JPH05337404A - Atomizing device - Google Patents
Atomizing deviceInfo
- Publication number
- JPH05337404A JPH05337404A JP14233592A JP14233592A JPH05337404A JP H05337404 A JPH05337404 A JP H05337404A JP 14233592 A JP14233592 A JP 14233592A JP 14233592 A JP14233592 A JP 14233592A JP H05337404 A JPH05337404 A JP H05337404A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- swirling
- speed
- spray port
- rotating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Nozzles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は水、油、薬溶液などを霧
化する霧化装置に関し、加湿器、薬霧化等の医療機器、
燃焼機器等に利用するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomizing device for atomizing water, oil, drug solution, etc.
It is used for combustion equipment.
【0002】[0002]
【従来の技術】近年、液体加圧ノズルを用いた霧化装置
は加湿装置、液体燃焼装置などに使用されている。従
来、この種の霧化装置として、図2に示す構成のものが
あった。図に示すように、液体は圧力ポンプ1により加
圧され、配管2を通りノズル3に供給され、円錐台状の
旋回コマ4に設けられた旋回溝5を通過することで液体
室6で旋回流れとなり、噴霧口7から中空の逆円錐状膜
8となって噴出される。液体の噴出速度及び旋回速度と
周囲との相対速度差によって中空の逆円錐状膜8に剪断
が生じるので、液膜が分断されて霧化するようになって
いた。2. Description of the Related Art In recent years, atomizers using liquid pressure nozzles have been used in humidifiers, liquid combustors and the like. Conventionally, as this type of atomizing device, there is one having a configuration shown in FIG. As shown in the figure, the liquid is pressurized by a pressure pump 1, supplied to a nozzle 3 through a pipe 2, and swirls in a liquid chamber 6 by passing through a swirling groove 5 provided in a circular truncated cone-shaped swiveling piece 4. It becomes a flow and is ejected from the spray port 7 as a hollow inverted conical film 8. Since the hollow inverted conical membrane 8 is sheared due to the difference in the jetting speed and the swirling speed of the liquid and the relative velocity with the surroundings, the liquid film is divided and atomized.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、霧化量を小さくすると液体流量が少なくな
り、噴霧口7から中空の逆円錐状膜8となって噴出され
る液体の噴出速度及び旋回速度が減少するので、周囲と
の相対速度差が小さくなり、中空の逆円錐状膜8の液膜
厚さが厚くなると共に液膜に作用する剪断力も小さくな
るので、液膜の分断によって形成される粒子径が大きく
なり、霧化状態が悪化するので霧化量の可変幅を大きく
とれないという課題があった。また粒子径は中空の逆円
錐状膜8の液膜厚さが薄いほど小さくなるので、より小
さい粒子径で霧化するためには、噴霧口7の径を小さく
しかつ旋回速度を大きくすることで、形成される中空の
逆円錐状膜8の液膜厚さを薄くしなければならないが、
噴霧口7を小さくすると液体室6での旋回流れの速度が
噴霧口7を通過する際に減速されるので、旋回力が小さ
くなり、液膜厚さが大きくなるので粒子径も大きくな
り、噴霧口7を小さくしても粒子径が小さくならず、液
体を超微粒子として霧化できないという課題があった。However, in the above-mentioned conventional configuration, when the atomization amount is reduced, the liquid flow rate is reduced, and the ejection speed and the ejection speed of the liquid ejected as the hollow inverted conical film 8 from the atomizing port 7 are reduced. Since the swirling speed decreases, the relative speed difference with the surroundings decreases, the liquid film thickness of the hollow inverted conical film 8 increases, and the shearing force acting on the liquid film also decreases. There is a problem that the variable width of the atomization amount cannot be large because the atomized particle size increases and the atomization state deteriorates. Further, the particle diameter becomes smaller as the liquid film thickness of the hollow inverted conical membrane 8 becomes thinner. Therefore, in order to atomize with a smaller particle diameter, it is necessary to reduce the diameter of the spray port 7 and increase the swirling speed. Therefore, it is necessary to reduce the liquid film thickness of the hollow inverted conical film 8 formed,
When the spray port 7 is made smaller, the swirling flow velocity in the liquid chamber 6 is slowed down when passing through the spray port 7, so that the swirling force becomes small and the liquid film thickness becomes large, so that the particle diameter becomes large and Even if the mouth 7 is made small, the particle diameter does not become small, and there is a problem that the liquid cannot be atomized as ultrafine particles.
【0004】本発明は上記従来の課題を解決するもの
で、霧化量の可変幅が大きく、液体を超微粒子として霧
化できる霧化装置を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an atomizing device having a large variable range of atomization amount and capable of atomizing a liquid as ultrafine particles.
【0005】[0005]
【課題を解決するための手段】本発明は上記目的を達成
するため、連結軸の端部に設けられた回転体と、前記連
結軸の他方の端部に設けられた駆動部と、前記回転体を
内包し回転体の側部と流路を構成して設けられた液ノズ
ルと、この液ノズルの下流端に設けられた噴霧口と、こ
の噴霧口と前記回転体の下流側端部とで構成された液体
室と、前記液ノズルの上流側に連通した液体供給管と、
この液体供給管と連通した液体供給部とを設けたもので
ある。In order to achieve the above object, the present invention provides a rotating body provided at an end of a connecting shaft, a drive unit provided at the other end of the connecting shaft, and the rotating body. A liquid nozzle that includes a body to form a flow path with a side portion of a rotating body, a spray port provided at a downstream end of the liquid nozzle, and a spray port and a downstream side end portion of the rotating body. A liquid chamber constituted by, and a liquid supply pipe communicating with the upstream side of the liquid nozzle,
A liquid supply section communicating with the liquid supply pipe is provided.
【0006】[0006]
【作用】本発明は上記構成によって、液体供給部で加圧
され液体供給管を通り液ノズルに供給された液体は液ノ
ズルの内部に充填され、回転体の側部と液ノズルの内面
とで形成された流路及び液体室に液体が満たされ、液体
室の液圧力が上昇する。このとき、駆動部で回転力を発
生させ、この回転力を連結軸によって回転体に伝達させ
て回転体を回転させることにより、回転体と接している
液体が粘性力によって回転方向に運動するので、液体室
に旋回流れが生じ、噴霧口から液体が外部に向かって中
空の逆円錐状膜で旋回しながら噴出され、液体膜の噴出
速度及び旋回速度と周囲との相対速度差によって液体膜
が剪断力で小さく分断されるので霧化できる。霧化量が
少ない場合には噴霧口からの噴出速度が低下するが、回
転体の回転速度を大きくすることで、液体膜の旋回速度
を大きくすることができるので、周囲との相対速度差を
大きくすることができ、液体膜が剪断力で小さく分断さ
れるので広い霧化量の可変幅で霧化できる。噴霧口を小
さくすると中空の逆円錐状膜の液膜厚さが薄くなり粒子
径も小さくなるが、噴霧口が小さすぎると液体室での旋
回流れの速度が噴霧口を通過する際に減速されるので、
旋回力が小さくなる傾向にあるが、回転体の回転速度を
大きくすることで液体膜の旋回速度を大きくすることが
できるため、噴霧口の径を小さくしかつ旋回速度を大き
くすることができるので、液膜厚さが薄い中空の逆円錐
状膜を形成することができ、液体を超微粒子として霧化
できる。According to the present invention, according to the above-described structure, the liquid pressurized in the liquid supply portion and supplied to the liquid nozzle through the liquid supply pipe is filled inside the liquid nozzle, and the liquid is provided between the side portion of the rotating body and the inner surface of the liquid nozzle. The formed flow path and the liquid chamber are filled with the liquid, and the liquid pressure in the liquid chamber rises. At this time, a rotational force is generated by the drive unit, and this rotational force is transmitted to the rotating body by the connecting shaft to rotate the rotating body, so that the liquid in contact with the rotating body moves in the rotation direction by viscous force. , A swirling flow is generated in the liquid chamber, and the liquid is jetted from the spray port toward the outside while swirling with a hollow inverted conical film, and the liquid film is formed by the jetting speed of the liquid film and the relative speed difference between the swirling speed and the surroundings. It can be atomized because it is divided into small pieces by shearing force. When the amount of atomization is small, the ejection speed from the spray port decreases, but by increasing the rotation speed of the rotating body, the swirling speed of the liquid film can be increased, so the relative speed difference with the surroundings can be reduced. Since the liquid film can be made large, and the liquid film is divided into small pieces by the shearing force, it can be atomized in a wide variable range of the atomization amount. When the spray port is made smaller, the liquid film thickness of the hollow inverted conical membrane becomes thinner and the particle size also becomes smaller, but when the spray port is too small, the swirling flow velocity in the liquid chamber is slowed down when passing through the spray port. So
Although the swirling force tends to be small, since the swirling speed of the liquid film can be increased by increasing the rotating speed of the rotating body, it is possible to reduce the diameter of the spray port and increase the swirling speed. It is possible to form a hollow inverted conical film having a thin liquid film thickness and atomize the liquid as ultrafine particles.
【0007】[0007]
【実施例】以下本発明の実施例を図1を参照して説明す
る。図1において、9は液ノズルで上流側は液体供給管
10によって液体供給部であるポンプ11に連通してお
り、下流側の端部には噴霧口12が設けられている。液
ノズル9の内部に設けられた回転体13は、連結軸14
によってOリング等を用いたシール部15を貫通して液
ノズル9の底部外側に固定された駆動部であるモーター
16と連結されるとともに、回転体13の側面と液ノズ
ル9の内側面との間に流路を構成するように保持されて
いる。回転体13の下流端には突部17が設けられてお
り、回転体13の下流端と噴霧口12との間には液体室
18が形成されている。モーター16は制御部19に電
気的に接続されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 9 denotes a liquid nozzle, the upstream side of which is connected to a pump 11 which is a liquid supply portion by a liquid supply pipe 10, and a spray port 12 is provided at an end portion on the downstream side. The rotating body 13 provided inside the liquid nozzle 9 has a connecting shaft 14
Is connected to a motor 16 that is a drive unit fixed to the outside of the bottom of the liquid nozzle 9 through the seal portion 15 using an O-ring, and the side surface of the rotating body 13 and the inner surface of the liquid nozzle 9 are connected. It is held so as to form a flow path therebetween. A protrusion 17 is provided at the downstream end of the rotating body 13, and a liquid chamber 18 is formed between the downstream end of the rotating body 13 and the spray port 12. The motor 16 is electrically connected to the control unit 19.
【0008】上記構成において、液体供給部11に供給
された液体は、所定圧力に加圧され液体供給管10を通
り、液ノズル9の内部に充填され、回転体13と液ノズ
ル9の内側面との間隙及び液体室18に満たされ液体圧
力が上昇する。このとき、駆動部であるモーター16で
回転力を発生させ、この回転力を連結軸14によって回
転体13に伝達させて回転体13を連続的に回転させる
ことにより、回転体13の側面及び突部17に接した液
体が壁面との粘性力によって回転方向と同方向に連続的
に運動するため液体室13内に旋回流れが形成されると
共に、液体室13の液体圧力が増大するので、液体が噴
霧口12から中空の逆円錐状膜で旋回しながら噴出さ
れ、液体の噴出速度及び旋回速度と周囲との相対速度差
が生じるので液体膜に剪断力が働き、小さく分断される
ので霧化できるという効果がある。霧化量が少ない場合
には噴霧口12からの噴出速度が低下するが、制御部1
9によってモーター16の回転数を上げ、回転体13の
回転速度を大きくすることで、液体膜の旋回速度を大き
くすることができるので、周囲との相対速度差を大きく
することができ、液体膜が剪断力で小さく分断されるの
で広い霧化量の可変幅で霧化できるという効果がある。
噴霧口12を小さくすると中空の逆円錐状膜の液膜厚さ
が薄くなり粒子径も小さくなるが、噴霧口12が小さす
ぎると液体室18での旋回流れの速度が噴霧口12を通
過する際に減速されるので、旋回力が小さくなる傾向に
あるが、回転体13の回転速度を大きくすることで液体
膜の旋回速度を大きくすることができるため、噴霧口1
2の径を小さくしかつ旋回速度を大きくすることができ
るので、液膜厚さが薄い中空の逆円錐状膜を形成するこ
とができ、液体を超微粒子として霧化できるという効果
がある。In the above structure, the liquid supplied to the liquid supply unit 11 is pressurized to a predetermined pressure, passes through the liquid supply pipe 10, and is filled inside the liquid nozzle 9, and the rotor 13 and the inner surface of the liquid nozzle 9 are filled. And the liquid chamber 18 is filled with the liquid and the liquid pressure rises. At this time, a rotating force is generated by the motor 16 which is a driving unit, and this rotating force is transmitted to the rotating body 13 by the connecting shaft 14 so that the rotating body 13 is continuously rotated. Since the liquid in contact with the portion 17 continuously moves in the same direction as the rotation direction due to the viscous force with the wall surface, a swirling flow is formed in the liquid chamber 13 and the liquid pressure in the liquid chamber 13 increases, Is jetted from the spray port 12 while swirling with a hollow inverted conical film, and a relative velocity difference between the jetting speed and swirling speed of the liquid and the surroundings is generated, so a shearing force acts on the liquid film and the liquid film is divided into small pieces, resulting in atomization. There is an effect that you can. When the atomization amount is small, the ejection speed from the spray port 12 decreases, but the control unit 1
By increasing the rotation speed of the motor 16 and increasing the rotation speed of the rotating body 13 by means of 9, the swirling speed of the liquid film can be increased, so that the relative speed difference with the surroundings can be increased and the liquid film can be increased. Since it is divided into small pieces by shearing force, there is an effect that it can be atomized with a wide variable range of atomization amount.
When the spray port 12 is made smaller, the liquid film thickness of the hollow inverted conical film becomes smaller and the particle size also becomes smaller, but when the spray port 12 is too small, the swirling flow velocity in the liquid chamber 18 passes through the spray port 12. The swirling force tends to be small because the speed is reduced at this time, but the swirling speed of the liquid film can be increased by increasing the rotating speed of the rotating body 13, so that the spray port 1
Since the diameter of 2 can be reduced and the swirling speed can be increased, it is possible to form a hollow inverted conical membrane having a thin liquid film thickness and to atomize the liquid as ultrafine particles.
【0009】[0009]
【発明の効果】以上のように本発明の霧化装置によれ
ば、次の効果が得られる。 (1)液体供給部で液体を加圧し、駆動部による回転力
で回転体を回転させることにより、回転体と接している
液体が粘性力によって回転方向に運動するので、液体室
に旋回流れが生じ、噴霧口から液体が外部に向かって中
空の逆円錐状膜で旋回しながら噴出され、液体の噴出速
度及び旋回速度と周囲との相対速度差によって液体膜が
小さく分断されるので霧化できる。 (2)霧化量が少ない場合には噴霧口からの噴出速度が
低下するが、回転体の回転速度を大きくすることで、液
体の旋回速度を大きくすることができるので、周囲との
相対速度差を大きくすることができ、液体膜が剪断力で
小さく分断されるので広い霧化量の可変幅で霧化でき
る。 (3)噴霧口を小さくすると中空の逆円錐状膜の液膜厚
さが薄くなり粒子径も小さくなるが、噴霧口が小さすぎ
ると液体室での旋回流れの速度が噴霧口を通過する際に
減速されるので、旋回力が小さくなる傾向にあるが、回
転体の回転速度を大きくすることで液体の旋回速度を大
きくすることができるため、噴霧口の径を小さくしかつ
旋回速度を大きくすることができるので、液体膜厚さが
薄い中空の逆円錐状膜を形成することができ、液体を超
微粒子として霧化できる。As described above, according to the atomizing device of the present invention, the following effects can be obtained. (1) By pressurizing the liquid by the liquid supply unit and rotating the rotating body by the rotating force of the drive unit, the liquid in contact with the rotating body moves in the rotating direction by viscous force, so that a swirling flow is generated in the liquid chamber. The liquid film is spouted from the spray port toward the outside while swirling with a hollow inverted conical film, and the liquid film is divided into small parts by the jetting speed of the liquid and the relative speed difference between the swirling speed and the surroundings, so that atomization is possible. . (2) When the atomization amount is small, the ejection speed from the spray port decreases, but the swirling speed of the liquid can be increased by increasing the rotation speed of the rotating body, so the relative speed with the surroundings. The difference can be increased and the liquid film is divided into small pieces by the shearing force, so that the liquid film can be atomized with a wide variable range of atomization amount. (3) When the spray port is made smaller, the liquid film thickness of the hollow inverted-conical membrane becomes thinner and the particle size also becomes smaller. However, when the spray port is too small, the swirling flow velocity in the liquid chamber will be small when passing through the spray port. The swirling force tends to be small because the speed is reduced to 1. However, since the swirling speed of the liquid can be increased by increasing the rotating speed of the rotating body, the diameter of the spray port can be reduced and the swirling speed can be increased. Therefore, it is possible to form a hollow inverted conical film having a thin liquid film thickness and atomize the liquid as ultrafine particles.
【図1】本発明の一実施例における霧化装置の要部断面
図FIG. 1 is a sectional view of a main part of an atomizing device according to an embodiment of the present invention.
【図2】同装置における回転体の斜視図FIG. 2 is a perspective view of a rotating body in the device.
【図3】従来の霧化装置の要部断面図FIG. 3 is a sectional view of a main part of a conventional atomizing device.
9 液ノズル 10 液体供給管 11 液体供給部 12 噴霧口 13 回転体 14 連結軸 16 モータ 18 液体室 9 Liquid Nozzle 10 Liquid Supply Pipe 11 Liquid Supply Section 12 Spray Port 13 Rotating Body 14 Connection Shaft 16 Motor 18 Liquid Chamber
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇野 克彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Uno 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (1)
連結軸の他方の端部に設けられた駆動部と、前記回転体
を内包し回転体の側部と流路を構成して設けられた液ノ
ズルと、この液ノズルの下流端に設けられた噴霧口と、
この噴霧口と前記回転体の下流側端部とで構成された液
体室と、前記液ノズルの上流側に連通した液体供給管
と、この液体供給管と連通した液体供給部とからなる霧
化装置。1. A rotary body provided at an end of a connecting shaft, a drive unit provided at the other end of the connecting shaft, and a side portion of the rotary body and a flow path including the rotary body. And a spray nozzle provided at the downstream end of the liquid nozzle,
Atomization consisting of a liquid chamber constituted by the spray port and the downstream end of the rotating body, a liquid supply pipe communicating with the upstream side of the liquid nozzle, and a liquid supply unit communicating with the liquid supply pipe. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14233592A JPH05337404A (en) | 1992-06-03 | 1992-06-03 | Atomizing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14233592A JPH05337404A (en) | 1992-06-03 | 1992-06-03 | Atomizing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05337404A true JPH05337404A (en) | 1993-12-21 |
Family
ID=15312969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14233592A Pending JPH05337404A (en) | 1992-06-03 | 1992-06-03 | Atomizing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05337404A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004045775A1 (en) * | 2002-11-19 | 2004-06-03 | Redding John D | Dredging, scouring, excavation and cleaning |
-
1992
- 1992-06-03 JP JP14233592A patent/JPH05337404A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004045775A1 (en) * | 2002-11-19 | 2004-06-03 | Redding John D | Dredging, scouring, excavation and cleaning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521462A (en) | Rotary atomizer for coating workpieces with a fine layer of liquid material, and a method of operating the said atomizer | |
JP2693402B2 (en) | Nozzle device for paint spray gun | |
US20120168538A1 (en) | Spin Annular Slit Spray Nozzle and Spray Apparatus Thereof | |
JPH09117697A (en) | Spray coating device | |
JPH05337404A (en) | Atomizing device | |
JP4347036B2 (en) | Rotary atomization coating equipment | |
JPH04176352A (en) | Spray nozzle | |
JPH05138083A (en) | Micro-granulation device of liquid | |
JPH04171067A (en) | Spray gun | |
JP2001137747A (en) | Atomizing nozzle | |
US5201466A (en) | Spray gun having a rotatable spray head | |
JPH05138082A (en) | Atomization device | |
JPH06262109A (en) | Atomizer | |
JPH05317758A (en) | Atomizing apparatus | |
JPH0747308A (en) | Atomizer | |
JPH06226149A (en) | Liquid fine pulvelizing device | |
JPH09239296A (en) | Rotary atomizing type coating apparatus | |
JPH0747307A (en) | Atomizer | |
CN218655000U (en) | Nozzle structure capable of enlarging spraying area and realizing quick spraying | |
JPH0596212A (en) | Atomizer | |
CN2144028Y (en) | Integrated adjustable valve spray head | |
JPH05285425A (en) | Atomizing apparatus | |
JP3063226B2 (en) | Atomization equipment | |
JPH02152568A (en) | Rotary atomization type coating apparatus | |
JPS6380866A (en) | Atomizer |