JPH05337329A - Method for saving water supply to wet-type desulfurization device - Google Patents

Method for saving water supply to wet-type desulfurization device

Info

Publication number
JPH05337329A
JPH05337329A JP4142717A JP14271792A JPH05337329A JP H05337329 A JPH05337329 A JP H05337329A JP 4142717 A JP4142717 A JP 4142717A JP 14271792 A JP14271792 A JP 14271792A JP H05337329 A JPH05337329 A JP H05337329A
Authority
JP
Japan
Prior art keywords
absorbent
temperature
flue gas
cooling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4142717A
Other languages
Japanese (ja)
Inventor
Chisato Takano
千里 高野
Teruo Sugitani
照雄 杉谷
Kimio Nishio
公男 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP4142717A priority Critical patent/JPH05337329A/en
Publication of JPH05337329A publication Critical patent/JPH05337329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To save water supply to an absorption device by reducing moisture drained into an area outside a system as an entrained one in treated discharged smoke. CONSTITUTION:At least, part of an absorbent based on a calcium absorbent is extracted from an absorption system loop 8, and the extracted absorbent is introduced into an indirect cooling-type heat exchanger 9. After cooling the absorbent using a coolant, the absorbent is returned to the absorption system loop to lower the temperature of an absorption liquid slurry supplied to a gas/ liquid contact part. Further, an exhaust smoke is washed by the absorption liquid slurry at a low temperature and the temperature of the exhaust smoke after washing is maintained at the adiabatic cooling saturation temperature level of the exhaust smoke before washing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿式脱硫装置への補給水
を節減する方法に関し、より詳細には湿式排煙脱硫方法
においてカルシウムをベースとする排煙吸収液スラリー
(以下、吸収液スラリーと云う) を吸収系ループから取
り出し、スケーリング・トラブルなしに冷却した後に吸
収系ループにもどして吸収液ループの気液接触部に供給
される吸収液スラリーの温度を低下させ、この気液接触
部を去る処理排煙の温度を吸収系ループに供給される脱
硫前の排煙 (以下、未処理排煙と云う) の飽和温度より
低く維持して処理排煙中の含有水分を大幅に減小させる
方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for saving make-up water to a wet desulfurization unit, and more particularly to a calcium based flue gas absorbent slurry in a wet flue gas desulfurization method.
(Hereinafter referred to as absorption liquid slurry) is taken out from the absorption system loop, cooled without scaling and trouble, and then returned to the absorption system loop to lower the temperature of the absorption liquid slurry supplied to the gas-liquid contact part of the absorption liquid loop. , The temperature of the treated flue gas leaving the gas-liquid contact part is kept lower than the saturation temperature of the flue gas before desulfurization (hereinafter referred to as untreated flue gas) supplied to the absorption system loop, and the content in the treated flue gas is maintained. It relates to a method of significantly reducing water.

【0002】[0002]

【従来の技術】湿式排煙脱硫方法では、吸収液スラリー
により排煙を洗浄する方法が現在、世界的に広く採用さ
れている。この方法は、排煙を増湿冷却後、またはその
まま吸収塔に導いて吸収液スラリーで洗浄し、排煙中の
亜硫酸ガス (SO2 ) を除去する方法であり、吸収液スラ
リー温度は増湿冷却部 (以下、未処理排煙が吸収液スラ
リーにより洗浄される気液接触部を云う) へ供給され
る、吸収液スラリーと接触前の排煙 (以下、未処理排煙
と云う) の断熱飽和温度前後となり、石炭だき排煙の場
合、通常では45〜55℃で、この温度に相当する分圧分の
水分が処理排煙に含まれ、系外に排出される。
2. Description of the Related Art As a wet flue gas desulfurization method, a method of cleaning flue gas with an absorbing liquid slurry is currently widely used worldwide. This method removes the sulfurous acid gas (SO 2 ) in the flue gas after humidifying and cooling the flue gas, or by directly introducing it to the absorption tower and washing it with the absorbent liquid slurry. Insulation of flue gas (hereinafter referred to as untreated flue gas) that is supplied to the cooling unit (hereinafter referred to as gas-liquid contact part where untreated flue gas is washed with the absorbent liquid slurry) before contact with the absorbent liquid slurry The temperature becomes around the saturation temperature, and in the case of coal-fired smoke, the temperature is usually 45 to 55 ° C., and the partial pressure of water corresponding to this temperature is included in the treated smoke and discharged outside the system.

【0003】従って、未処理排煙に伴なわれて系内に導
入され、処理排煙に伴なわれて系外に排出される水分差
量を補給水として増湿冷却部へ供給する必要があった。
表1に未処理排煙と処理排煙の水分差量を示した。かか
る補給水多消費の欠点を解消すべく、発電所全体の合理
的な用水、排水設備計画によって補給水の節減がはから
れて来た。
Therefore, it is necessary to supply the moisture difference amount, which is introduced into the system due to untreated flue gas and is discharged outside the system due to treated flue gas, to the humidification / cooling section as make-up water. there were.
Table 1 shows the water content difference between the untreated smoke and the treated smoke. In order to eliminate the disadvantage of high consumption of makeup water, the rational use of water and drainage system for the entire power plant has been used to reduce the amount of makeup water.

【0004】また一方、乾式脱硫方法、半乾式脱硫方法
などが検討されたが、湿式排煙脱硫方法は、その優れた
特徴、すなわち高脱硫率、負荷追随性、信頼性などによ
って現在まで世界の主流プロセスとして採用されて来
た。他の補給水節減方法として脱硫装置の本発明以外の
場所に冷却部を設けることも考えられるが、煙道のドラ
フトロスが増加し問題がある。
On the other hand, a dry desulfurization method, a semi-dry desulfurization method, etc. have been studied. The wet flue gas desulfurization method has been the world's most popular due to its excellent characteristics, that is, high desulfurization rate, load followability and reliability. It has been adopted as a mainstream process. It is conceivable to provide a cooling unit at a place other than the present invention in the desulfurization device as another method for saving makeup water, but this causes a problem because draft loss of the flue increases.

【0005】現在の日本における事業用火力発電所全体
に占める増湿冷却部(吸収液スラリーとの接触部)への
補給水量は、脱硫装置へ導入される未処理排煙の熱回収
を行ない、処理排煙の再加熱に使用するガス・ガスヒー
ターの設置によって、増湿冷却部へ導入される未処理排
煙の温度を 100℃〜90℃に低下することができたので、
副次的効果として補給水をほぼ30%程度節減することが
できたが、補給水量は通常運転時に発電所全体の使用水
量の70%前後に達し、日本のように雨水源による工業用
水に恵まれている国でも、補給水取得の困難さが、近年
の経済の拡大、民需用電気需要に支えられた電力需要の
拡大に対応する石炭だき大型火力発電所の建設立地の確
保を困難にする重要な因子となりつつある。
The amount of make-up water to the humidification cooling part (contact part with the absorbing liquid slurry) occupying the whole of the present commercial thermal power plant in Japan is such that the heat recovery of the untreated flue gas introduced into the desulfurization device is carried out, By installing the gas / gas heater used to reheat the treated flue gas, the temperature of the untreated flue gas introduced into the humidification / cooling section could be reduced to 100 ° C to 90 ° C.
As a secondary effect, we were able to save about 30% of make-up water, but the amount of make-up water reached about 70% of the total amount of water used by the power plant during normal operation, making it an industrial water source like rainwater sources like Japan. Even in countries where it is difficult to obtain makeup water, it will be difficult to secure a construction site for large coal-fired thermal power plants in response to the recent economic expansion and the expansion of power demand supported by private demand for electricity. Is becoming a factor.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、湿式排煙脱硫装置における補給水量を更に
大幅に削減する点にある。
The problem to be solved by the present invention is to further greatly reduce the amount of make-up water in a wet flue gas desulfurization apparatus.

【0007】[0007]

【課題を解決するための手段】本発明の湿式脱硫装置へ
の補給水を節減する方法は、湿式排煙脱硫方法におい
て、カルシウム系吸収剤をベースとする吸収剤の少くと
も一部を吸収系ループから抜き出して間接冷却型の熱交
換器に導入し、冷却液により冷却した後に前記吸収系ル
ープにもどして気液接触部に供給される吸収液スラリー
の温度を低下させ、該温度の低下した吸収液スラリーに
より排煙を洗浄して洗浄後の排煙の温度を洗浄前の排煙
の断熱冷却飽和温度以下に保つことを特徴とする。
A method for saving make-up water to a wet desulfurization apparatus according to the present invention is a wet flue gas desulfurization method in which at least a part of an absorbent based on a calcium-based absorbent is absorbed. The temperature was lowered by lowering the temperature of the absorbing liquid slurry which was extracted from the loop and introduced into a heat exchanger of indirect cooling type, cooled by a cooling liquid and then returned to the absorption system loop and supplied to the gas-liquid contact section. It is characterized in that flue gas is washed with the absorbent slurry and the temperature of flue gas after washing is kept below the adiabatic cooling saturation temperature of flue gas before washing.

【0008】以下、本発明を図1にもとづき説明する。
未処理排煙21は排煙ファン1により昇圧され、ガス・ガ
スヒーター2において後述するようにして得られた処理
排煙との熱交換によって冷却される。ガス・ガスヒータ
ー2の出口における排煙温度は、ガス・ガスヒーター2
がノンリーク型蓄熱回転型熱交換器では最低約85℃であ
り、ガス・ガスヒーターの型式にもよるが 100〜85℃
(於定格負荷) である。ガス・ガスヒーター2を出た未
処理排煙22は、増湿冷却部3で母液23または吸収液スラ
リー24の噴霧による直接接触によって増湿冷却され、水
飽和未処理排煙として吸収槽4に導入される。この水飽
和未処理排煙の温度は、後記する表1に示したように、
ガス・ガスヒーターを用い、このヒーターの出口排煙温
度が約95℃、水飽和未処理排煙温度が約47℃であると
き、増湿分は乾ガスkg当り、ほぼ0.023kg H2Oである。
The present invention will be described below with reference to FIG.
The untreated flue gas 21 is boosted by the flue gas fan 1 and cooled by heat exchange with the treated flue gas obtained in the gas / gas heater 2 as described later. The flue gas temperature at the outlet of the gas / gas heater 2 is
Is a minimum of about 85 ° C for a non-leakage type heat storage rotary heat exchanger, but it is 100-85 ° C depending on the type of gas / gas heater.
(At rated load). The untreated flue gas 22 discharged from the gas / gas heater 2 is subjected to humidifying and cooling in the humidifying / cooling unit 3 by direct contact with the spray of the mother liquor 23 or the absorbing liquid slurry 24, and is absorbed in the absorbing tank 4 as unsaturated flue gas. be introduced. The temperature of this water-saturated untreated flue gas is, as shown in Table 1 below,
When a gas / gas heater is used and the outlet smoke temperature of this heater is approximately 95 ° C and the water-saturated untreated smoke temperature is approximately 47 ° C, the humidification content is approximately 0.023 kg H 2 O per kg dry gas. is there.

【0009】ついで水飽和未処理排煙はカルシウムをベ
ースとする吸収液スラリー24中に吹込管5によって吹込
まれて未処理排煙と吸収液スラリー24との直接接触が行
なわれ、未処理排煙中のSO2 は吸収液スラリー中のカル
シウムをベースとする吸収剤、たとえばCaCO3、Ca(OH)
2 と反応して石膏として固定、除去される。脱硫処理さ
れた排ガス25はミストエリミネーター6でミストが除去
された後に、ガス・ガスヒーター7で未処理排煙との熱
交換によって所定温度に加熱されて大気中に放出され
る。
Then, the water-saturated untreated flue gas is blown into the calcium-based absorbent liquid slurry 24 by the blowing pipe 5, and the untreated flue gas and the absorbent liquid slurry 24 are directly contacted with each other. SO 2 in the absorbent is a calcium-based absorbent in the absorbent slurry, such as CaCO 3 , Ca (OH)
It reacts with 2 and is fixed and removed as gypsum. The desulfurized exhaust gas 25 has its mist removed by the mist eliminator 6 and is then heated by the gas / gas heater 7 to a predetermined temperature by heat exchange with untreated flue gas and released into the atmosphere.

【0010】本発明において重要なことは、吸収液スラ
リー24の少くとも1部を吸収液ループ8から抜き出し、
この吸収液スラリーを間接冷却型の熱交換器、たとえば
冷却器9において増湿冷却部3前の未処理排煙22の水飽
和温度以下の所要の温度まで冷却し、この冷却した吸収
液スラリー26 (以下、冷吸収液スラリーと云う) を吸収
液ループ8にもどして、吸収液スラリー24と接触する未
処理排煙の温度を低下させることによって吸収液ループ
8を去る処理排煙中に含有する水分量 (水分kg/乾ガス
kg) と未処理排煙21中の水分量 (水分kg/乾ガスkg) の
差を所定値に維持して処理排煙に随伴して係外へ逃げる
水分を節減することである。
What is important in the present invention is that at least a portion of the absorbent slurry 24 is withdrawn from the absorbent loop 8.
This absorbent slurry is cooled to a required temperature below the water saturation temperature of the untreated flue gas 22 in front of the humidification cooling section 3 in an indirect cooling type heat exchanger, for example, the cooler 9, and the cooled absorbent slurry 26 is cooled. (Hereinafter referred to as a cold absorbent slurry) is returned to the absorbent loop 8 and is contained in the treated exhaust gas leaving the absorbent loop 8 by lowering the temperature of the untreated exhaust gas which comes into contact with the absorbent slurry 24. Water content (water content kg / dry gas
(kg) and the amount of water in the untreated flue gas 21 (kg of moisture / kg of dry gas) is maintained at a predetermined value to reduce the amount of water escaping to the outside due to the treated flue gas.

【0011】ここで吸収液ループ8とは、図1において
破線で囲んだ部分を云うスプレー塔式充填塔式に於いて
は、夫々吸収塔及び吸収液スラリー循環ポンプを含む系
のことである。すなわち本発明においては、上述した吸
収液ループ8に含まれるいかなる部分から吸収液スラリ
ーを取り出しても良く、また冷吸収液スラリーを吸収液
ループ8のいかなる部分にもどしても良い。図1はその
1例として吸収槽4のボトムから吸収液スラリー24を取
り出し、冷却器9において冷却液28により冷却し、得ら
れた冷吸収液スラリー26を吸収槽4の気液接触部にもど
す場合を示している。
Here, the absorption liquid loop 8 is a system including an absorption tower and an absorption liquid slurry circulation pump in the case of the spray tower type packed tower type which is a portion surrounded by a broken line in FIG. That is, in the present invention, the absorbent slurry may be taken out from any part of the absorbent loop 8 described above, and the cold absorbent slurry may be returned to any part of the absorbent loop 8. FIG. 1 shows, as an example thereof, the absorption liquid slurry 24 taken out from the bottom of the absorption tank 4, cooled by the cooling liquid 28 in the cooler 9, and the obtained cold absorption liquid slurry 26 is returned to the gas-liquid contact portion of the absorption tank 4. The case is shown.

【0012】なお吸収液スラリーの少くとも一部分と
は、吸収液スラリーの一部分または大部分を意味し、そ
の範囲は通常L/G (l/Nm3 ) の概念で表示される循環
液量 (於定格負荷) の10〜70% (吸収液スラリー液量(l
/hr)/標準状態における排煙量Nm3/hr) である。冷却
液28としては、海水が通常使用され、管路17から套側冷
却液循環ループ18へ冷却器9の外管、内管の温度差が所
定温度内で、冷却器9の内管出口における冷吸収液26の
温度が定値になるように制御、補充され、冷却ループ18
内において余剰となった冷却液は冷却液循環ポンプ19の
吸込側に設けられたオーバーフロー管 (図示せず) から
系外に排出される。
The term "at least a part of the absorption liquid slurry" means a part or a large part of the absorption liquid slurry, and its range is usually expressed by the concept of L / G (l / Nm 3 ). 10 to 70% of the rated load (absorption liquid slurry volume (l
/ hr) / the amount of smoke emitted in the standard state Nm 3 / hr). Seawater is usually used as the cooling liquid 28, and the temperature difference between the outer pipe and the inner pipe of the cooler 9 from the pipe line 17 to the jacket side cooling liquid circulation loop 18 is within a predetermined temperature, and at the inner pipe outlet of the cooler 9. The temperature of the cold absorption liquid 26 is controlled and replenished so that it becomes a constant value, and the cooling loop 18
The excess cooling liquid inside is discharged to the outside of the system from an overflow pipe (not shown) provided on the suction side of the cooling liquid circulation pump 19.

【0013】本発明におけるカルシウム・ベース吸収液
スラリーにおいては、一般にカルシウム塩が過飽和状態
にある。吸収液スラリー中のカルシウム塩 (二水石膏が
主体) の水に対する溶解度を図2に示す。なお、吸収液
スラリー中のカルシウム塩はCaSO4 ・ 2H2O がほとんど
であり、スケーリングの原因物質もこの2水塩である。
In the calcium-based absorbent slurry of the present invention, the calcium salt is generally in a supersaturated state. Figure 2 shows the solubility of calcium salt (mainly gypsum dihydrate) in the absorbent slurry in water. The calcium salt in the absorbent slurry is mostly CaSO 4 .2H 2 O, and the causative agent of scaling is also this dihydrate.

【0014】従って通常、未処理排煙の飽和温度は45〜
55℃範囲であり、図1に示した工程では、吸収液スラリ
ー温度は各ケースによって異なるが、42〜45℃となり、
吸収液スラリーを冷却すると、冷却器9の内管9Aの内
壁面にカルシウム塩が析出してスケールが生成し、総括
伝熱係数を急激に低下させることが予測される。ところ
が本発明者らの検討結果によれば、下記の点が明らかに
なった。すなわち 内管9Aの粗面度の平滑なものを使用し、内管9A
内の吸収液スラリー流動状態 (流速) を許容値以上に保
つこと。 内管19内にスケール発生の可能性を与える澱み部、
渦流発生部を作らないこと。 上記の条件下に、吸収液スラリーの温度と冷却液
の温度差によって内管9A壁面にスケールが生成しない
許容範囲があること。
Therefore, the saturation temperature of untreated flue gas is usually 45 to
The temperature is in the range of 55 ° C., and in the process shown in FIG. 1, the absorbing liquid slurry temperature is 42 to 45 ° C., though it varies depending on each case.
It is predicted that when the absorbent slurry is cooled, calcium salts are deposited on the inner wall surface of the inner pipe 9A of the cooler 9 to form scales, and the overall heat transfer coefficient is sharply reduced. However, according to the examination results by the present inventors, the following points were clarified. That is, the inner tube 9A having a smooth surface is used.
Keep the fluid state (flow velocity) of the absorption liquid slurry inside the allowable value or more. A stagnation part that gives the possibility of scale generation in the inner tube 19,
Do not create a swirl generator. Under the above conditions, there is an allowable range in which scale is not formed on the wall surface of the inner pipe 9A due to the temperature difference between the absorbing liquid slurry and the cooling liquid.

【0015】この、およびの最適条件を選択する
ことによって、内管9Aにおけるスケール発生を防止す
ることができる。具体的には、冷却器9における吸収液
スラリーの内管9A内の流速(レイノルズ数)を許容値
以上で原則として定量流れに保ち、また冷却液の流速も
原則として定量流れを保つが、冷却液側は新冷却液供給
と循環冷却液の比率の制御によって套側への供給温度を
制御する。ただし、冷却負荷の大幅低下の場合には、許
容範囲内で管内(吸収液スラリー)流速、管外(冷却媒
体)流速を減ずることも出来る。
By selecting the optimum conditions (1) and (2), it is possible to prevent the scale generation in the inner pipe 9A. Specifically, the flow velocity (Reynolds number) of the absorbing liquid slurry in the cooler 9 in the inner pipe 9A is maintained at a constant flow rate as a rule over the allowable value, and the flow velocity of the cooling liquid is also maintained at a constant flow rate in principle. On the liquid side, the supply temperature to the jacket side is controlled by controlling the ratio of the new cooling liquid supply and the circulating cooling liquid. However, when the cooling load is significantly reduced, the flow velocity inside the pipe (absorption liquid slurry) and outside the pipe (cooling medium) can be reduced within the allowable range.

【0016】内管9A内の吸収液スラリー流速範囲と、
吸収液スラリーと冷却液との許容される最大液温差との
関係を表2に示す。以下、本発明の実施例を図3により
示す。
The absorption liquid slurry flow velocity range in the inner pipe 9A,
Table 2 shows the relationship between the maximum liquid temperature difference allowed between the absorbing liquid slurry and the cooling liquid. An embodiment of the present invention will be shown below with reference to FIG.

【0017】[0017]

【実施例】図2に実施テスト設備フローダイヤグラムを
示し、この実施テスト設備を運転中の脱硫吸収器の近く
に設置した。ガス系の流れ 未処理排煙 (増湿冷却済) 71を煙道より取り出して吸収
器42に導き、スパージャーノズル43より吸収液スラリー
72中の所定の浸液深位置においてジェット状に吹き出さ
せた。生成した泡沫層、即ち気液接触部において未処理
排煙は脱硫、冷却され、吸収器上部の拡大部44で流速低
下により随伴ミストを除去した後、処理排煙73として処
理排煙吸引ファン45により吸引流量計46を経由して既設
の脱硫吸収器47の処理排煙部48へ放出した。吸収器1に
導入される未処理排煙の量は、処理排煙吸引ファン45の
サクション側の弁の操作により処理排煙流量計46を見て
変化させてデータ採取に対応した。また、未処理排煙中
の水分は石炭の燃料比、付着湿分、ガス・ガスヒーター
出口温度により飽和温度がほぼ決まるので、飽和温度を
変数として変えるため、低圧スチーム74をスチーム流量
計49、弁50の操作で調整し、吸収器42への未処理排煙導
入ライン51上へ補給した。
EXAMPLE FIG. 2 shows a flow diagram of the practical test equipment, and the practical test equipment was installed near the desulfurization absorber in operation. Flow of gas system Untreated flue gas (humidified and cooled) 71 is taken out from the flue and guided to the absorber 42, and the absorbent liquid slurry is supplied from the sparger nozzle 43.
It was jetted out at a predetermined immersion depth position in 72. The untreated flue gas is desulfurized and cooled in the generated foam layer, that is, the gas-liquid contact portion, and the entrained mist is removed as the treated flue gas 73 by removing the entrained mist by the flow velocity reduction in the enlarged portion 44 of the upper part of the absorber. Was discharged to the treated smoke exhaust part 48 of the existing desulfurization absorber 47 via the suction flow meter 46. The amount of untreated flue gas introduced into the absorber 1 was changed by looking at the treated flue gas flow meter 46 by operating a valve on the suction side of the treated flue gas suction fan 45 to correspond to data collection. In addition, since the saturation temperature of the moisture in the untreated flue gas is almost determined by the fuel ratio of coal, the attached moisture content, and the gas / gas heater outlet temperature, in order to change the saturation temperature as a variable, the low pressure steam 74 is replaced by the steam flow meter 49, It was adjusted by operating the valve 50 and was replenished to the untreated smoke introduction line 51 to the absorber 42.

【0018】吸収器42で吸収された亜硫酸ガスを硫酸に
酸化するための酸素を、吸収液スラリー72中へ供給する
ため、吸収器42の底部へ酸化用空気75の吹込みノズル52
を設け、酸化用空気 (増湿済) を流量計53と弁54で調整
供給した。吸収液スラリー系流れ 既設脱硫吸収器47より吸収液スラリー76を取り出し、吸
収液スラリーポンプ55に導き、このポンプの吐出側に設
置した電磁流量ループにより吸収液スラリー76を冷却器
56の内管57に供給冷却し、冷吸収液スラリー77を吸収器
42の気液接触部上部へ送り、未処理排煙をこの気液接触
部で洗浄し、SO2 の吸収と同時に酸化してSO2 の除去、
冷却を行った。洗浄後の吸収液スラリー78は既設脱硫吸
収器に戻した。吸収液スラリー冷却液系流れ 吸収液スラリーの流れに対して向流の冷却液循環系を設
置した。すなわち、冷却器56の套側58下部 (吸収液スラ
リー入口側) より冷却液79を取り出し、冷却液循環ポン
プ59のサクションに導き、昇圧した冷却液80を冷却器56
の套側58の上部(吸収液スラリー出口側) 入口に供給す
る循環ループを形成させた。この循環ループ中の冷却液
流量は、原則として一定流量流れとし、循環冷却液80の
冷却器供給温度は、新冷却液81を冷却液循環ポンプ59の
サクション側に、この循環ポンプ59の吐出側の供給循環
冷却液温度調整ループ60により調整された流量を供給す
ることにより制御した。新冷却液供給によりこの循環ル
ープ系内の過剰冷却液は、冷却器56の套側出口より支管
61を立ち上げ、オーバーフロー82により放流冷却液とし
て排水溝に流した。主要機器 1) 吸収器42 標準の未処理排煙スパージャーパイプを中心に備えたも
のを使用した。未処理排煙の吹込み量は200〜500Nm3
/時 (湿ガス) 2) 冷却器56 内管57は、サイズ1B及び 1 1/4Bの耐海水熱交換器用
特殊ステンレスパイプを使用した。套58側は冷却液とし
て工業用水を使用するため、ガス管を適用し、夫々1B
内管には2B SGP、 1 1/4B内管には 2 1/2B SG
Pを用いた。伝熱有効長さは2.5m×4本接ぎであり、
内管内面の粗面度は、G/D=0.00005以下を使用し
た。
In order to supply oxygen for oxidizing the sulfurous acid gas absorbed in the absorber 42 to sulfuric acid into the absorbing liquid slurry 72, the nozzle 52 for blowing the oxidizing air 75 to the bottom of the absorber 42.
Was installed, and the oxidizing air (humidified) was adjusted and supplied by the flow meter 53 and the valve 54. Absorption liquid slurry system flow The absorption liquid slurry 76 is taken out from the existing desulfurization absorber 47, guided to the absorption liquid slurry pump 55, and the absorption liquid slurry 76 is cooled by the electromagnetic flow loop installed on the discharge side of this pump.
Supply and cool to the inner pipe 57 of 56, and cool absorption liquid slurry 77 to the absorber
Feed 42 into the gas-liquid contact section upper part of the washed raw flue gas in the gas-liquid contact portion, the removal of SO 2 simultaneously oxidizing the absorption of SO 2,
Cooled. The absorbent slurry 78 after cleaning was returned to the existing desulfurization absorber. Absorption liquid slurry cooling liquid system flow A cooling liquid circulation system countercurrent to the flow of the absorption liquid slurry was installed. That is, the cooling liquid 79 is taken out from the lower side of the sleeve 58 (absorption liquid slurry inlet side) of the cooler 56, is guided to the suction of the cooling liquid circulation pump 59, and the pressurized cooling liquid 80 is supplied to the cooler 56.
A circulation loop was formed so as to supply to the inlet on the upper side (absorption liquid slurry outlet side) of the sleeve side 58. As a general rule, the flow rate of the cooling liquid in this circulation loop is a constant flow rate, and the cooling medium supply temperature of the circulation cooling liquid 80 is such that the new cooling liquid 81 is on the suction side of the cooling liquid circulation pump 59 and the discharge side of this circulation pump 59. It was controlled by supplying a flow rate adjusted by the supply circulation coolant temperature adjusting loop 60 of. By supplying new cooling liquid, excess cooling liquid in this circulation loop system is branched from the outlet on the jacket side of the cooler 56.
61 was started up, and it was made to flow into the drain as an outlet cooling liquid by an overflow 82. Main equipment 1) Absorber 42 A standard untreated flue gas sparger pipe was used as the center. The amount of untreated flue gas blown is from 2000 to 500 Nm 3
/ Hour (wet gas) 2) Cooler 56 The inner tube 57 is a special stainless pipe for seawater heat exchangers of size 1B and 1 1 / 4B. Since the trowel side uses industrial water as the cooling liquid, a gas pipe is applied, and 1B each
2B SGP for the inner tube, 2 1 / 2B SG for the 1 1 / 4B inner tube
P was used. The effective heat transfer length is 2.5m x 4 pieces,
The roughness of the inner surface of the inner tube was G / D = 0.00005 or less.

【0019】テスト結果 1) テスト−1条件 (内管1Bのケース) ・未処理排煙条件 水飽和温度 47.5℃ 未処理排煙 (乾ベース) 約350Nm3/時 SO2 濃度 約700ppm ・吸収液スラリー条件 可溶塩濃度 約6wt% 種晶石こう 約15wt% 平均50μm スラリー比重 1200kg/m3 入口温度 43℃ 比 熱 880kcal/m3 ℃ 吸収液スラリー流速 流速を変化させる ・循環冷却液側条件 冷却液 : 工業用水 套側流速 : 2.0m/s (4.3m3/時) 新冷却液 : 15℃ 冷却器供給温度 : 20℃ ・処理排煙温度 目 標 40−41℃ ・各テストの方法 〔吸収液スラリー流速と吸収液スラ
リー、冷却液温度差を固定〕 運転時間 :3時間/各テスト 汚れ、スケーリング :冷却性能劣化につき温度デー
タ、各テスト毎の内部点検と汚れスケーリングの目視点
検をした。 2) テスト−1の結果を表3に示す 3) テスト−2条件 冷却液供給温度15℃である外テスト−1条件に同じであ
る。結果を表4に示す。
Test results 1) Test-1 condition (case of inner tube 1B) -Untreated smoke emission condition Water saturation temperature 47.5 ° C Untreated smoke emission (dry basis) Approx. 350 Nm 3 / hr SO 2 concentration approx. 700 ppm-Absorbing liquid Slurry condition Soluble salt concentration About 6 wt% Seed gypsum about 15 wt% Average 50 μm Slurry specific gravity 1200 kg / m 3 Inlet temperature 43 ℃ Specific heat 880 kcal / m 3 ℃ Absorbing liquid slurry flow rate Varying flow rate ・ Circulating coolant side condition Coolant : Industrial water flow velocity: 2.0m / s (4.3m 3 / hour) New cooling liquid: 15 ℃ Cooler supply temperature: 20 ℃ ・ Treatment flue gas temperature target 40-41 ℃ ・ Method of each test [Absorption Liquid slurry flow velocity, absorption liquid slurry, and cooling liquid temperature difference are fixed] Operating time: 3 hours / fouling of each test, scaling: Temperature data regarding cooling performance deterioration, internal inspection for each test, and visual inspection of scaling of fouling were performed. 2) The result of test-1 is shown in Table 3. 3) Test-2 condition It is the same as the outer test-1 condition that the coolant supply temperature is 15 ° C. The results are shown in Table 4.

【0020】[0020]

【発明の効果】以上述べたように本発明によれば、吸収
液スラリーを吸収系ループより系外に取り出し、冷却器
によって冷却した後に吸収系ループにもどしているの
で、吸収槽から系外に排出される処理排煙を洗浄前の排
煙の断熱冷却飽和温度以下の所定温度まで冷却すること
ができる。
As described above, according to the present invention, the absorbent slurry is taken out of the system through the absorption system loop, cooled by the cooler and then returned to the absorption system loop. The discharged treated flue gas can be cooled to a predetermined temperature below the adiabatic cooling saturation temperature of the flue gas before cleaning.

【0021】従って本発明によれば、処理排煙に随伴し
て系外に排出される水分を節減し、吸収装置への補給水
を節減することができる。特に本発明においては、吸収
液スラリーの冷却器におけるスケール発生を、吸収液ス
ラリーが流れる管内のレイノルズ数 (流速) 、および吸
収液スラリーと冷却液との温度差を特定範囲に維持する
ことによって、吸収液スラリーからのスケール発生を完
全に防止することができる。
Therefore, according to the present invention, it is possible to save the water discharged to the outside of the system in association with the treated flue gas, and to save the make-up water to the absorber. In particular, in the present invention, the scale generation in the cooler of the absorbent slurry, the Reynolds number in the pipe flowing the absorbent slurry (flow velocity), and by maintaining the temperature difference between the absorbent slurry and the cooling liquid in a specific range, It is possible to completely prevent scale generation from the absorbent slurry.

【0022】通常、排煙の水分含有量は、燃焼に使用さ
れた石炭の付着水分量、石炭の燃料比または上流側で排
ガス中に注入される水分などに依存するが、現在、日本
における例では0.05kg水分/1kg乾ガス前後(約8vol.
%水分)の場合が多く、また増湿冷却部へ導入される未
処理排煙は、通常 100〜85℃ (於定格負荷) である。こ
れらの場合の増湿冷却後の飽和温度は表1に示すような
値となる。
Normally, the water content of flue gas depends on the amount of water adhering to the coal used for combustion, the fuel ratio of coal, or the water injected into the exhaust gas on the upstream side. Then around 0.05kg moisture / 1kg dry gas (about 8vol.
In most cases, the untreated flue gas introduced into the humidification / cooling unit is 100 to 85 ° C (at rated load). In these cases, the saturation temperature after the humidification cooling has the values shown in Table 1.

【0023】そして、乾燥排煙1kg当り、夫々の増湿冷
却部入口の温度に見合う水分を含有する処理排煙が系外
に排出されるので、蒸発により系外に去る水分は、表5
に示すとおり、脱硫装置に未処理排煙中の水分0.05kg水
分/乾ガス1kgと処理排煙中の水分kg水分/kg乾ガスの
差となる。従って、処理排煙が40℃まで冷却されるよう
に吸収液スラリーを冷却することができれば、蒸発に伴
う補給水量を冷却の程度にもよるが未処理導入排煙中の
水分程度にまで減少させることができる。
Then, since the treated flue gas containing the moisture corresponding to the temperature of each humidification cooling section inlet is discharged out of the system per 1 kg of the dried flue gas, the moisture leaving the system by evaporation is shown in Table 5.
As shown in, the difference between the moisture in untreated flue gas in the desulfurization equipment is 0.05 kg moisture / dry gas 1 kg and the moisture in treated flue gas is kg moisture / kg dry gas. Therefore, if it is possible to cool the absorbent slurry so that the treated flue gas is cooled to 40 ° C, the amount of make-up water accompanying evaporation will be reduced to the level of water in the untreated introduced flue gas, depending on the degree of cooling. be able to.

【0024】また本発明は、脱硫のための気液接触を同
時に併用し、かつ冷却を行なって処理排煙中の水分を減
少させるので、現状のドラフト損失に対し、更なるドラ
フト損失が不必要であり、省エネルギーで補給水の節減
を可能とするものである。従って本発明は、大型火力発
電所立地環境において補給水取得と立地環境諸条件のミ
スマッチのみで立地環境条件が整わないケースについて
問題解決の一方法を提供するものである。
Further, in the present invention, the gas-liquid contact for desulfurization is also used together, and the cooling is performed to reduce the water content in the treated flue gas. Therefore, it is possible to save energy by saving energy. Therefore, the present invention provides a method for solving a problem in the case where the site environment conditions are not met only by the mismatch between the make-up water acquisition and the site environment conditions in the large-scale thermal power plant site environment.

【0025】表 1 Table 1

【0026】表 2 Table 2

【0027】表 3 Table 3

【0028】表 4 Table 4

【0029】表 5 Table 5

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を示す工程図である。FIG. 1 is a process drawing showing a method of the present invention.

【図2】本発明における吸収液スラリーにおけるカルシ
ウム塩の溶解度を示す図である。
FIG. 2 is a diagram showing the solubility of a calcium salt in an absorbent slurry according to the present invention.

【図3】本発明の実施例に用いたフローダイヤグラムの
概要を示す図である。
FIG. 3 is a diagram showing an outline of a flow diagram used in an example of the present invention.

【符号の説明】[Explanation of symbols]

4 吸収槽 8 吸収系ループ
9 冷却器
4 Absorption tank 8 Absorption system loop 9 Cooler

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 湿式排煙脱硫法において、カルシウム系
吸収剤をベースとする吸収剤の少くとも一部を吸収系ル
ープから抜き出して間接冷却型の熱交換器に導入し、冷
却液により冷却した後に前記吸収系ループにもどして気
液接触部に供給される吸収液スラリーの温度を低下さ
せ、該温度の低下した吸収液スラリーにより排煙を洗浄
して洗浄後の排煙の温度を洗浄前の排煙の断熱冷却飽和
温度以下に保つことを特徴とする湿式脱硫装置への補給
水を節減する方法。
1. In a wet flue gas desulfurization method, at least a part of an absorbent based on a calcium-based absorbent is extracted from an absorption system loop, introduced into an indirect cooling type heat exchanger, and cooled by a cooling liquid. After that, the temperature of the absorption liquid slurry supplied to the gas-liquid contact portion is returned to the absorption system loop and the temperature of the exhaust gas after cleaning is washed by the absorption liquid slurry whose temperature is lowered before cleaning. A method for saving make-up water to a wet desulfurization device, characterized in that the adiabatic cooling of the flue gas is kept at a saturation temperature or lower.
JP4142717A 1992-06-03 1992-06-03 Method for saving water supply to wet-type desulfurization device Pending JPH05337329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142717A JPH05337329A (en) 1992-06-03 1992-06-03 Method for saving water supply to wet-type desulfurization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142717A JPH05337329A (en) 1992-06-03 1992-06-03 Method for saving water supply to wet-type desulfurization device

Publications (1)

Publication Number Publication Date
JPH05337329A true JPH05337329A (en) 1993-12-21

Family

ID=15321943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142717A Pending JPH05337329A (en) 1992-06-03 1992-06-03 Method for saving water supply to wet-type desulfurization device

Country Status (1)

Country Link
JP (1) JPH05337329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240881A (en) * 2008-03-31 2009-10-22 Chugoku Electric Power Co Inc:The Method of desulfurizing exhaust gas, exhaust gas desulfurizer, and carbon dioxide-recovering fuel cell power generation system equipped with the exhaust gas desulfurizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240881A (en) * 2008-03-31 2009-10-22 Chugoku Electric Power Co Inc:The Method of desulfurizing exhaust gas, exhaust gas desulfurizer, and carbon dioxide-recovering fuel cell power generation system equipped with the exhaust gas desulfurizer

Similar Documents

Publication Publication Date Title
CN106801886B (en) Cooling and heat exchanging system for eliminating white smoke plume of coal-fired power plant and operation method thereof
CN107930309B (en) Wet smoke plume eliminating system
US20130195728A1 (en) Wet flue gas desulfurization absorption tower for for power plant
CN204841384U (en) Zero water consumption system of wet flue gas desulfurization
CN107120714A (en) A kind of thermal power plant boiler fume afterheat is used for the whole yearization comprehensive utilization energy conserving system of central heating or heating boiler feed water
CN110152460A (en) It is a kind of to utilize the water-saving eliminating white smoke device and method of chimney sleeve
CN202092479U (en) Closed air cooling system for auxiliary machine circulating cooling water
CN108479289A (en) A kind of white-smoke-removing system and technique accurately controlling corrosion
CN107519757A (en) A kind of unpowered cooling cigarette tower apparatus of wet flue gas
CN208406509U (en) A kind of white-smoke-removing system of accurate control corrosion rate
CN207928911U (en) A kind of wet plume elimination system
CN109107328A (en) It solves desulfurization fume and takes off white method and desulphurization system
JPH05337329A (en) Method for saving water supply to wet-type desulfurization device
CN203100463U (en) Waste heat recycling device for titanium dioxide calcining tail gas
CN204042943U (en) Desulfurization system for thermal power plant
CN108392936A (en) Condensation method flue gas takes off white device and method
CN110559786A (en) flue gas whitening system and method based on partial organic Rankine cycle
CN108786388A (en) A kind of removing method of wet type desulfurizing flue gas water mist
JPH06134251A (en) Reducing method for make-up water to wet desulfurization device
CN109731445A (en) A kind of low energy consumption white cigarette cancellation element proposing effect function with desulfurization
CN209771770U (en) Wet curtain solution dehydrator
CN113731146A (en) Wet washing device and cooling method during flue gas washing
CN209221801U (en) A kind of desulphurization system
CN208641819U (en) A kind of MGGH eliminating white smoke water-saving system
CN207786279U (en) Coal-burning power plant aoxidizes magnesium fortified Deuslfurizing system for sea water