032
Since they are lightweight and have a low coefficient of thermal expansion, they have been widely used as materials for pistons of internal combustion engines. However, in recent years, the piston members have been required to be given more strict performance targeting low fuel consumption, high output, low noise, etc. It is difficult to deal with the characteristics of alloy piston materials.

【0003】黒鉛は、低密度で熱膨張率が小さく、潤滑
性があって高温下でも強度低下を生じないというピスト
ン用素材に好適な固有の特性を備えているが、材質強度
そのものは金属材料に比べて格段に低いという致命的な
欠点がある。このため、黒鉛単体としてピストン用素材
に適用された例はないが、その固有の特性を利用して金
属材料と複合化させることによりピストン性能の改善を
図る手段については多くの研究がなされている。
[0003] Graphite has unique characteristics suitable for a piston material, such as low density, low thermal expansion coefficient, lubricity, and no decrease in strength even at high temperatures, but the material strength itself is a metal material. There is a fatal drawback that it is much lower than For this reason, there is no example in which it is applied to a piston material as a simple substance of graphite, but much research has been done on means for improving piston performance by compounding with a metallic material by utilizing its unique characteristics. ..

【0004】金属材料をアルミニウム合金とした典型的
な複合系には、例えば特開平1−132736号公報に記載さ
れているようなアルミニウム合金粉末に黒鉛粉末を混合
して焼結する方法(粉末焼結法)または特開昭57−1245
64号公報に開示されているアルミニウム合金の溶湯に黒
鉛粉末を分散させて鋳造する方法(分散鋳造法)があ
る。ところが、これら方法は黒鉛粉末の添加によりアル
ミニウム合金のピストン素材に潤滑性を与えることを主
要な目的とするものであって、黒鉛の低熱膨張性や高温
強度に着目されたものではない。因みに、粉末焼結法に
おける黒鉛粉末添加量の限界は5重量%程度であり、ま
た分散鋳造法においても30重量%以上の黒鉛粉末を分
散させることは操作の面から不可能であり、前記のよう
な黒鉛固有の低熱膨張性や高温強度性を発揮させるため
には量的に不足する。
For a typical composite system in which an aluminum alloy is used as a metal material, for example, a method of mixing graphite powder with aluminum alloy powder and sintering as described in JP-A-1-132736 (powder firing) Method) or JP-A-57-1245
There is a method (dispersion casting method) in which graphite powder is dispersed in a molten aluminum alloy disclosed in Japanese Patent Laid-Open No. 64 and casting is performed. However, these methods have the main purpose of imparting lubricity to the piston material of aluminum alloy by adding graphite powder, and have not paid attention to the low thermal expansion property and high temperature strength of graphite. Incidentally, the limit of the amount of graphite powder added in the powder sintering method is about 5% by weight, and it is impossible to disperse 30% by weight or more of the graphite powder in the dispersion casting method from the viewpoint of operation. In order to exert such low thermal expansion and high temperature strength inherent to graphite, it is insufficient in quantity.

【0005】これに対し、特開昭62−294751号公報には
ピストンの熱膨張・収縮による変形を抑え、かつ強度を
改良するために、緻密質または多孔質黒鉛環状成形体を
アルミニウム合金製ピストンに鋳ぐるむことによって一
部を補強する複合系の内燃機関用ピストンが提案されて
おり、鋳ぐるみ手段として高圧鋳造法による含浸処理が
示されている。しかしながら、このピストンは特定箇所
に黒鉛環状体を部分的な補強材として介在させ、その周
囲はアルミニウム合金で鋳ぐるんだ構造を呈しているか
ら、材質の主体はあくまでもアルミニウム合金製であっ
て構成材料に占める黒鉛の量はピストン全体の低熱膨張
性や高温強度を改善するほどの比率ではない。
On the other hand, in Japanese Patent Laid-Open No. 294751/1987, in order to suppress deformation due to thermal expansion / contraction of the piston and to improve strength, a dense or porous graphite annular molded body is made of an aluminum alloy piston. A composite system piston for an internal combustion engine, in which a part of the piston is reinforced by casting, has been proposed, and impregnation treatment by a high-pressure casting method has been shown as a casting casting means. However, this piston has a structure in which a graphite annular body is interposed at a specific place as a partial reinforcing material, and the surrounding area is a structure surrounded by aluminum alloy, so that the main material is only aluminum alloy. The amount of graphite in the material is not a ratio that improves the low thermal expansion and high temperature strength of the entire piston.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術に
比べて複合系における黒鉛比率を高め、材質強度を損ね
ずに黒鉛固有の有効特性を最大限に発揮させるピストン
素材の材質条件について多角的な研究を重ねた結果、好
適な範囲の黒鉛とアルミニウム合金の複合系組成ならび
性状を解明して開発に至ったものである。
SUMMARY OF THE INVENTION According to the present invention, the material ratio of the piston material is maximized to increase the graphite ratio in the composite system as compared with the prior art and to maximize the effective characteristics peculiar to graphite without impairing the material strength. As a result of repeated intensive research, the inventors have succeeded in the development by elucidating the composite system composition and properties of graphite and aluminum alloy in a suitable range.

【0007】すなわち、本発明の目的は、軽量で低い熱
膨張性と優れた材質強度特性を兼備する黒鉛−アルミニ
ウム合金複合系のピストン用素材およびその製造方法を
提供しようとするところにある。
That is, an object of the present invention is to provide a graphite-aluminum alloy composite material for pistons which is lightweight and has low thermal expansion and excellent material strength characteristics, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明のピストン用素材は、等方性黒鉛材の気孔組
織内にアルミニウム合金が分散介在した複合系材質であ
って、該複合系材質中に占める黒鉛の体積比が60〜9
5%の範囲にあり、かつ材質の気孔率が10%以下の組
成性状を備えることを構成上の特徴とする。
A piston material of the present invention for achieving the above object is a composite material in which an aluminum alloy is dispersed and dispersed in a pore structure of an isotropic graphite material. The volume ratio of graphite in the system material is 60 to 9
The structural feature is that the porosity of the material is in the range of 5% and the porosity of the material is 10% or less.

【0009】本発明のピストン素材を構成する等方性黒
鉛材とは、材料の全方向において機械的、熱的、電気的
などの特性が等方性を示す組織の黒鉛材料を意味し、通
常、熱膨張係数、固有抵抗、機械的強度等を測定した際
の最大値と最小値の比(異方比)が1.0〜1.1の範
囲にあるものを指す。一方、アルミニウム合金は、例え
ば銅、マグネシウム、マンガン、ニッケル、珪素、亜鉛
等の合金成分が少なくとも1種以上、0.2〜13重量
%の範囲で含有されている組成のものが好適に複合され
る。これらの複合系材質は、等方性黒鉛材の気孔組織内
にアルミニウム合金が分散介在して緻密かつ安定に充填
された形態である必要があり、分散、接合あるいは鋳ぐ
るみ等によって黒鉛とアルミニウム合金を複合させた構
造では本発明の目的は達成されない。
The isotropic graphite material constituting the piston material of the present invention means a graphite material having a structure in which mechanical, thermal and electrical characteristics are isotropic in all directions of the material, The ratio of the maximum value to the minimum value (anisotropic ratio) when measuring the thermal expansion coefficient, the specific resistance, the mechanical strength, etc. is in the range of 1.0 to 1.1. On the other hand, the aluminum alloy preferably has a composition in which at least one alloy component such as copper, magnesium, manganese, nickel, silicon, and zinc is contained in the range of 0.2 to 13% by weight. It These composite materials are required to have a form in which an aluminum alloy is intercalated and densely and stably filled in the pore structure of an isotropic graphite material. The object of the present invention cannot be achieved with a structure in which the above are combined.

【0010】このような複合系材質の組成性状として、
その材質中に占める黒鉛の体積比が60〜95%の範
囲、アルミニウム合金の体積比が5〜40%の範囲にあ
ること、および材質の気孔率が10%以下であること、
が本発明の重要な要件となる。黒鉛の体積比が60%を
下廻ると密度および熱膨張率が効果的に低下しないう
え、高温強度を向上させることができなくなり、95%
を越えるとアルミニウム合金による複合機能が発揮され
ず、ピストン用素材として十分な材質強度を得ることが
できなくなる。また、等方性黒鉛材の気孔組織に対する
アルミニウム合金の分散介在が不十分で材質の気孔率が
10%を越えるようになると、材質強度が不足するよう
になる。好ましい材質気孔率は0%であるが、10%ま
では許容できる。
As the compositional properties of such a composite material,
The volume ratio of graphite in the material is in the range of 60 to 95%, the volume ratio of aluminum alloy is in the range of 5 to 40%, and the porosity of the material is 10% or less,
Is an important requirement of the present invention. When the volume ratio of graphite is less than 60%, the density and the thermal expansion coefficient are not effectively reduced, and the high temperature strength cannot be improved.
If it exceeds, the composite function of the aluminum alloy will not be exhibited, and it will not be possible to obtain sufficient material strength as a piston material. Further, when the interposition of the aluminum alloy in the pore structure of the isotropic graphite material is insufficient and the porosity of the material exceeds 10%, the material strength becomes insufficient. The preferred material porosity is 0%, but up to 10% is acceptable.

【0011】上記の組成性状を備えるピストン用素材
は、気孔率5〜40%の等方性黒鉛材に、アルミニウム
合金の溶湯を100kg/cm2以上の圧力下で加圧含浸する
方法で製造することができる。
The piston material having the above compositional characteristics is produced by a method of impregnating an isotropic graphite material having a porosity of 5 to 40% with a molten aluminum alloy under a pressure of 100 kg / cm 2 or more. be able to.

【0012】基材として気孔率5〜40%の等方性黒鉛
材を使用する理由は、この範囲の気孔率が最終的に得ら
れる複合系材料の嵩密度、熱膨張係数および高温強度を
ピストン用素材として好適な水準に保持するための必須
の要件となるからである。すなわち、基材気孔率が5%
未満であると気孔組織内部へのアルミニウム合金の含浸
が円滑に進行しなくなって材質強度が減退し、他方、4
0%を越えるとアルミニウム合金の含浸率が高くなり過
ぎて嵩密度、熱膨張率が上昇し、同時に高温強度が低下
する結果を招く。
The reason for using an isotropic graphite material having a porosity of 5 to 40% as a base material is that the bulk density, the coefficient of thermal expansion and the high temperature strength of the composite material which finally obtains the porosity in this range are determined by the piston This is because it is an indispensable requirement for keeping the material at a suitable level. That is, the base material porosity is 5%.
If it is less than 4, the impregnation of the aluminum alloy into the pore structure will not proceed smoothly and the material strength will decrease.
If it exceeds 0%, the impregnation rate of the aluminum alloy becomes too high, the bulk density and the thermal expansion rate increase, and at the same time, the high temperature strength decreases.

【0013】かかる気孔率5〜40%を有する等方性黒
鉛材は、微粉状のコークス粉とタールピッチの混練物を
微粉砕した二次粒子をラバープレスにより所定形状に成
形したのち焼成炭化および黒鉛化処理する方法におい
て、二次粒子の粒度調整、成形条件、黒鉛化の条件など
を制御することによって製造することができる。
The isotropic graphite material having a porosity of 5 to 40% is obtained by finely crushing secondary particles obtained by finely pulverizing a kneaded material of fine coke powder and tar pitch into a predetermined shape by a rubber press, followed by firing carbonization and In the graphitization method, it can be produced by controlling the particle size adjustment of secondary particles, molding conditions, graphitization conditions, and the like.

【0014】加圧含浸処理は、基材となる等方性黒鉛材
を650〜900℃に保持されたアルミニウム溶湯中に
浸漬し、ガス加圧もしくは溶湯鍛造手段を用いて加圧状
態を付与する工程でおこなわれる。この際、等方性黒鉛
材は予め目的とするピストンに沿った形状に加工し、浸
漬前に真空中または不活性ガス雰囲気中でアルミニウム
合金溶湯と同温度に予熱しておくことが好ましい。含浸
時の圧力は100kg/cm2以上に設定する必要があり、こ
れを下廻る加圧では円滑に含浸を進行させることができ
なくなる。
In the pressure impregnation treatment, an isotropic graphite material as a base material is dipped in an aluminum melt kept at 650 to 900 ° C., and a pressurized state is given by gas pressurization or melt forging means. It is done in the process. At this time, it is preferable that the isotropic graphite material is previously processed into a shape along the intended piston and preheated to the same temperature as the molten aluminum alloy in vacuum or in an inert gas atmosphere before immersion. It is necessary to set the pressure during impregnation to 100 kg / cm 2 or more, and if the pressure is less than 100 kg / cm 2 , the impregnation cannot proceed smoothly.

【0015】含浸処理後の等方性黒鉛材はアルミニウム
溶湯から引上げて冷却し、必要に応じて表面に付着した
不要のアルミニウム合金を切削加工してピストン用素材
を得る。
The isotropic graphite material after the impregnation treatment is pulled up from the molten aluminum and cooled, and unnecessary aluminum alloy adhering to the surface is cut and processed to obtain a piston material when necessary.

【0016】[0016]

【作用】本発明のピストン用素材は、等方性黒鉛材の気
孔組織内にアルミニウム合金が分散介在した複合系材質
であって、該複合系材質中に占める黒鉛の体積比が60
〜95%の範囲にあり、かつ材質の気孔率が10%以下
の組成性状を備える。したがって、構成主体は骨格基材
となる等方性黒鉛材であり、その気孔組織内部にアルミ
ニウム合金が5〜40%の体積比になるように緻密で安
定的に均質充填された複合構造を呈している。この複合
系において、骨格形成されている等方性黒鉛材は60〜
95%の体積比範囲で材質固有の低密度、低熱膨張性お
よび高温強度特性を十分に発揮し、気孔組織内に分散介
在したアルミニウム合金は等方性黒鉛材料を補強して材
質強度を高水準に引き上げるために機能する。これらの
性能付与機能が相乗的に作用して、ピストン用素材に要
求される軽量で低い熱膨張性と優れた材質強度を兼備
し、強固で良摺動性の性能がバランスよく付与される。
The piston material of the present invention is a composite material in which an aluminum alloy is dispersed in the pore structure of an isotropic graphite material, and the volume ratio of graphite in the composite material is 60.
˜95%, and the porosity of the material is 10% or less. Therefore, the main constituent is an isotropic graphite material that serves as a skeleton base material, and it has a complex structure in which the aluminum alloy is densely and stably homogeneously packed so that the volume ratio of the aluminum alloy is 5 to 40%. ing. In this composite system, the skeleton-forming isotropic graphite material is 60-
The aluminum alloy that fully exhibits the low density, low thermal expansion property and high temperature strength characteristics peculiar to the material in the volume ratio range of 95%, and the intercalated aluminum alloy is reinforced by the isotropic graphite material and has a high material strength. Function to raise to. These performance-imparting functions act synergistically to combine the light weight and low thermal expansion required for piston materials with excellent material strength, and to impart strong and good slidability in a well-balanced manner.

【0017】また、本発明の製造方法に従えば、気孔率
5〜40%の等方性黒鉛材にアルミニウム合金の溶湯を
加圧含浸するという比較的簡単なプロセスにより、上記
した高性能の複合組織を備えるピストン用素材を工業的
に効率よく生産することが可能となる。
Further, according to the production method of the present invention, the above-mentioned high-performance composite is obtained by a relatively simple process of pressure-impregnating an isotropic graphite material having a porosity of 5 to 40% with a molten aluminum alloy. It is possible to industrially efficiently produce a piston material having a tissue.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0019】実施例1、比較例1〜2 嵩密度1.85g/cc、気孔率18.1%の等方性黒鉛材
〔東海カーボン(株)製、G347〕を直径80mm、長
さ100mmの円柱状に加工して基材とした。この基材を
真空中で700℃に予熱し、同様に密閉系内で真空加熱
して700℃の温度に保持されたアルミニウム合金(A
C8A)の溶湯中に浸漬した。ついで系内にアルゴンガ
スを導入し、雰囲気圧力を110kg/cm2に上昇して加圧
含浸処理をおこなった。含浸後の基材を溶湯から引上
げ、冷却して複合材を得た。この複合材に占める黒鉛の
体積比は、81.9%であった。
Example 1, Comparative Examples 1-2 An isotropic graphite material having a bulk density of 1.85 g / cc and a porosity of 18.1% (G347 manufactured by Tokai Carbon Co., Ltd.) having a diameter of 80 mm and a length of 100 mm was used. It was processed into a cylindrical shape to obtain a base material. This base material was preheated to 700 ° C. in a vacuum, and similarly vacuum-heated in a closed system to hold an aluminum alloy (A
It was immersed in the melt of C8A). Then, argon gas was introduced into the system, the atmospheric pressure was raised to 110 kg / cm 2 , and pressure impregnation treatment was performed. The impregnated base material was pulled up from the molten metal and cooled to obtain a composite material. The volume ratio of graphite in this composite material was 81.9%.

【0020】得られた複合材の断面組織を調査したとこ
ろ、気孔組織の内部までアルミニウム合金が均質に充填
されていることが確認された。この材料の長さ方向およ
び径方向から直径10mm、長さ60mmの試片(5個)を
切り出し、アルキメデス法で嵩密度および気孔率を、S
iO2 との比較法で熱膨張係数(50〜300℃)をそ
れぞれ測定した。また、スパン50mm、試験速度0.5
mm/minの3点曲げ法により常温および高温(350℃
時)の曲げ強度を測定した。それらの結果を、表1に示
した。なお、比較のために、基材に用いた等方性黒鉛材
(比較例1)およびアルミニウム合金材(比較例2)の
特性についても表1に併載した。
When the cross-sectional structure of the obtained composite material was examined, it was confirmed that the aluminum alloy was uniformly filled up to the inside of the pore structure. 10 pieces (5 pieces) with a diameter of 10 mm and a length of 60 mm were cut out from the length direction and the radial direction of this material, and the bulk density and the porosity were measured by the Archimedes method to obtain S.
The coefficient of thermal expansion (50 to 300 ° C.) was measured by the comparison method with iO 2 . Also, span 50 mm, test speed 0.5
Room temperature and high temperature (350 ℃
Bending strength was measured. The results are shown in Table 1. For comparison, Table 1 also shows the characteristics of the isotropic graphite material (Comparative Example 1) and the aluminum alloy material (Comparative Example 2) used for the base material.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から、実施例による複合系材質
はAl合金材に比べて相対的に嵩密度ならびに熱膨張係
数が低く、黒鉛基材、Al合金に比べ常温および高温曲
げ強度が大幅に向上したバランスのよい特性を示してお
り、ピストン用素材に要求される性能要件を満たしてい
る。
From the results shown in Table 1, the composite materials according to the examples have relatively lower bulk density and thermal expansion coefficient than the Al alloy material, and the bending strength at room temperature and high temperature is significantly higher than those of the graphite base material and the Al alloy. It has improved and well-balanced properties and meets the performance requirements of piston materials.

【0023】実施例2〜6、比較例3〜5 嵩密度、気孔率などが異なる等方性黒鉛材を基材とし、
実施例1と同様のアルミニウム合金溶湯による含浸処理
を圧力条件を変えて実施して、材質に占める黒鉛体積比
および気孔率が相違する複合系のピストン用素材を製造
した。得られた各複合素材につき実施例1と同様にして
各種特性を測定し、結果を黒鉛体積比および材質気孔率
と対比させて表2に示した。
Examples 2 to 6 and Comparative Examples 3 to 5 Using isotropic graphite materials having different bulk densities and porosities as a base material,
The same impregnation treatment with the molten aluminum alloy as in Example 1 was performed under different pressure conditions to manufacture a composite piston material having different graphite volume ratios and porosities in the material. Various properties of each of the obtained composite materials were measured in the same manner as in Example 1, and the results are shown in Table 2 in comparison with the graphite volume ratio and the material porosity.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から、本発明の組成性状を満たす実施
例2〜5では軽量で低い熱膨張係数と優れた常温および
高温曲げ強度を兼備する複合特性を示したが、本発明の
限定要件を外れる比較例3〜5ではいずれかの複合特性
にピストン用素材として不適合の減退結果が認められ
た。
Table 2 shows that in Examples 2 to 5 satisfying the compositional properties of the present invention, they are lightweight and have a composite property that combines a low coefficient of thermal expansion with excellent room-temperature and high-temperature flexural strength. In Comparative Examples 3 to 5 which are out of the range, the deterioration result which is not suitable as the piston material is recognized in any of the composite characteristics.

【0026】実施例6〜9、比較例6〜10 基材気孔率の異なる等方性黒鉛材(直径80mm、長さ1
00mm)をアルゴンガス雰囲気中で650℃の温度に予
熱して金型にセットし、直ちに800℃のアルミニウム
合金(AC8A)を注入して基材を浸漬した。ついで、
金型パンチに500kg/cm2の圧力を付与しながら2分間
保持し、冷却した。得られた複合材の表面に付着した余
分のアルミニウム合金を切削除去したのち、実施例1と
同様にして各種特性を測定した。その結果をグラフとし
て図1および図2に示した。図1は基材気孔率と複合材
熱膨張係数との関係図であり、図2は基材気孔率と複合
材の高温曲げ強度ならびに嵩密度との関係図である。
Examples 6-9, Comparative Examples 6-10 Isotropic graphite materials having different base material porosities (80 mm diameter, 1 length)
00 mm) was preheated to a temperature of 650 ° C. in an argon gas atmosphere and set in a mold, and an aluminum alloy (AC8A) at 800 ° C. was immediately injected to immerse the base material. Then,
The mold punch was held for 2 minutes while applying a pressure of 500 kg / cm 2 , and then cooled. After the excess aluminum alloy attached to the surface of the obtained composite material was removed by cutting, various characteristics were measured in the same manner as in Example 1. The results are shown in graphs in FIGS. 1 and 2. FIG. 1 is a relationship diagram of the base material porosity and the composite material thermal expansion coefficient, and FIG. 2 is a relationship diagram of the base material porosity and the high temperature bending strength and bulk density of the composite material.

【0027】図1からは、用いた基材の気孔率が5〜4
0%の範囲では複合材特性として低位で一定の熱膨張係
数が得られるが、基材気孔率が40%を越えると熱膨張
係数が急激に上昇する傾向が認められる。また、図2の
グラフは複合材の高温曲げ強度が基材気孔率5〜40%
の範囲で増大しており、嵩密度は基材気孔率が高くなる
に従って上昇するが基材気孔率が5〜40%の領域では
許容しえる軽量範囲にあることが判明した。
From FIG. 1, the porosity of the substrate used is 5-4.
In the range of 0%, a low coefficient of thermal expansion is obtained as a composite material property, but when the porosity of the base material exceeds 40%, the thermal expansion coefficient tends to rapidly increase. Further, the graph of FIG. 2 shows that the high temperature bending strength of the composite material is 5-40% of the base material porosity.
It has been found that the bulk density increases as the base material porosity increases, but is in an allowable light weight range in the base material porosity range of 5 to 40%.

【0028】[0028]

【発明の効果】以上のとおり、本発明によれば等方性黒
鉛材を骨格基材とし、これに特定の体積比と気孔率を満
たすようにアルミニウム合金を含浸して分散複合系の組
織を形成することにより、軽量で低い熱膨張性と優れた
材質強度を兼備するピストン用素材を提供することが可
能となる。したがって、低燃費、高出力、低騒音等の性
能が求められる高負荷用の内燃機関ピストンを対象とし
た素材として極めて有用である。
As described above, according to the present invention, an isotropic graphite material is used as a skeleton base material, which is impregnated with an aluminum alloy so as to satisfy a specific volume ratio and porosity to form a structure of a dispersed composite system. By forming it, it is possible to provide a material for a piston that is lightweight and has low thermal expansion and excellent material strength. Therefore, it is extremely useful as a material for a high-load internal combustion engine piston, which requires performance such as low fuel consumption, high output, and low noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例と比較例による基材気孔率と複合材熱膨
張係数の関係を示したグラフである。
FIG. 1 is a graph showing a relationship between a base material porosity and a composite material thermal expansion coefficient according to an example and a comparative example.

【図2】実施例と比較例による基材気孔率と複合材の高
温曲げ強度ならびに嵩密度との関係を示したグラフであ
る。
FIG. 2 is a graph showing a relationship between a base material porosity and a high temperature bending strength and bulk density of a composite material according to an example and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02F 3/00 302 Z 8503−3G F16J 1/01 7366−3J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02F 3/00 302 Z 8503-3G F16J 1/01 7366-3J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 等方性黒鉛材の気孔組織内にアルミニウ
ム合金が分散介在した複合系材質であって、該複合系材
質中に占める黒鉛の体積比が60〜95%の範囲にあ
り、かつ材質の気孔率が10%以下の組成性状を備える
ことを特徴とするピストン用素材。
1. A composite material in which an aluminum alloy is dispersed in the pore structure of an isotropic graphite material, and the volume ratio of graphite in the composite material is in the range of 60 to 95%, and A material for a piston, which has a composition property in which the porosity of the material is 10% or less.
【請求項2】 気孔率5〜40%の等方性黒鉛材に、ア
ルミニウム合金の溶湯を100kg/cm2以上の圧力下で加
圧含浸することを特徴とするピストン用素材の製造方
法。
2. A method for producing a piston material, characterized in that an isotropic graphite material having a porosity of 5 to 40% is pressure-impregnated with a molten aluminum alloy under a pressure of 100 kg / cm 2 or more.
JP04172076A 1992-06-05 1992-06-05 Material for piston and method of manufacturing the same Expired - Fee Related JP3082152B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04172076A JP3082152B2 (en) 1992-06-05 1992-06-05 Material for piston and method of manufacturing the same
DE19934318193 DE4318193A1 (en) 1992-06-05 1993-06-01 Material contg. 60-95 vol.% graphite plus aluminium@ alloy - used for piston mfr., obtd. by impregnation of graphite with molten alloy under high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04172076A JP3082152B2 (en) 1992-06-05 1992-06-05 Material for piston and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05337630A true JPH05337630A (en) 1993-12-21
JP3082152B2 JP3082152B2 (en) 2000-08-28

Family

ID=15935097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04172076A Expired - Fee Related JP3082152B2 (en) 1992-06-05 1992-06-05 Material for piston and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP3082152B2 (en)
DE (1) DE4318193A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010064630A (en) * 1999-12-29 2001-07-09 이계안 Method for manufacturing of piston
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof
JP2010029919A (en) * 2008-07-30 2010-02-12 Denki Kagaku Kogyo Kk Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
WO2010092923A1 (en) 2009-02-12 2010-08-19 電気化学工業株式会社 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
WO2010140541A1 (en) * 2009-06-02 2010-12-09 電気化学工業株式会社 Aluminum-graphite composite, and heat dissipating component and led luminescent member that use same
JP6966728B1 (en) * 2020-10-01 2021-11-17 アドバンスコンポジット株式会社 Carbon-based metal composite material and its manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411059A1 (en) * 1994-03-30 1995-10-05 Ringsdorff Werke Gmbh Material for mfg. piston
WO2000027776A1 (en) 1998-11-11 2000-05-18 Advanced Materials International Company, Ltd. Carbon-based metal composite material, method for preparation thereof and use thereof
DE10128055C2 (en) 2001-06-01 2003-09-25 Sgl Carbon Ag Slide pairing for machine parts exposed to water vapor at high pressure and temperature levels, preferably for piston-cylinder arrangements of steam engines
DE102007051570A1 (en) * 2007-10-29 2009-04-30 Austrian Research Centers Gmbh Method for producing a composite material and composite material, composite body and connecting device
DE102008017756A1 (en) * 2008-04-07 2009-10-15 Carmag Gmbh Carbon body impregnated with a light metal alloy
DE102009048006B3 (en) * 2009-10-02 2011-03-17 Sgl Carbon Se Graphite body impregnated with a light metal alloy, process for its preparation and its use
DE102010002708B4 (en) 2010-03-09 2016-09-22 Sgl Carbon Se Method of making carbon pistons and carbon pistons

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE580106C (en) * 1932-12-15 1933-07-06 Ernst Mahle Dipl Ing Light metal pistons for internal combustion engines
NL142657B (en) * 1968-12-13 1974-07-15 Euratom PROCEDURE FOR IMPREGNATING AN OBJECT FROM GRAPHITE WITH METAL AND OBJECT OBTAINED BY THIS PROCEDURE.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
KR20010064630A (en) * 1999-12-29 2001-07-09 이계안 Method for manufacturing of piston
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof
JP2010029919A (en) * 2008-07-30 2010-02-12 Denki Kagaku Kogyo Kk Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
WO2010092923A1 (en) 2009-02-12 2010-08-19 電気化学工業株式会社 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
KR20110117694A (en) 2009-02-12 2011-10-27 덴끼 가가꾸 고교 가부시키가이샤 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
US8883564B2 (en) 2009-02-12 2014-11-11 Denki Kagaku Kogyo Kabushiki Kaisha Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and LED luminescent member
WO2010140541A1 (en) * 2009-06-02 2010-12-09 電気化学工業株式会社 Aluminum-graphite composite, and heat dissipating component and led luminescent member that use same
JP6966728B1 (en) * 2020-10-01 2021-11-17 アドバンスコンポジット株式会社 Carbon-based metal composite material and its manufacturing method
JP2022059120A (en) * 2020-10-01 2022-04-13 アドバンスコンポジット株式会社 Carbon-based metal composite and manufacturing method thereof

Also Published As

Publication number Publication date
JP3082152B2 (en) 2000-08-28
DE4318193A1 (en) 1993-12-09

Similar Documents

Publication Publication Date Title
JPH05337630A (en) Base material for piston and production thereof
EP0147769A2 (en) Dispersion-strengthened heat- and wear-resistant aluminum alloy and process for producing same
CN110257684B (en) Preparation process of FeCrCoMnNi high-entropy alloy-based composite material
JPH11500186A (en) Metal matrix composite material and manufacturing method
JPH0474402B2 (en)
US6604501B1 (en) Piston consisting of finest grain carbon and method for producing the same
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JP5988667B2 (en) Intermetallic compound reinforced composite material and method for producing the same
JPH0699771B2 (en) Aluminum alloy porous member and method for manufacturing the same
JP3675299B2 (en) Connecting rod made of Fe-based sintered alloy with high strength and toughness
JP2006328492A (en) Damping sintered alloy
JP3038489B2 (en) Method for producing metal composite carbon material
JP3303030B2 (en) Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same
EP0221746A2 (en) Activated sintering of metallic powders
JPH0634045A (en) Graphite-aluminium alloy complex piston
JP4150954B2 (en) Metal-impregnated carbon sliding material and manufacturing method thereof
CN114959517B (en) Preparation method of aluminum-based composite material and aluminum-based composite material
JP2016084534A (en) High density iron-based sintered body and manufacturing method therefor
JPH06279124A (en) Production of silicon nitride sintered compact
RU2700341C1 (en) Composition of composite material based on aluminum alloy
JP2921114B2 (en) Method for manufacturing hypereutectic Al-Si alloy member having high strength and high toughness
JP3204566B2 (en) Manufacturing method of heat sink material
JPH09263866A (en) Aluminum matrix composite material and its production
JPS6241305B2 (en)
JPH086565B2 (en) Intake / exhaust valve and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees