JPH05337334A - Carbon dioxide gas removal treatment system of combustion exhaust gas - Google Patents

Carbon dioxide gas removal treatment system of combustion exhaust gas

Info

Publication number
JPH05337334A
JPH05337334A JP4166668A JP16666892A JPH05337334A JP H05337334 A JPH05337334 A JP H05337334A JP 4166668 A JP4166668 A JP 4166668A JP 16666892 A JP16666892 A JP 16666892A JP H05337334 A JPH05337334 A JP H05337334A
Authority
JP
Japan
Prior art keywords
amine
gas
exhaust gas
absorption
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4166668A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
健二 小林
Hiroshi Yanagioka
洋 柳岡
Toshihisa Tachikawa
利久 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP4166668A priority Critical patent/JPH05337334A/en
Publication of JPH05337334A publication Critical patent/JPH05337334A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To remove carbon dioxide gas efficiently by allowing a combustion exhaust gas containing a small amount of a sulfur oxide to come in contact with an amine-based absorption liquid, then removing the carbon dioxide gas from the exhaust gas by absorption, and regenerate the amine-based absorption liquid by carbon dioxide gas removal. CONSTITUTION:Combustion exhaust gas containing about 100ppm max of sulfur oxide is introduced into an amine-based absorption column from a line 11, then a combustion exhaust gas is allowed to come in contact with the amine-based absorption liquid, and the carbon dioxide gas of the exhaust gas undergoes a chemical reaction with the amine-based absorption liquid remove the gas by absorption. A treated exhaust gas from which carbon dioxide gas is removed in the amine-based absorption column 1 is exhausted to an atmosphere. On the other hand, the amine-based absorption liquid in which the carbon dioxide gas is absorbed is extracted by a pump through a line 12 to be supplied to an absorption liquid regeneration process. Further, the amine-based absorption liquid is thermally regenerated in the first regeneration tower 2, and is circulated to the amine-based absorption column 1 through a line 22 as a regenerated absorption liquid. The carbon dioxide gas which is separated and desorbed in the first regeneration tower 2 is extracted through a line 21, then is sent to an outside area of the system through a gas/liquid separator, and finally is concentrated, recovered and hardened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼排ガスから炭酸ガ
スを吸収除去する燃焼排ガスの脱炭酸ガス処理システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for decarbonating flue gas for absorbing and removing carbon dioxide from flue gas.

【0002】[0002]

【従来の技術】近年、地球規模における環境汚染が問題
とされている。特に、化石燃料の使用により排出される
炭酸ガスの大気圏蓄積により惹起される地球の温暖化等
が問題となっている。そのため、炭酸ガスの放出を地球
規模で規制する方向にあり、炭酸ガス放出抑制の各種提
案がなされている。例えば、燃料転換の提案、炭酸ガス
発生を減少させる燃焼方法や装置、または炭酸ガス除去
方法や装置が種々提案されている。
2. Description of the Related Art In recent years, environmental pollution on a global scale has become a problem. In particular, global warming and the like caused by atmospheric accumulation of carbon dioxide gas emitted from the use of fossil fuels have become a problem. Therefore, the emission of carbon dioxide is on a global scale, and various proposals for suppressing the emission of carbon dioxide have been made. For example, various fuel conversion proposals, combustion methods and devices for reducing carbon dioxide gas generation, and carbon dioxide gas removal methods and devices have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、地球規
模の炭酸ガス放出抑制にかかる技術は、開始されたばか
りであり、今後の技術開発に負うところが大きい。発明
者らは、上記現状に鑑み、特に、炭酸ガスの大量放出の
最大原因である大型ボイラー等の燃焼排ガス中の炭酸ガ
スを簡便且つ効率的に除去する方法について検討した。
その結果、アミン系の吸収液を用いて処理することによ
り、燃焼排ガスから炭酸ガスを効率的に除去することが
できる本発明を完成した。
However, the technology for suppressing the carbon dioxide emission on a global scale has just been started, and the technical development in the future is greatly borne. In view of the above situation, the inventors have particularly studied a method for simply and efficiently removing carbon dioxide gas in combustion exhaust gas from a large-scale boiler or the like, which is the largest cause of large-scale emission of carbon dioxide gas.
As a result, the present invention has been completed in which carbon dioxide gas can be efficiently removed from combustion exhaust gas by treating with an amine-based absorption liquid.

【0004】[0004]

【課題を解決するための手段】本発明によれば、硫黄酸
化物含有量が僅少な燃焼排ガスをアミン系吸収液と接触
させ、排ガス中の炭酸ガスを該アミン系吸収液で吸収除
去して処理排ガスを排出させるアミン吸収工程と、炭酸
ガスを吸収した該アミン系吸収液を脱炭酸ガス処理して
再生する吸収液再生工程からなることを特徴とする燃焼
排ガスの脱炭酸ガス処理システムが提供される。
According to the present invention, combustion exhaust gas having a small sulfur oxide content is brought into contact with an amine-based absorption liquid, and carbon dioxide gas in the exhaust gas is absorbed and removed by the amine-based absorption liquid. Provided is a decarbonation treatment system for combustion exhaust gas, which comprises an amine absorption process for discharging treated exhaust gas, and an absorption liquid regeneration process for regenerating by decarbonating the amine-based absorption liquid absorbing carbon dioxide gas. To be done.

【0005】[0005]

【作用】本発明は上記のように構成され、硫黄酸化物含
有量が少ない燃焼排ガスをアミン吸収工程にて処理する
ことにより、排ガス中の炭酸ガスをアミン系吸収液中に
反応吸収させるため、炭酸ガスを効率よく除去すること
ができる。また、炭酸ガスを吸収したアミン系吸収液は
再生して循環使用することができる。また、アミン吸収
工程を、所定の分散手段、ガス・液接触手段及びガス排
出手段から構成することにより、本発明システムのコン
パクト化が図れると共に、燃焼排ガスをアミン系吸収液
中に均一に分散させて吹き込むことができる。そのた
め、排ガス中の炭酸ガスを効率的に除去することができ
る。更にまた、アミン吸収工程において、所定の冷却手
段を一体的に具備させることもできるため、高温で供給
される燃焼排ガスをアミン吸収操作に好適な温度まで冷
却することもでき、燃焼排ガスの冷却、分散、アミン系
吸収液との接触及び排出の一連の操作を、コンパクトに
行うことが可能である。
The present invention is constituted as described above, and by treating the combustion exhaust gas having a low sulfur oxide content in the amine absorption step, the carbon dioxide gas in the exhaust gas is reacted and absorbed in the amine-based absorption liquid, Carbon dioxide can be removed efficiently. Further, the amine-based absorbing liquid that has absorbed carbon dioxide can be recycled and reused. Further, by constructing the amine absorbing step from the predetermined dispersing means, gas / liquid contacting means, and gas discharging means, the system of the present invention can be made compact, and the combustion exhaust gas can be uniformly dispersed in the amine absorbing liquid. Can be blown in. Therefore, carbon dioxide gas in the exhaust gas can be efficiently removed. Furthermore, in the amine absorption step, a predetermined cooling means can be integrally provided, so that the combustion exhaust gas supplied at a high temperature can be cooled to a temperature suitable for amine absorption operation. It is possible to compactly carry out a series of operations of dispersion, contact with an amine-based absorbent and discharge.

【0006】本発明の脱炭酸ガスシステムにおいて処理
される燃焼排ガスの硫黄酸化物含有量の僅少であるこ
と、即ち、約100ppm以下の比較的少量であること
が好ましい。硫黄酸化物含有量が多量、例えば、約20
0ppmを超える場合は、アミン系吸収液の吸収能の低
下が著しく好ましくない。従って、通常の石炭や石油系
燃料の燃焼排ガス等の被処理燃焼排ガス中に、亜硫酸ガ
ス等の硫黄酸化物が多量に含有される場合には、予め、
排ガスを脱硫処理して硫黄酸化物を上記濃度まで減少さ
せた後に、本発明の脱炭酸ガス処理システムに導入する
のが好ましい。本発明で用いられるアミン系吸収液は、
硫黄酸化物以外の硫化水素等硫黄化合物によっても劣化
する。しかし、燃焼排ガス中の硫黄化合物の殆どは硫黄
酸化物であり、本発明の脱炭酸ガス処理システムにおい
て、導入する燃焼排ガスの硫黄酸化物含有量を規制し、
アミン系吸収液の劣化を抑制することにより、安定的に
連続して脱炭酸ガス処理を行うことができる。
It is preferred that the flue gas treated in the decarbonation system of the present invention has a low sulfur oxide content, ie, a relatively low amount of about 100 ppm or less. High sulfur oxide content, eg about 20
If it exceeds 0 ppm, the absorption capacity of the amine-based absorbing solution is significantly lowered, which is not preferable. Therefore, when a large amount of sulfur oxides such as sulfurous acid gas is contained in the treated combustion exhaust gas such as combustion exhaust gas of ordinary coal or petroleum-based fuel, in advance,
After the exhaust gas is desulfurized to reduce the sulfur oxides to the above concentration, it is preferably introduced into the decarbonation system of the present invention. The amine-based absorbent used in the present invention is
It is also deteriorated by sulfur compounds such as hydrogen sulfide other than sulfur oxides. However, most of the sulfur compounds in the combustion exhaust gas are sulfur oxides, and in the decarbonation gas treatment system of the present invention, the sulfur oxide content of the combustion exhaust gas to be introduced is regulated,
By suppressing the deterioration of the amine-based absorption liquid, it is possible to stably and continuously perform the decarbonation gas treatment.

【0007】石油または石炭燃焼排ガス等粉塵及び/ま
たは硫黄酸化物を多く含有する燃焼排ガスの処理におい
ては、本出願人が既に特開平1−159027号、同3
−72913号、同3−262510号等で提案した排
煙の除塵及び脱硫処理方法やその他の排煙脱硫処理方法
により処理した脱硫処理燃焼排ガスを、本発明の脱炭酸
ガス処理システムに導入するのが好ましい。LNGの燃
焼排ガスは、硫黄酸化物を殆ど含有していない。そのた
め、LNG燃焼排ガスは、そのまま本発明の脱炭酸ガス
処理システムに導入することができる。また、硫黄酸化
物含有量が僅少であり、粉塵を比較的多量に含有する燃
焼排ガスの場合には、本発明のアミン吸収工程におい
て、特に、後記する冷却処理手段を具備させることによ
り十分に除塵処理が可能であるため、LNG燃焼排ガス
と同様、そのまま、本発明の脱炭酸ガス処理システムに
導入することができる。
In the treatment of combustion exhaust gas containing a large amount of dust and / or sulfur oxides such as petroleum or coal combustion exhaust gas, the present applicant has already disclosed in JP-A-1-159017 and JP-A-159027.
The desulfurization combustion exhaust gas treated by the dust removal and desulfurization treatment method of the flue gas proposed in No. 72913, No. 3-262510 etc. or other flue gas desulfurization treatment method is introduced into the decarbonation gas treatment system of the present invention. Is preferred. The combustion exhaust gas of LNG contains almost no sulfur oxide. Therefore, the LNG combustion exhaust gas can be directly introduced into the decarbonation gas treatment system of the present invention. Further, in the case of a combustion exhaust gas containing a relatively small amount of sulfur oxides and containing a relatively large amount of dust, in the amine absorption step of the present invention, dust removal is sufficiently performed by providing a cooling treatment means described later. Since it can be treated, it can be introduced into the decarbonation treatment system of the present invention as it is, like LNG combustion exhaust gas.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づき詳細に
説明する。但し、本発明は下記実施例により制限される
ものでない。図1は本発明の一実施例の燃焼排ガスの脱
炭酸ガスシステムの概要説明図、図2は本発明の脱炭酸
ガス処理システムにおけるアミン吸収工程の一実施例の
縦断面説明図、図3はアミン吸収工程の他の実施例の縦
断面説明図である。図1において、脱炭酸ガス処理シス
テムは、アミン吸収塔1及び吸収液再生工程が直列的に
連結されてなり、吸収液再生工程は第1再生塔2及び第
2再生塔3の2段階で構成され、当該システムに導入さ
れた燃焼排ガスを脱炭酸ガス処理する。例えば、硫黄酸
化物含有量約100ppm以下の燃焼排ガスを、ライン
11からアミン吸収塔1に導入し、燃焼排ガスとアミン
系吸収液とを接触させることにより、排ガス中の炭酸ガ
スがアミン系吸収液Lと反応して吸収除去される。アミ
ン吸収塔1で脱炭酸ガス処理された処理排ガスは、外部
に排出される。一方、炭酸ガスを反応吸収したアミン系
吸収液は、ライン12により、好ましくは、ポンプにて
抜き出され、吸収液再生工程に供給される。吸収液再生
工程に供給された炭酸ガスを吸収したアミン系吸収液
は、基本的に、第1再生塔2で加熱再生され、再生吸収
液としてライン22によりアミン吸収塔1に循環され
る。第1再生塔2において分離・離脱された炭酸ガス
は、ライン21により抜き出され、気液分離器4を経て
系外に送出された後、適当な処理系に送られ濃縮回収、
固化等適宜処理される。
Embodiments of the present invention will now be described in detail with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is a schematic explanatory diagram of a combustion exhaust gas decarbonation system according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional explanatory diagram of an embodiment of an amine absorption step in the decarbonation treatment system of the present invention, and FIG. It is a longitudinal section explanatory view of other examples of an amine absorption process. In FIG. 1, the decarboxylation gas treatment system comprises an amine absorption tower 1 and an absorption liquid regeneration step connected in series, and the absorption liquid regeneration step is composed of two stages of a first regeneration tower 2 and a second regeneration tower 3. Then, the combustion exhaust gas introduced into the system is decarbonated. For example, the combustion exhaust gas having a sulfur oxide content of about 100 ppm or less is introduced into the amine absorption tower 1 through the line 11, and the combustion exhaust gas and the amine absorption liquid are brought into contact with each other, so that carbon dioxide gas in the exhaust gas is converted into the amine absorption liquid. It reacts with L and is absorbed and removed. The treated exhaust gas that has been decarbonated in the amine absorption tower 1 is discharged to the outside. On the other hand, the amine-based absorption liquid that has absorbed carbon dioxide by reaction is preferably withdrawn by a pump through the line 12 and supplied to the absorption liquid regeneration step. The amine-based absorption liquid that has absorbed the carbon dioxide gas supplied to the absorption liquid regeneration step is basically heated and regenerated in the first regeneration tower 2 and circulated to the amine absorption tower 1 through the line 22 as the regenerated absorption liquid. The carbon dioxide gas separated and desorbed in the first regeneration tower 2 is extracted through a line 21, sent out of the system through a gas-liquid separator 4, and then sent to an appropriate treatment system for concentration and recovery.
Appropriate processing such as solidification is performed.

【0009】本発明の脱炭酸ガス処理システムは、上記
したように硫黄酸化物の含有量が僅少な燃焼排ガスを処
理する。そのため、本発明の吸収液において、炭酸ガス
吸収能が低下する以外、不純物蓄積等により劣化するこ
とは殆どない。しかし、長期間の燃焼排ガス処理におい
ては、徐々に硫黄化合物、主に硫黄酸化物が、アミン系
吸収液中に蓄積することがある。そのような場合、第1
再生塔のみでの再生処理では十分再生されず、アミン系
吸収液の吸収能が次第に低下する。このため、本発明に
おいて、好ましくは、ライン22により第1再生塔2か
らアミン吸収塔1に循環する再生吸収液の一部を、定期
的に、または適宜、ライン23により第2再生塔3に導
入し、更に加熱蒸留等で処理するのがよい。この第2再
生塔3での処理により、再生吸収液中の残留炭酸を更に
脱離除去することができ、また、硫黄化合物等劣化物の
不純物を分離除去することができる。第2再生塔3にお
いて、炭酸ガス等のガス成分を含有する軽質分である留
出吸収液を、塔頂からライン31により抜き出し、その
後、気液分離器5を経てガス成分(主に炭酸ガス)を系
外に送出し、液成分の一部を第2再生塔3に循環し、残
部をライン32により第1再生塔2に送る。一方、第2
再生塔3塔底には、上記不純物が高濃度に濃縮された重
質分が蓄積される。蓄積された重質分は、適宜、ライン
33により抜き出し回収廃棄処理または燃焼処理するの
が好ましい。なお、本発明において、上記第2再生塔3
は、処理する燃焼排ガスの性状によりアミン系吸収液の
劣化が少ない場合には、設置する必要がない。
The decarbonation gas treatment system of the present invention treats combustion exhaust gas containing a small amount of sulfur oxides as described above. Therefore, the absorbing liquid of the present invention is hardly deteriorated by accumulation of impurities and the like except that the carbon dioxide gas absorption capacity is reduced. However, in the long-term combustion exhaust gas treatment, sulfur compounds, mainly sulfur oxides, may gradually accumulate in the amine-based absorption liquid. In such cases, the first
The regeneration treatment only with the regeneration tower does not sufficiently regenerate, and the absorption capacity of the amine-based absorbing solution gradually decreases. Therefore, in the present invention, a part of the regenerated absorption liquid circulated from the first regeneration tower 2 to the amine absorption tower 1 via the line 22 is preferably fed to the second regeneration tower 3 via the line 23 regularly or appropriately. It is better to introduce it and further treat it by heating distillation or the like. By the treatment in the second regeneration tower 3, the residual carbonic acid in the regeneration absorption liquid can be further desorbed and removed, and the impurities such as sulfur compounds and the like that are deteriorated can be separated and removed. In the second regeneration tower 3, a distillate absorption liquid, which is a light component containing a gas component such as carbon dioxide, is withdrawn through a line 31 from the top of the tower, and then the gas component (mainly carbon dioxide gas is passed through the gas-liquid separator 5). ) Is sent out of the system, a part of the liquid component is circulated to the second regeneration tower 3, and the rest is sent to the first regeneration tower 2 through the line 32. Meanwhile, the second
At the bottom of the regeneration tower 3, a heavy component in which the above impurities are concentrated to a high concentration is accumulated. It is preferable that the accumulated heavy components are appropriately extracted through the line 33, and then collected, discarded, or burned. In the present invention, the second regeneration tower 3
Does not need to be installed when the deterioration of the amine-based absorption liquid is small due to the properties of the combustion exhaust gas to be treated.

【0010】次に、本発明のアミン吸収工程について説
明する。図2において、アミン吸収塔1は全体が密閉容
器構造に形成され、上方に位置するガス分散室A及び下
方に位置する炭酸ガス吸収室Bとからなっている。ガス
分散室Aは、アミン吸収塔1の天板41、側壁42及び
側壁42に連結して設置される水平隔壁43によって仕
切られた空間とで構成される。更に、ガス分散室Aの側
壁42には、ガス導入口44が配設され、ガス導入口4
4には排ガス導入管45が連結される。水平隔壁43
は、その中央部が開口し、開口部46には処理ガス排出
管47が連結される。処理ガス排出管47は、炭酸ガス
吸収室Bに連通すると共に、アミン吸収塔1を貫通して
処理ガスを系外に排出する。更に、水平隔壁43は板面
に多数の分散孔48を有し、各分散孔48には下端開口
のガス分散管49をそれぞれ連結させ、炭酸ガス吸収室
B内に保持されるアミン系吸収液中まで垂下させる。ガ
ス分散管49は、通常、円管体が用いられるが、その
他、任意の水平断面形状を有する管体を用いることもで
きる。
Next, the amine absorbing step of the present invention will be described. In FIG. 2, the amine absorption tower 1 is formed in a closed container structure as a whole, and includes an upper gas dispersion chamber A and a lower carbon dioxide gas absorption chamber B. The gas dispersion chamber A is composed of a top plate 41 of the amine absorption tower 1, a side wall 42, and a space partitioned by a horizontal partition wall 43 connected to the side wall 42. Further, a gas inlet 44 is provided on the side wall 42 of the gas dispersion chamber A, and the gas inlet 4
An exhaust gas introduction pipe 45 is connected to 4. Horizontal partition 43
Has a central opening, and a processing gas exhaust pipe 47 is connected to the opening 46. The processing gas discharge pipe 47 communicates with the carbon dioxide gas absorption chamber B and penetrates the amine absorption tower 1 to discharge the processing gas to the outside of the system. Further, the horizontal partition wall 43 has a large number of dispersion holes 48 on the plate surface, and a gas dispersion pipe 49 having a lower end opening is connected to each of the dispersion holes 48, and the amine-based absorption liquid retained in the carbon dioxide gas absorption chamber B is Let it hang down. As the gas dispersion pipe 49, a circular pipe body is usually used, but a pipe body having an arbitrary horizontal cross-sectional shape can also be used.

【0011】上記ガス分散室Aにおいて、更に、ガス導
入管45の内部、及び/または、ガス分散室A内の水平
隔壁43の上方に、配水管50に連通する冷却水噴霧器
51を配設することができる。冷却水噴霧器51は、ガ
ス導入管45に導入される燃焼排ガスを冷却して、ガス
吸収室Bにおけるアミン系吸収液を吸収適温とすること
ができる。冷却水噴霧器51は、配水管50によって供
給される冷却水を微粒子として噴霧できればよく、その
大きさや形態等は特に制限されない。例えば、旋回型ま
たはジェット型のスプレーや2液ノズル等を用いること
ができる。また、上記冷却水噴霧器51を配設する場
合、特に、ガス導入管45を、側壁42に対し接線方向
になるように設置してもよい。この場合、排ガスが回転
しながらガス分散室A内に供給され、噴霧器51から噴
霧される冷却水微粒子と排ガスとの接触時間が長くな
り、排ガスの冷却効果が高められ効率的である。
In the gas dispersion chamber A, a cooling water sprayer 51 communicating with the water distribution pipe 50 is arranged inside the gas introduction pipe 45 and / or above the horizontal partition wall 43 in the gas dispersion chamber A. be able to. The cooling water sprayer 51 can cool the combustion exhaust gas introduced into the gas introduction pipe 45 to bring the amine-based absorption liquid in the gas absorption chamber B to an appropriate absorption temperature. The cooling water sprayer 51 only needs to be able to spray the cooling water supplied by the water distribution pipe 50 as fine particles, and its size, form, etc. are not particularly limited. For example, a swirl type or jet type spray, a two-liquid nozzle, or the like can be used. Further, when the cooling water sprayer 51 is provided, the gas introduction pipe 45 may be installed so as to be tangential to the side wall 42. In this case, the exhaust gas is supplied into the gas dispersion chamber A while rotating, and the contact time between the cooling water particles sprayed from the sprayer 51 and the exhaust gas becomes long, and the cooling effect of the exhaust gas is enhanced, which is efficient.

【0012】本発明において、冷却水噴霧器51の配設
は、導入、供給される燃焼排ガス温度に応じて、その要
否を選択すればよい。例えば、処理する燃焼排ガスが化
石燃料の燃焼排ガスであれば、排煙脱硫処理が必須とな
り、本発明の脱炭酸ガス処理システムに先立ち、硫黄酸
化物含有量を僅少にするため前処理として脱硫処理する
場合、排ガス温度は、既に、通常のアミン系吸収液の使
用適温の約50℃以下となる。そのため、ガス分散室A
には冷却水噴霧器51を配設する必要がない。また、冷
却水噴霧器51を配設した場合は作動させずに、そのま
ま、排ガスをガス分散室A内を分散孔48に流通させれ
ばよい。また、LNG燃焼排ガスのように硫黄酸化物を
殆ど含有しない排ガスの場合は、脱硫処理が不要であ
り、ガス導入管45に導入される排ガス温度は、一般に
約90〜150℃の高温となる。このため、炭酸ガス吸
収室Bの吸収液作用に応じた適温、通常、約35〜50
℃の温度まで冷却する必要がある。即ち、上記したガス
導入管45及び/またはガス分散室A内に冷却水噴霧器
51を配設し、配水管50から供給した冷却水を冷却水
噴霧器51で微粒子状に噴出させ、導入された高温の燃
焼排ガスを、使用するアミン系吸収液に適する温度まで
冷却する。この場合、冷却水噴霧器51の配設数及び配
設位置や、冷却水の噴出量や噴霧器の容量等は、冷却す
る排ガス温度、冷却設定温度及び排ガス流量に応じて、
適宜選択することができる
In the present invention, the cooling water sprayer 51 may be arranged depending on the temperature of the combustion exhaust gas introduced and supplied. For example, if the combustion exhaust gas to be treated is a combustion exhaust gas of fossil fuel, flue gas desulfurization treatment is indispensable, and prior to the decarbonation gas treatment system of the present invention, desulfurization treatment is performed as a pretreatment in order to reduce the sulfur oxide content. In this case, the exhaust gas temperature is already about 50 ° C. or lower, which is the temperature suitable for use of a normal amine-based absorbent. Therefore, the gas dispersion chamber A
It is not necessary to provide the cooling water sprayer 51. Further, when the cooling water sprayer 51 is provided, the exhaust gas may be circulated in the gas dispersion chamber A to the dispersion holes 48 without being operated. Further, in the case of exhaust gas containing almost no sulfur oxides such as LNG combustion exhaust gas, desulfurization treatment is unnecessary, and the exhaust gas temperature introduced into the gas introduction pipe 45 is generally a high temperature of about 90 to 150 ° C. Therefore, an appropriate temperature according to the action of the absorbing liquid in the carbon dioxide gas absorbing chamber B, usually about 35 to 50
It is necessary to cool to a temperature of ° C. That is, the cooling water sprayer 51 is arranged in the gas introduction pipe 45 and / or the gas dispersion chamber A described above, and the cooling water supplied from the water distribution pipe 50 is ejected in the form of fine particles by the cooling water sprayer 51 to introduce the high temperature. The flue gas of Example 1 is cooled to a temperature suitable for the amine-based absorbent used. In this case, the number and arrangement position of the cooling water sprayers 51, the amount of cooling water jetted, the capacity of the sprayers, etc. are determined according to the exhaust gas temperature to be cooled, the cooling set temperature, and the exhaust gas flow rate.
Can be selected appropriately

【0013】図2において、炭酸ガス吸収室Bは、上記
ガス分散室Aの水平隔板43下方に位置して、側壁42
及び底板52によって形成される空間で構成される。ま
た、炭酸ガス吸収室Bを形成する側壁には、図1におい
て示した吸収液再生工程の第1再生塔2に吸収液に排出
するライン12及び吸収液をアミン吸収工程に循環する
ライン22が配設されている。 炭酸ガス吸収室Bに
は、その内部に吸収液Lを供給貯留する。吸収液Lの貯
液量は、吸収液面と水平隔板43とが所定の空間を有す
ると同時に、上記したように、ガス分散室Aから炭酸ガ
ス吸収室Bに垂下したガス分散管49の下端が吸収液面
下に位置するように適宜選択することができる。水平隔
板43と吸収液面との空間は、アミン吸収塔1の容量及
び炭酸ガス処理における吸収液泡立ちの程度に対応して
適宜選択すればよい。
In FIG. 2, the carbon dioxide absorption chamber B is located below the horizontal partition plate 43 of the gas dispersion chamber A, and has a side wall 42.
And a space formed by the bottom plate 52. Further, on the side wall forming the carbon dioxide gas absorption chamber B, a line 12 for discharging the absorption liquid to the absorption liquid in the first regeneration tower 2 of the absorption liquid regeneration process and a line 22 for circulating the absorption liquid in the amine absorption process are shown in FIG. It is arranged. The absorption liquid L is supplied and stored in the carbon dioxide gas absorption chamber B. The storage amount of the absorption liquid L has a predetermined space between the absorption liquid surface and the horizontal partition plate 43, and at the same time, as described above, in the gas dispersion pipe 49 hanging from the gas dispersion chamber A to the carbon dioxide gas absorption chamber B. It can be appropriately selected so that the lower end is located below the absorption liquid surface. The space between the horizontal partition plate 43 and the absorbing liquid surface may be appropriately selected depending on the capacity of the amine absorbing tower 1 and the degree of foaming of the absorbing liquid in the carbon dioxide gas treatment.

【0014】ガス分散室Aの分散孔48から垂下したガ
ス分散管49の下端部は、その先端を開口とし先端部か
ら排ガスを噴出する場合、底板52から所定の空間部を
有して配置させる。ガス分散管49を下降流通した燃焼
排ガスを、開口下端部から吸収液中にバブリング効果を
有して噴出可能とするためである。また、開口下端部
を、矩形スリットや三角スリット状に形成し、バブリン
グ効果を更に高めることもできる。底板52からのガス
分散管49下端部の空間距離は、吸収液貯留量、排ガス
量、ガス分散管の相当径や配置数等の吸収操作条件に応
じて適宜選択することができる。一方、ガス分散管49
の下端を閉鎖端とし、閉鎖下端から所定の距離、例え
ば、約5〜50cmに位置する管周面に排ガス吹出孔を
多数穿設し、排ガスを炭酸ガス吸収室Bの吸収液中に水
平方向に噴出させるようにしてもよい。この場合は、底
板52から所定の空間部を特に設ける必要はない。上記
の排ガス吹出孔を設け、排ガスを吸収液中に水平方向に
噴出することは、バブリング効果及び接触吸収効率を高
めるため好ましい。更にまた、必要に応じて、炭酸ガス
吸収室Bの吸収液中に攪拌機53を設置し、吸収液を攪
拌することもできる。
The lower end portion of the gas dispersion pipe 49 hanging down from the dispersion hole 48 of the gas dispersion chamber A is arranged with a predetermined space portion from the bottom plate 52 when the exhaust gas is ejected from the front end with the tip end being an opening. .. This is because the combustion exhaust gas flowing down through the gas dispersion pipe 49 can be ejected from the lower end portion of the opening into the absorbing liquid with a bubbling effect. Further, the lower end portion of the opening may be formed in a rectangular slit shape or a triangular slit shape to further enhance the bubbling effect. The spatial distance from the bottom plate 52 to the lower end of the gas dispersion pipe 49 can be appropriately selected according to the absorption operation conditions such as the amount of absorbed liquid stored, the amount of exhaust gas, the equivalent diameter of the gas dispersion pipe, and the number of arrangements. On the other hand, the gas dispersion pipe 49
Is the closed end, and a large number of exhaust gas outlet holes are formed in the pipe circumferential surface located at a predetermined distance from the closed lower end, for example, about 5 to 50 cm, and the exhaust gas is horizontally introduced into the absorption liquid of the carbon dioxide gas absorption chamber B. You may make it jet out to. In this case, it is not necessary to provide a specific space from the bottom plate 52. It is preferable to provide the above-mentioned exhaust gas outlet holes and jet the exhaust gas into the absorbing liquid in the horizontal direction in order to enhance the bubbling effect and the contact absorption efficiency. Furthermore, if necessary, a stirrer 53 may be installed in the absorption liquid in the carbon dioxide gas absorption chamber B to stir the absorption liquid.

【0015】上記のように構成された本発明のアミン吸
収工程において、ガス分散室Aに供給された燃焼排ガス
は、そのまま、または、要すれば冷却水噴霧器51から
噴霧される微粒子状冷却水により冷却されつつ、天板4
1により遮られ、水平隔板43方向に下降し、水平隔板
43に達した後、更に、各分散孔48を通過し、ガス分
散管49を流通下降して、炭酸ガス吸収室Bに分散導入
される。次いで、炭酸ガス吸収室Bにおいて、排ガス
は、上記のように各ガス分散管49の開口下端または周
面に穿設された吹出孔から、アミン系吸収液中に分散・
噴出されると同時に、排ガスは吸収液と効率的に接触
し、排ガス中の炭酸ガスがアミン成分と反応して吸収除
去される。炭酸ガスが吸収除去された処理排ガスは、処
理ガス排出管47から系外に排出される。また、処理ガ
ス排出管52から系外に排出する前に、スクラバー54
を設置し処理ガス中に同伴される吸収液を除去すること
もできる。
In the amine absorbing step of the present invention configured as described above, the combustion exhaust gas supplied to the gas dispersion chamber A is used as it is or, if necessary, by the particulate cooling water sprayed from the cooling water sprayer 51. While being cooled, the top plate 4
After being blocked by 1 and descending toward the horizontal partition plate 43 and reaching the horizontal partition plate 43, it further passes through each dispersion hole 48, flows down through the gas dispersion pipe 49, and is dispersed in the carbon dioxide gas absorption chamber B. be introduced. Next, in the carbon dioxide gas absorption chamber B, the exhaust gas is dispersed in the amine-based absorption liquid through the blowout holes formed at the lower ends of the respective gas dispersion pipes 49 or on the peripheral surface as described above.
At the same time as being ejected, the exhaust gas efficiently contacts the absorbing liquid, and the carbon dioxide gas in the exhaust gas reacts with the amine component to be absorbed and removed. The treated exhaust gas from which the carbon dioxide gas has been absorbed and removed is discharged out of the system through the treated gas discharge pipe 47. In addition, before discharging from the processing gas discharge pipe 52 to the outside of the system, the scrubber 54
Can also be installed to remove the absorption liquid entrained in the processing gas.

【0016】炭酸ガス吸収室Bに保持される吸収液は、
排ガスの種類や処理条件等に応じ、従来公知の炭酸ガス
用アルカノールアミン系吸収液から適宜選択することが
できる。例えば、モノエタノールアミン、ジエタノール
アミン、トリエタノールアミン、ジイソプロパノールア
ミン等の15〜35重量%溶液や、ジグリコールアミン
の60〜70重量%等が挙げられる。また、吸収液に
は、上記アミンの他、必要に応じ腐食防止剤や消泡剤を
添加して用いてもよい。これらのアルカノールアミン等
のアミン系吸収液は、吸収処理温度約30〜50℃にお
いて、その蒸気圧は低く、アミン吸収工程からの排出ガ
スに大量に同伴されることがなく好適である。
The absorption liquid held in the carbon dioxide gas absorption chamber B is
Depending on the type of exhaust gas, processing conditions, etc., it can be appropriately selected from conventionally known alkanolamine-based absorption liquids for carbon dioxide. For example, a 15 to 35 wt% solution of monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine or the like, or 60 to 70 wt% of diglycolamine or the like can be mentioned. In addition to the above amine, a corrosion inhibitor or an antifoaming agent may be added to the absorbing liquid, if necessary. These alkanolamines and other amine-based absorbents are suitable because the vapor pressure thereof is low at the absorption treatment temperature of about 30 to 50 ° C. and they are not entrained in the exhaust gas from the amine absorption step in a large amount.

【0017】上記のアルカノールアミンと炭酸ガスとは
2:1のモル比で反応し平衡となる。炭酸ガスと反応し
吸収能が低下した吸収液は、順次、配管12よりポンプ
にて抜き出し、吸収液再生工程の第1再生塔に送出し、
加熱等により脱炭酸ガス処理して再生する。一方、第1
再生塔で再生された吸収液は、配管22から炭酸ガス吸
収室Bに循環供給される。本発明において、炭酸ガス吸
収室Bから抜き出される吸収液量と再生吸収液循環量と
をほぼ同量とすることにより、処理操作をバランスさせ
連続的に安定して燃焼排ガスの脱炭酸ガス処理をするこ
とができる。吸収液の抜き出し量及び循環量は、排ガス
処理量、排ガス中の炭酸ガス濃度及び吸収液のアミン濃
度により適宜選択することできる。この場合、アミン濃
度を高くすれば循環量は少なくてよいが、装置の腐食等
のおそれがある。一方、アミン濃度が希薄な場合は、循
環量が過大となり再生工程や循環ポンプの負荷が増大
し、装置が大型化する。従って、上記した通常の炭酸ガ
ス吸収処理に使用される公知のアミン濃度範囲であっ
て、液負荷を炭酸ガス/アミンのモル比が0.35〜
0.8となるように、適宜選択するのが好ましい。
The above alkanolamine and carbon dioxide gas react with each other at a molar ratio of 2: 1 to reach equilibrium. The absorption liquid that has reacted with carbon dioxide and has a reduced absorption capacity is sequentially withdrawn from the pipe 12 by a pump and sent to the first regeneration tower in the absorption liquid regeneration step,
It is regenerated by treating with carbon dioxide by heating. On the other hand, the first
The absorption liquid regenerated in the regeneration tower is circulated and supplied from the pipe 22 to the carbon dioxide gas absorption chamber B. In the present invention, by making the amount of the absorbing liquid extracted from the carbon dioxide gas absorbing chamber B and the circulating amount of the regenerated absorbing liquid substantially the same, the treatment operations are balanced and the carbon dioxide treatment of the combustion exhaust gas is continuously and stably performed. You can The amount of withdrawal and the amount of circulation of the absorption liquid can be appropriately selected depending on the amount of exhaust gas treated, the carbon dioxide gas concentration in the exhaust gas, and the amine concentration of the absorption liquid. In this case, if the amine concentration is increased, the circulation amount may be small, but there is a risk of corrosion of the device. On the other hand, when the amine concentration is low, the circulation amount becomes excessive, the load of the regeneration process and the circulation pump increases, and the apparatus becomes large. Therefore, in the known amine concentration range used for the above-mentioned ordinary carbon dioxide absorption treatment, the liquid load is set to a carbon dioxide / amine molar ratio of 0.35 to 0.35.
It is preferable to appropriately select it so as to be 0.8.

【0018】一方、炭酸ガス吸収室Bから排出される処
理排ガスには多くの水分が含有同伴される。このため、
ガス分散室Aにおいて、被処理燃焼排ガス冷却用の冷却
水を噴霧しない場合は勿論、また、冷却水を噴霧し、炭
酸ガス吸収室Bに冷却水が混入する場合でも、アミン系
吸収液が濃縮される傾向にある。本発明の脱炭酸ガス処
理操作においては、炭酸ガス吸収室B内のアミン系吸収
液のアミン濃度を、上記の所定範囲に保持されるように
適宜制御する。
On the other hand, the treated exhaust gas discharged from the carbon dioxide absorption chamber B contains a large amount of water. For this reason,
In the gas dispersion chamber A, not only when the cooling water for cooling the target combustion exhaust gas is not sprayed, but also when the cooling water is sprayed and the cooling water is mixed in the carbon dioxide gas absorption chamber B, the amine-based absorption liquid is concentrated. Tend to be. In the decarbonation gas treatment operation of the present invention, the amine concentration of the amine-based absorption liquid in the carbon dioxide gas absorption chamber B is appropriately controlled so as to be maintained within the above predetermined range.

【0019】本発明の脱炭酸ガス処理システムのアミン
吸収工程は、基本的に上記したガス分散室A及び炭酸ガ
ス吸収室Bにより構成される。また、図3に示したよう
な他の態様のアミン吸収工程を採ることもできる。な
お、図3において、図2に示したアミン吸収工程と同一
符号は、同一の構成要部を示す。図3において、図2の
アミン吸収工程のガス分散室A内に、更に、天板41と
空間部を有して天板41の下方に筒状垂直隔壁(以下、
単に筒状隔壁とする。)55が配置されると共に、該筒
状隔壁55下端部及び側壁42とに連続接合する冷却水
捕集板56が設置され、筒状隔壁55及び冷却水捕集板
56により、ガス分散室Aを冷却域とガス分散域に二分
する。筒状隔壁55を構成する筒状体の水平断面は、円
形、半円形、正方形、長方形等の各種形状を採ることが
できる。
The amine absorption step of the decarbonation treatment system of the present invention is basically composed of the gas dispersion chamber A and the carbon dioxide gas absorption chamber B described above. In addition, the amine absorption step of another embodiment as shown in FIG. 3 can be adopted. In addition, in FIG. 3, the same reference numerals as those in the amine absorbing step shown in FIG. In FIG. 3, in the gas dispersion chamber A of the amine absorption step of FIG.
It is simply a cylindrical partition. ) 55, a cooling water collecting plate 56 that is continuously joined to the lower end of the cylindrical partition wall 55 and the side wall 42 is installed, and the gas distribution chamber A is formed by the cylindrical partition wall 55 and the cooling water collecting plate 56. Is divided into a cooling zone and a gas dispersion zone. The horizontal cross section of the tubular body forming the tubular partition wall 55 can take various shapes such as a circular shape, a semicircular shape, a square shape, and a rectangular shape.

【0020】筒状隔壁55は、通常、上端部及び下端部
を開口し、ガス分散室Aの冷却域とガス分散域とを連通
する。また、筒状隔壁55の上端部は閉鎖し、筒部周面
に開口部を設け側方開口してもよい。側方開口部は、円
形、三角形、四角形等の任意の形状とすることができ
る。また、アミン吸収塔1の側壁42に配設されるガス
導入口45の開口最上端は、筒状隔壁55の上端より下
方に位置し、一方、その開口最下端は、冷却水捕集板5
6より上方に位置させる。冷却水捕集板56上には、冷
却水排出管57を開口させ、冷却水排出管57は貯水タ
ンク58に連結し、タンク58内の冷却水はポンプP及
び配管50を介して冷却水噴霧器51に連結することが
できる。
The cylindrical partition wall 55 is normally opened at the upper end and the lower end, and connects the cooling region of the gas dispersion chamber A and the gas dispersion region. Further, the upper end of the cylindrical partition wall 55 may be closed, and an opening may be provided on the peripheral surface of the cylindrical portion to open laterally. The side openings can be any shape, such as circular, triangular, quadrangular and the like. Further, the uppermost opening of the gas introduction port 45 arranged on the side wall 42 of the amine absorption tower 1 is located below the upper end of the cylindrical partition wall 55, while the lowermost opening thereof is at the cooling water collecting plate 5.
Position above 6. A cooling water discharge pipe 57 is opened on the cooling water collecting plate 56, the cooling water discharge pipe 57 is connected to a water storage tank 58, and the cooling water in the tank 58 is a cooling water sprayer via a pump P and a pipe 50. Can be connected to 51.

【0021】上記方式のガス分散室において、導入され
た燃焼排ガスは、冷却水噴霧器51からの微粒子冷却水
により冷却され、冷却水捕集板56上を流通過し、筒状
隔壁55に衝突することにより、排ガス中に同伴された
冷却水や粉塵を分離すると共に、上昇流となる。その
後、排ガスは天板41に遮られ筒状隔壁55の開口部か
ら下降流となり筒状隔壁55の筒内を通過した後、水平
隔板43に達する。水平隔板51に達した排ガスは、前
記した図2のアミン吸収工程と同様に、各分散孔48を
通過し、ガス分散管49を下降して、炭酸ガス吸収室B
に噴出され、処理される。この方式は、被処理燃焼排ガ
スが、特に、高温であったり、粉塵等を含む場合に、ガ
ス分散室Aに導入された排ガスを効率よく冷却したり、
粉塵等を効率的に除去するために有効である。この場
合、筒状隔壁55の開口上端は、排ガス導入口44の最
上端より250mm以上の上方に、また、アミン吸収塔
1の天板41とは少なくとも300mmの空間を有する
ように配置するのが好ましい。導入された燃焼排ガスを
十分に冷却するためである。
In the gas dispersion chamber of the above system, the combustion exhaust gas introduced is cooled by the fine particle cooling water from the cooling water sprayer 51, flows over the cooling water collecting plate 56, and collides with the cylindrical partition wall 55. As a result, the cooling water and dust entrained in the exhaust gas are separated and an upward flow is obtained. Thereafter, the exhaust gas is shielded by the top plate 41, becomes a downward flow from the opening of the cylindrical partition wall 55, passes through the inside of the cylindrical partition wall 55, and then reaches the horizontal partition plate 43. The exhaust gas reaching the horizontal partition plate 51 passes through the respective dispersion holes 48 and descends through the gas dispersion pipe 49 in the same manner as in the amine absorption step of FIG.
Is jetted out and processed. This method efficiently cools the exhaust gas introduced into the gas dispersion chamber A when the exhaust gas to be treated has a high temperature or contains dust or the like,
It is effective for efficiently removing dust and the like. In this case, the upper end of the opening of the cylindrical partition wall 55 is arranged above the uppermost end of the exhaust gas introduction port 250 by 250 mm or more, and is arranged so as to have a space of at least 300 mm with the top plate 41 of the amine absorption tower 1. preferable. This is for sufficiently cooling the introduced combustion exhaust gas.

【0022】一方、噴霧器51から噴出された微粒子状
の冷却水は、排ガスの上昇流とは逆に冷却域の空間を下
方に落下し、冷却水捕集板56上に貯留し、適宜、冷却
水排出管57から抜き出され、タンク58、ポンプP及
び配管50を経て、冷却水噴霧器51に循環される。ま
た、排ガスに同伴し筒状隔壁55で分離された冷却水
は、筒状隔壁を流下して、噴出落下した冷却水と共に冷
却水捕集板56上に捕集貯留される。冷却域におけるガ
ス流速は、通常、上昇及び水平流速のいずれも冷却水微
粒子が再飛散されない流速、例えば、約1〜5m/秒で
あり、排ガスから効率よく分離され、冷却水捕集板56
上に捕集される。
On the other hand, the particulate cooling water ejected from the sprayer 51 drops downward in the space of the cooling area, contrary to the upward flow of the exhaust gas, and is stored on the cooling water collecting plate 56, where it is cooled appropriately. It is extracted from the water discharge pipe 57, circulated to the cooling water sprayer 51 through the tank 58, the pump P and the pipe 50. Further, the cooling water that is accompanied by the exhaust gas and separated by the cylindrical partition wall 55 flows down through the cylindrical partition wall and is collected and stored on the cooling water collecting plate 56 together with the cooling water that has jetted out and dropped. The gas flow velocity in the cooling zone is a flow velocity at which the cooling water fine particles are not re-dispersed, for example, about 1 to 5 m / sec, both in the ascending and in the horizontal flow velocity.
Captured on top.

【0023】上記図3に示したアミン吸収塔1におい
て、燃焼排ガスの冷却効果及び排ガス中に噴出された冷
却水微粒子の分離効果を高度に維持すると同時に、装置
全体をコンパクト化するためには、水平隔板43の位置
する塔内断面積(X)、筒状隔壁55が形成する下端開
口部の断面積(Y)、及び処理ガス排出管47の断面積
(Z)が、下記のような関係となるのが好ましい。即
ち、X−Y=P、Y−Z=Qであって、1≦P/Q≦5
とする。P/Qが1未満であると、冷却域における排ガ
スの上昇速度が過大となり、排ガスからの冷却水微粒子
の分離効率が悪化する。一方、P/Qが5を超えると、
ガス分散管49を下降するガス流速が過大となり、ガス
圧損が増大し好ましくない。また、ガス分散管49の直
径は、通常、約5〜50cmである。
In the amine absorption tower 1 shown in FIG. 3, in order to highly maintain the cooling effect of the combustion exhaust gas and the separation effect of the cooling water fine particles ejected in the exhaust gas, and at the same time to make the entire apparatus compact, The cross-sectional area (X) in the tower where the horizontal partition plate 43 is located, the cross-sectional area (Y) of the lower end opening formed by the cylindrical partition wall 55, and the cross-sectional area (Z) of the processing gas discharge pipe 47 are as follows. It is preferable to have a relationship. That is, X−Y = P, Y−Z = Q, and 1 ≦ P / Q ≦ 5
And When P / Q is less than 1, the rising speed of the exhaust gas in the cooling region becomes excessively high, and the separation efficiency of the cooling water fine particles from the exhaust gas deteriorates. On the other hand, when P / Q exceeds 5,
The flow velocity of the gas flowing down the gas dispersion pipe 49 becomes excessively large, and the gas pressure loss increases, which is not preferable. The diameter of the gas dispersion pipe 49 is usually about 5 to 50 cm.

【0024】本発明において、上記のように構成される
アミン吸収工程を、2段直列に連結して処理することも
できる。この場合、第1段目のアミン吸収工程のアミン
系吸収液濃度を通常濃度とし、第2段目のアミン吸収工
程のアミン系吸収液濃度は極めて希薄に、例えば、第1
段目の吸収液濃度の約1/5〜1/100にし、被処理
燃焼排ガスを先ず第1段目のアミン吸収工程に導入し、
第1段目のアミン吸収工程から排出された第1段アミン
処理排ガスを、第2段目のアミン吸収工程に導入して処
理する。上記の2段階のアミン吸収工程は、燃焼排ガス
中の炭酸ガス濃度が高く前記した通常の濃度以上にアミ
ン系吸収液のアミン濃度を高くする必要がある場合、ア
ミン吸収液のアミン成分の系外への揮散、損失を著しく
低下させる場合、または、循環量を減少させて装置のコ
ンパクト化を図る場合等に有効である。
In the present invention, the amine absorbing step constituted as described above can be treated by connecting in two stages in series. In this case, the concentration of the amine-based absorbent in the first step of amine absorption is set to a normal concentration, and the concentration of the amine-based absorbent in the second step of amine absorption is extremely dilute, for example,
The concentration of the absorption liquid in the first stage is set to about 1/5 to 1/100, and the combustion exhaust gas to be treated is first introduced into the amine absorption process in the first stage,
The first-stage amine-treated exhaust gas discharged from the first-stage amine absorption process is introduced into the second-stage amine absorption process and treated. When the concentration of carbon dioxide gas in the combustion exhaust gas is high and it is necessary to increase the amine concentration of the amine-based absorption liquid above the normal concentration described above, the two-step amine absorption step described above is performed outside the amine component of the amine absorption liquid. It is effective in the case of remarkably reducing the volatilization and loss to the equipment, or in the case of reducing the circulation amount to make the apparatus compact.

【0025】[0025]

【発明の効果】本発明の燃焼排ガスの脱炭酸ガス処理シ
ステムは、例えば、100万Nm3 /時の大量且つ低圧
の燃焼排ガスを、先ず、上記のように構成されたアミン
吸収工程にて処理し、排ガスの分散、必要に応じ冷却及
び吸収液との接触・吸収反応を一の装置で行うことがで
き、システムのコンパクト化を図ることができる。従っ
て、従来の高圧操作の吸収法に比し、低圧で操作するに
も拘らず小型化が図れ、装置コストが極めて低減され
る。また、排ガス中の炭酸ガスとアミン吸収液との接触
処理は、従来のアミン吸収工程で用いられた充填塔が不
要であり、圧損を殆ど考慮する必要がないため、炭酸ガ
ス吸収工程を低圧で操作することができ、接触効率を高
めると共に、低圧操作が可能となり、設備費及び動力費
等のランニングコストの軽減が図れ、工業的に有用であ
る。更に、本発明のアミン吸収工程においては、吸収液
中に被処理排ガスをバブリング方式で効果的に分散噴出
させて、排ガスとアミン系吸収液との接触効率を上げる
ことでき、排ガス中の炭酸ガスとアミン系吸収液との反
応吸収を効率的に行うことができ、炭酸ガスの除去率も
高めることができる。
EFFECTS OF THE INVENTION In the combustion exhaust gas decarbonation treatment system of the present invention, for example, a large amount of low pressure combustion exhaust gas of 1,000,000 Nm 3 / hour is first treated in the amine absorption step configured as described above. In addition, dispersion of exhaust gas, cooling as required, and contact / absorption reaction with the absorbing liquid can be performed by one device, and the system can be made compact. Therefore, as compared with the conventional absorption method of high-pressure operation, the apparatus can be downsized in spite of operating at low pressure, and the cost of the apparatus can be significantly reduced. Further, the contact treatment between carbon dioxide gas in the exhaust gas and the amine absorbing liquid does not require the packed column used in the conventional amine absorbing step, and it is almost unnecessary to consider the pressure loss. This is industrially useful because it can be operated, the contact efficiency can be increased, and low-pressure operation can be performed, and running costs such as equipment cost and power cost can be reduced. Further, in the amine absorption step of the present invention, the exhaust gas to be treated can be effectively dispersed and ejected in the absorption liquid by a bubbling method to increase the contact efficiency between the exhaust gas and the amine-based absorption liquid. It is possible to efficiently perform the reaction absorption with the amine-based absorption liquid, and to increase the removal rate of carbon dioxide gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概要説明図FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention.

【図2】本発明のアミン吸収工程の一実施例の縦断面説
明図
FIG. 2 is a vertical cross-sectional explanatory view of one embodiment of the amine absorbing step of the present invention.

【図3】本発明のアミン吸収工程の他の実施例の断面説
明図
FIG. 3 is an explanatory cross-sectional view of another embodiment of the amine absorbing step of the present invention.

【符号の説明】[Explanation of symbols]

1 アミン吸収塔 2 第1再生塔 3 第
1再生塔 4、5 気液分離器 12、22、50 配管ライン A 排ガス分散室 B 炭酸ガス吸収室 L 吸収液 P ポンプ 41 天板 42 側壁
43 水平隔板 44 ガス導入口 45 排ガス導入管
46 開口部 47 処理ガス排出管 48 分散孔
49 ガス分散管 51 冷却水噴霧器 52 底板
53 攪拌機 54 スクラバー 55 筒状垂直隔壁
56 冷却水捕集板 57 冷却水排出管 58 貯水タンク
1 Amine Absorption Tower 2 First Regeneration Tower 3 First Regeneration Tower 4, 5 Gas-Liquid Separator 12, 22, 50 Piping Line A Exhaust Gas Dispersion Chamber B Carbon Dioxide Absorption Chamber L Absorption Liquid P Pump 41 Top Plate 42 Side Wall
43 horizontal partition plate 44 gas inlet port 45 exhaust gas inlet pipe
46 Opening 47 Processed gas discharge pipe 48 Dispersion hole
49 Gas Dispersion Pipe 51 Cooling Water Sprayer 52 Bottom Plate
53 Stirrer 54 Scrubber 55 Cylindrical vertical partition
56 Cooling Water Collection Plate 57 Cooling Water Discharge Pipe 58 Water Storage Tank

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硫黄酸化物含有量が僅少な燃焼排ガスを
アミン系吸収液と接触させ、排ガス中の炭酸ガスを該ア
ミン系吸収液で吸収除去して処理排ガスを排出させるア
ミン吸収工程と、炭酸ガスを吸収した該アミン系吸収液
を脱炭酸ガス処理して再生する吸収液再生工程からなる
ことを特徴とする燃焼排ガスの脱炭酸ガス処理システ
ム。
1. An amine absorption step of contacting combustion exhaust gas having a small sulfur oxide content with an amine-based absorption liquid, and absorbing and removing carbon dioxide gas in the exhaust gas with the amine-based absorption liquid to discharge treated exhaust gas. A decarbonation treatment system for combustion exhaust gas, which comprises a step of regenerating an absorption liquid that has absorbed carbon dioxide gas by decarbonation gas treatment and regeneration.
【請求項2】 該アミン吸収工程が、少なくとも(1)
導入された該排ガスを下降流に変換させて多数の垂下し
たガス分散管に供給するガス分散手段、及び、(2)ア
ミン系吸収液が保持されると共に、該アミン系吸収液中
に浸漬された該ガス分散管から該排ガスを該吸収液中に
導入するガス・液接触手段、(3)該吸収液と接触した
該排ガスを排出する排出手段から構成されてなる請求項
1記載の燃焼排ガスの脱炭酸ガス処理システム。
2. The amine absorption step comprises at least (1)
A gas dispersion means for converting the introduced exhaust gas into a downward flow and supplying it to a large number of hanging gas dispersion pipes, and (2) holding an amine-based absorbing solution and immersing it in the amine-based absorbing solution. 2. The combustion exhaust gas according to claim 1, further comprising: a gas / liquid contact means for introducing the exhaust gas into the absorption liquid from the gas dispersion pipe, and (3) a discharge means for discharging the exhaust gas in contact with the absorption liquid. Decarbonation system.
【請求項3】 該アミン吸収工程が、更に、導入された
該排ガスに微粒子状の冷却液を噴出させる冷却処理手段
を有する請求項2記載の燃焼排ガスの脱炭酸ガス処理シ
ステム。
3. The decarbonation treatment system for combustion exhaust gas according to claim 2, wherein the amine absorption step further has a cooling treatment means for ejecting a particulate cooling liquid into the introduced exhaust gas.
【請求項4】 冷却処理手段が、冷却液を噴出させると
共に該排ガスを上昇流に変換させつつ微粒子状冷却液を
分離捕集して構成されてなる請求項3記載の燃焼排ガス
の脱炭酸ガス処理システム。
4. The decarbonation gas of combustion exhaust gas according to claim 3, wherein the cooling treatment means is configured to eject the cooling liquid and convert the exhaust gas into an upward flow while separating and collecting the particulate cooling liquid. Processing system.
【請求項5】 該吸収液再生工程が第1及び第2の2段
工程からなり、該アミン吸収工程からの吸収液を第1再
生工程で加熱処理して吸収液を再生した後、該第1再生
工程から再生吸収液を該アミン吸収工程に循環すると共
に、循環吸収液の一部を該第2再生工程で更に加熱処理
して重質分を排出し、軽質分を該第1再生工程に循環す
る請求項1〜4記載の燃焼排ガスの脱炭酸ガス処理シス
テム。
5. The absorption liquid regeneration step comprises first and second two-step steps, wherein the absorption liquid from the amine absorption step is heat-treated in the first regeneration step to regenerate the absorption liquid, and then the first step. The regenerated absorption solution is circulated from the first regeneration step to the amine absorption step, and a part of the circulation absorption solution is further heat-treated in the second regeneration step to discharge heavy components and light fractions to the first regeneration step. The decarbonated gas treatment system for flue gas according to any one of claims 1 to 4, wherein
JP4166668A 1992-06-03 1992-06-03 Carbon dioxide gas removal treatment system of combustion exhaust gas Pending JPH05337334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166668A JPH05337334A (en) 1992-06-03 1992-06-03 Carbon dioxide gas removal treatment system of combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166668A JPH05337334A (en) 1992-06-03 1992-06-03 Carbon dioxide gas removal treatment system of combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPH05337334A true JPH05337334A (en) 1993-12-21

Family

ID=15835518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166668A Pending JPH05337334A (en) 1992-06-03 1992-06-03 Carbon dioxide gas removal treatment system of combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPH05337334A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648053A (en) * 1994-12-15 1997-07-15 The Kansai Electric Power Co. Inc. Process for removing carbon dioxide and nitrogen oxides from combustion gases
KR200469356Y1 (en) * 2011-04-21 2013-10-08 옌-춘 라이 A waste gas recovery machine
JP2019512389A (en) * 2016-03-04 2019-05-16 テクノロジーズ エッセ.エッレ.エッレ. Equipment for the reduction of harmful emissions from heating installations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648053A (en) * 1994-12-15 1997-07-15 The Kansai Electric Power Co. Inc. Process for removing carbon dioxide and nitrogen oxides from combustion gases
KR200469356Y1 (en) * 2011-04-21 2013-10-08 옌-춘 라이 A waste gas recovery machine
JP2019512389A (en) * 2016-03-04 2019-05-16 テクノロジーズ エッセ.エッレ.エッレ. Equipment for the reduction of harmful emissions from heating installations

Similar Documents

Publication Publication Date Title
JP5070100B2 (en) Desulfurization decarburization equipment
EP2203240B1 (en) Multi-stage co2 removal system and method for processing a flue gas stream
RU2230599C2 (en) Method of extraction of aminicompound from accompanying decarburized exhaust gas in a column of absorption
US8080089B1 (en) Method and apparatus for efficient gas treating system
US20110217218A1 (en) Systems and Methods for Acid Gas Removal
JP5177859B2 (en) Desulfurization decarburization equipment
JP7174163B2 (en) Coke oven coal gas desulfurization regeneration tower exhaust gas treatment process and system
AU2007290817B2 (en) Wet gas scrubbing process
CN103241738A (en) Systems and methods for capturing carbon dioxide
JP2010070438A (en) Separation and recovery method of carbon dioxide in gas and apparatus for the same
CN102806001A (en) Method and device for selectively removing hydrogen sulfide by use of ultrasonically atomized liquid droplets
CA1047472A (en) Process for reducing flue gas contaminants from fluid cracking catalyst regenerators
CA1236681A (en) Sulfur oxides scrubbing process
CN108057325A (en) A kind of temperature classification formula ammonia type flue gas desulfurizing demisting technique and system
JPH05337334A (en) Carbon dioxide gas removal treatment system of combustion exhaust gas
RU2533133C2 (en) New recuperation method for co2 evolved by flue gases generated in regeneration area of fluid catalytic cracker
RU2477648C2 (en) Method and device for complete recovery of flue gases
CA1219732A (en) Single step purification of sulfur dioxide gas prepared by the combustion of sulfur containing compounds
WO1992012786A1 (en) Stripping method and apparatus
KR20140039916A (en) Absorption tower for treating acidic gas
CN113069874B (en) Treatment system and process suitable for VOCs in chemical production area of coking plant
CN114904366B (en) High-efficiency emergency treatment device and method for leakage of gas-containing hazardous chemical substances
JPH08196851A (en) Waste gas treatment
CA1287732C (en) Process and apparatus for low temperature amine removal of acid gases
JPH06114233A (en) Wet stack gas desulfurizer and method thereof