JPH05335644A - Lamination-type electrostrictive/piezoelectric element - Google Patents

Lamination-type electrostrictive/piezoelectric element

Info

Publication number
JPH05335644A
JPH05335644A JP4166935A JP16693592A JPH05335644A JP H05335644 A JPH05335644 A JP H05335644A JP 4166935 A JP4166935 A JP 4166935A JP 16693592 A JP16693592 A JP 16693592A JP H05335644 A JPH05335644 A JP H05335644A
Authority
JP
Japan
Prior art keywords
laminated
electrode
width
electrostrictive
electrodeless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4166935A
Other languages
Japanese (ja)
Other versions
JP2645628B2 (en
Inventor
Akio Ishino
昭夫 石野
Masao Kihara
征夫 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4166935A priority Critical patent/JP2645628B2/en
Publication of JPH05335644A publication Critical patent/JPH05335644A/en
Application granted granted Critical
Publication of JP2645628B2 publication Critical patent/JP2645628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To prevent generation of stress breakdown due to concentration of stress strain at the boundary between an active region and an inactive region, prevent insulation breakdown, and then increase the amount of displacement to be generated. CONSTITUTION:A number of thin plates 10 where an internal electrode 14 is formed are laminated on the surface of an electrostrictive/piezoelectric material 12 and then each internal electrode is alternately connected at every other layer by a pair of external electrodes. Each thin plate is provided with an electrode leading part 16 for continuing the internal electrode to one of external electrodes and an electroless part 18 for preventing continuity between the internal electrode and the other external electrode. N types of electroless parts which are different in width are avaliable (N; an integer) >=2). Then, assuming that their relationship is W1<W2<...<Wn, each thin plate is laminated in the order of W1, W2,..., Wn, Wn, ..., W2, W1, W2,... depending on the width of the electroless part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層型の電歪/圧電ア
クチュエータ素子に関する。更に詳しく述べると、素子
内部における不活性領域と活性領域との境界に、緩やか
な電界強度分布を与えるような内部電極構造を採用する
ことにより、内部応力の分散を図り応力歪みによる破壊
を防止する積層型電歪/圧電素子に関するものである。
本発明の素子は例えば、油圧弁開閉用、ドットプリンタ
の印字用、精密位置決め用などのアクチュエータとして
有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electrostrictive / piezoelectric actuator element. More specifically, by adopting an internal electrode structure that gives a gradual electric field intensity distribution at the boundary between the inactive region and the active region inside the element, internal stress is dispersed and damage due to stress strain is prevented. The present invention relates to a laminated electrostrictive / piezoelectric element.
The element of the present invention is useful, for example, as an actuator for opening and closing a hydraulic valve, printing for a dot printer, and precision positioning.

【0002】[0002]

【従来の技術】積層型電歪/圧電素子としては、電歪/
圧電材料からなる焼結済みセラミック薄板を積層し接着
一体化した構造と、未焼結シートを積層し一体焼結した
構造がある。いずれにしても、電歪/圧電材料の表面に
内部電極を形成した薄板を多数枚積層し、一対の導体に
よって各内部電極を一層おきに交互に接続した構成とな
っている。
2. Description of the Related Art As a laminated electrostrictive / piezoelectric element,
There are a structure in which sintered ceramic thin plates made of a piezoelectric material are laminated and bonded and integrated, and a structure in which unsintered sheets are stacked and integrally sintered. In any case, a large number of thin plates each having an internal electrode formed on the surface of the electrostrictive / piezoelectric material are laminated, and each internal electrode is alternately connected by a pair of conductors.

【0003】積層体内に部分的に(全面ではなく)内部
電極を形成し、それらの間を接続する構造としては、 電歪/圧電材料にそれぞれ形成したスルーホールを積
層方向から見て全体として均一に分布させ、該スルーホ
ールを介して各内部電極を一層おきに接続する方式(特
開平2− 79482号) 一層おきに端部まで内部電極が出ないように、適当距
離だけ端部から内部電極を引き込めて、両側面で異なる
ように一層毎に内部電極を端面に露出させ、外部電極に
よって接続する方式 がある。
As a structure in which internal electrodes are partially (not over the entire surface) formed in the laminate and are connected to each other, the through holes formed in the electrostrictive / piezoelectric materials are uniform as a whole when viewed from the lamination direction. And the internal electrodes are connected to each other through the through holes (Japanese Patent Laid-Open No. 2-79482). The internal electrodes are separated from the ends by an appropriate distance so that the internal electrodes do not reach the ends at every other layer. There is a method in which the internal electrodes are exposed to the end face for each layer so that they are different on both sides, and are connected by the external electrodes.

【0004】これらの積層型電歪/圧電素子において
は、内部電極が重合していて所定の駆動電界強度が印加
される部分が活性領域(電歪/圧電効果により所定の変
位が生じる部分)となり、それ以外の部分は不活性領域
である。
In these laminated electrostrictive / piezoelectric elements, a portion where the internal electrodes are superposed and a predetermined driving electric field strength is applied becomes an active region (a portion where a predetermined displacement is caused by the electrostrictive / piezoelectric effect). The other parts are inactive areas.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の構造で
は、活性領域と不活性領域との境界で急激な電界強度の
変化が生じる。活性領域ではその電界強度に応じた大き
な変位が生じ、不活性領域では変位が生じず拘束される
ため、大きな応力歪みが生じて応力破壊が発生する。ま
た電界強度の急激な変化により絶縁破壊が生じる恐れが
ある。これら素子の破壊や絶縁破壊を防止するために
は、駆動電界強度を低く抑えるしか方法がないが、そう
すると変位量の大きな電歪/圧電素子が得られない。
In the above-mentioned conventional structure, the electric field strength changes abruptly at the boundary between the active region and the inactive region. A large displacement occurs according to the electric field strength in the active region, and a displacement occurs in the inactive region without restraint, so that a large stress strain occurs and stress fracture occurs. Moreover, there is a possibility that dielectric breakdown may occur due to a rapid change in electric field strength. In order to prevent the breakdown and the dielectric breakdown of these elements, the only method is to keep the driving electric field strength low, but if this is done, an electrostrictive / piezoelectric element with a large displacement cannot be obtained.

【0006】内部電極を電歪/圧電材料の全面に施して
全面を活性領域とし、側面に露出している全内部電極縁
を一層ずつ交互に電気絶縁物で被覆し、被覆されずに露
出している内部電極縁を外部電極で接続する方式もあ
る。しかしこの構造は、電歪/圧電材料の厚みが薄くな
るほど製作が難しく、コストが高くなる。通常、電気絶
縁部を設けるために、電気泳動法が採用されるが、電気
絶縁物の堆積のばらつきにより、あるいはメッキ液ある
いはガラス粉末を含む懸濁液中に積層体を浸漬した後の
残存イオン等により、絶縁破壊が生じ易い欠点もある。
The internal electrodes are applied to the entire surface of the electrostrictive / piezoelectric material to make the entire surface an active region, and the edges of all the internal electrodes exposed on the side surfaces are alternately covered with an electric insulator and exposed without being covered. There is also a method of connecting the inner electrode edge with an external electrode. However, this structure is more difficult to manufacture and the cost is higher as the thickness of the electrostrictive / piezoelectric material is thinner. Usually, an electrophoretic method is used to provide an electrical insulation part, but due to variations in the deposition of electrical insulation, or residual ions after dipping the laminate in a plating solution or suspension containing glass powder. Therefore, there is a drawback that dielectric breakdown is likely to occur.

【0007】本発明の目的は、比較的単純な形状の電極
で、活性領域と不活性領域との境界での電界強度が段階
的に緩やかに変化するように工夫することで、その境界
での応力歪みの集中による応力破壊の発生を防止し、絶
縁破壊を防ぎ、且つ変位量を大きくしうる積層型電歪/
圧電素子を提供することである。
An object of the present invention is to devise the electric field strength at the boundary between the active region and the inactive region so that the electric field strength at the boundary between the active region and the inactive region changes gradually in a stepwise manner. Laminated electrostriction that prevents stress breakdown due to concentration of stress strain, prevents dielectric breakdown, and increases displacement
It is to provide a piezoelectric element.

【0008】[0008]

【課題を解決するための手段】本発明は、電歪/圧電材
料の表面に部分的に(全面ではなく)内部電極を形成し
た薄板を多数枚積層し、一対の外部電極によって各内部
電極を一層おきに交互に接続する積層型素子である。従
って各薄板は、それに形成する内部電極と片側の外部電
極との導通を阻止するための無電極部を備えている。こ
こで本発明の特徴は、各薄板に形成する無電極部の形状
と積層順序にある。無電極部は、幅が異なるn種類(但
し、nは2以上の整数)存在する。その幅の大小関係
を、W1 <W2 <…<Wn とすると、各薄板は無電極部
の幅に応じて…,W1 ,W2 ,…,Wn ,Wn ,…,W
2 ,W1 ,W2 ,…の順序で積層されている。
According to the present invention, a large number of thin plates having internal electrodes partially (not on the entire surface) formed on the surface of an electrostrictive / piezoelectric material are stacked, and each internal electrode is formed by a pair of external electrodes. It is a laminated element in which every other layer is alternately connected. Therefore, each thin plate is provided with an electrodeless portion for preventing conduction between the internal electrode formed on the thin plate and the external electrode on one side. Here, the feature of the present invention resides in the shape and the stacking order of the electrodeless portion formed on each thin plate. There are n types of electrodeless portions having different widths (where n is an integer of 2 or more). If the magnitude relation of the widths is W 1 <W 2 <... <W n , each thin plate is ... W 1 , W 2 , ..., W n , W n ,.
2 , W 1 , W 2 , ... Are laminated in this order.

【0009】より好ましくは、各内部電極と連続し薄板
端部に達して外部電極と導通する電極引出し部を一層お
きに交互に同じ位置に設け、且つ両方の電極引出し部形
成位置の間に無電極部を設ける構造とする。無電極部の
幅の変化は、ほぼ等差的に設定する。前記nの値は2又
は3が適当である。更に薄板を四角形状とし、その一辺
の片側に電極引出し部が位置し、同じ辺の残りの部分が
無電極部であり、他の三辺は全て端部まで内部電極が形
成されているような構造が最適である。
More preferably, electrode lead-out portions which are continuous with the respective internal electrodes and reach the end of the thin plate and which are electrically connected to the external electrodes are alternately provided at the same position, and there is no space between both electrode lead-out portion forming positions. The structure is such that an electrode portion is provided. The change in the width of the electrodeless portion is set substantially equal to each other. The value of n is preferably 2 or 3. Further, the thin plate is formed in a quadrangular shape, the electrode lead-out portion is located on one side of one side, the rest of the same side is an electrodeless portion, and the inner electrodes are formed on all other three sides up to the end. The structure is optimal.

【0010】[0010]

【作用】電歪/圧電素子は、電歪/圧電材料に印加され
る電界強度に応じた変位量が生じる。素子内部に無電極
部が存在すると、それと電極部との境界で電界強度が変
化し、応力歪みが発生する。電界強度の変化が急激であ
ればあるほど、発生する応力歪みは大きくなる。
The electrostriction / piezoelectric element produces a displacement amount according to the electric field strength applied to the electrostriction / piezoelectric material. When the electrodeless portion exists inside the element, the electric field strength changes at the boundary between the electrodeless portion and the electrode portion, and stress strain occurs. The more rapidly the electric field strength changes, the greater the stress strain that occurs.

【0011】電歪/圧電材料からなり部分的に内部電極
を有する薄板を、その無電極部の幅に応じて、…,
1 ,W2 ,…,Wn ,Wn ,…,W2 ,W1 ,W2
…の順序で積層すると、内部電極の境界線の位置が順次
ずれて配列され、且つ素子端部での電界強度が段階的に
緩やかに変化することになる。そのため応力歪みは緩和
される。また絶縁破壊も防止できる。
A thin plate made of an electrostrictive / piezoelectric material and partially having an internal electrode is formed according to the width of the electrodeless portion.
W 1 , W 2 , ..., W n , W n , ..., W 2 , W 1 , W 2 ,
When the layers are laminated in this order, the positions of the boundary lines of the internal electrodes are sequentially displaced and the electric field strength at the element end changes gradually in a stepwise manner. Therefore, stress strain is relaxed. Also, dielectric breakdown can be prevented.

【0012】例えば無電極部の幅を2種類(n=2)と
し、層厚をt、層間に印加する電圧をV(電界強度E=
V/t)とした場合、最端部での電界強度は0、最端部
から幅W1 だけ内側に入った位置での電界強度はE/
3、最端部から幅W2 だけ内側に入った位置での電界強
度はEとなり、端部での電界強度の変化は緩やかなもの
となる。無電極部の幅の種類(nの数)を増大させる
程、より一層電界強度の変化は緩やかとなる。しかし、
あまり増大させると活性領域の面積が少なくなり、構造
も複雑となるし、実効性もさほど向上しないことから、
n=2又は3程度とすることが好ましい。
For example, the electrodeless portion has two widths (n = 2), the layer thickness is t, and the voltage applied between layers is V (electric field strength E =
V / t), the electric field strength at the end is 0, and the electric field strength at a position inside the end by a width W 1 is E /
3. The electric field strength is E at the position that is inward from the outermost end by the width W 2 , and the change in the electric field strength at the end is gradual. As the number of widths (the number of n) of the electrodeless portion is increased, the change in the electric field strength becomes more gradual. But,
If it is increased too much, the area of the active region becomes small, the structure becomes complicated, and the effectiveness is not improved so much,
It is preferable that n = 2 or 3.

【0013】[0013]

【実施例】図1は、本発明に係る積層型電歪/圧電素子
の一実施例を示す分解斜視図であり、図2はその各薄板
の電極パターン図、図3は組み立て図である。この実施
例は、無電極部の幅の種類が2(n=2)の場合であ
る。この電歪/圧電素子は、電歪/圧電材料の表面に内
部電極を形成した薄板10を多数枚積層し、一対の外部
電極20a,20bにより各内部電極を一層おきに接続
した積層構造をなしている。焼結済みセラミック薄板の
接着一体化構造でもよいし、未焼結シートの一体焼結構
造でもよい。
1 is an exploded perspective view showing an embodiment of a laminated electrostrictive / piezoelectric element according to the present invention, FIG. 2 is an electrode pattern diagram of each thin plate, and FIG. 3 is an assembly diagram. In this embodiment, the width of the electrodeless portion is 2 (n = 2). This electrostrictive / piezoelectric element has a laminated structure in which a large number of thin plates 10 each having an internal electrode formed on the surface of an electrostrictive / piezoelectric material are laminated and each internal electrode is connected by a pair of external electrodes 20a and 20b. ing. The structure may be an integrally bonded structure of sintered ceramic thin plates or an integrally sintered structure of unsintered sheets.

【0014】この実施例では、各薄板10は四角形状を
なしていて、それらに形成されている電極パターンは合
計4種類(A〜D)である。これは、無電極部の幅の種
類は2であるが、それぞれについて電極引出し部の形成
位置が2種類(一対の外部電極にそれぞれ接続されるよ
うに)あるためである。いずれも電歪/圧電材料12の
表面の大部分を内部電極14が覆っている。電歪/圧電
材料12の一辺の片側に電極引出し部16が位置し、同
じ辺の残りの部分が無電極部18であり、他の三辺は全
て端部まで内部電極14が延びている。電極引出し部1
6は、一方が内部電極14と導通し、他端は薄板10の
端部まで達して外部電極と導通する形状である。電極パ
ターンAとDとは、無電極部18の幅が同一で(W1
且つ電極引出し部16の位置が逆になっており、電極パ
ターンBとCとは、無電極部18の幅が同一で(W2
且つ電極引出し部16の位置が逆になっている。但し、
無電極部18の幅は、W1 <W2 であって、2W1 ≒W
2 の関係となっている。
In this embodiment, each thin plate 10 has a quadrangular shape, and the electrode patterns formed on them are a total of four types (A to D). This is because there are two types of widths of the electrodeless portions, but there are two types of formation positions of the electrode lead portions for each of them (so that they are connected to a pair of external electrodes, respectively). In both cases, the internal electrode 14 covers most of the surface of the electrostrictive / piezoelectric material 12. The electrode lead-out portion 16 is located on one side of one side of the electrostrictive / piezoelectric material 12, the remaining portion of the same side is an electrodeless portion 18, and the inner electrodes 14 extend to the end portions of the other three sides. Electrode drawer 1
6 has a shape in which one is electrically connected to the internal electrode 14 and the other end is electrically connected to the external electrode by reaching the end of the thin plate 10. The electrode patterns A and D have the same width of the electrodeless portion 18 (W 1 )
Moreover, the positions of the electrode lead-out portions 16 are reversed, and the electrode patterns B and C have the same width of the electrodeless portion 18 (W 2 ).
Moreover, the position of the electrode lead-out portion 16 is reversed. However,
The width of the electrodeless portion 18 is W 1 <W 2 , and 2W 1 ≈W
There is a relationship of 2 .

【0015】このような電極パターンをもつ薄板を、
A,B,C,D,C,B,A,B,…の順序で積層す
る。これによって電極引出し部16が一層おきに交互に
同じ位置となり、薄板端部から露出する。そして両方の
電極引出し部形成位置の間には無電極部18が位置する
ことになる。そこで図3に示すように、外部電極20
a,20bを形成することで、内部電極を一層ずつ交互
に接続できることになる。このことを無電極部18の幅
でみると、幅が異なる2種類(W1 <W2 )が、その幅
に応じてW1 ,W2 ,W2 ,W1 ,W2 ,…の順序で積
層されていることになる。
A thin plate having such an electrode pattern is
A, B, C, D, C, B, A, B, ... Are laminated in this order. As a result, the electrode lead-out portions 16 are alternately located at the same position every other layer, and exposed from the end of the thin plate. Then, the electrodeless portion 18 is located between both electrode lead-out portion forming positions. Therefore, as shown in FIG.
By forming a and 20b, the internal electrodes can be alternately connected one by one. Looking at this in terms of the width of the electrodeless portion 18, two types (W 1 <W 2 ) having different widths are arranged in the order of W 1 , W 2 , W 2 , W 1 , W 2 , ... In accordance with the width. Will be stacked in.

【0016】図4は、電歪/圧電素子を側面から見た時
の内部電極の状況を模式的に表している。電歪/圧電材
料の厚みをt、層間に印加する電圧をVとした時、電界
強度Eは、E=V/tで表せる。素子の最端部(位置
)での電界強度は、電極が存在しないため電圧が加わ
らず、ゼロである。最端部から幅W1 だけ入り込んだ位
置での電界強度は、電歪/圧電材料の3層(間隔が3
t)おきに電極が存在するため、V/3t=E/3であ
る。更に最端部から幅W2 だけ入り込んだ位置での電
界強度は、各層に電極が存在するためV/t=Eとな
る。位置よりも内側には全て内部電極が存在するた
め、電界強度はE(一定)である。これらのことから、
素子端部での電界強度分布は、図5に示すようになる。
素子端部での電界強度は段階的に緩やかに変化し、その
ため応力歪みの発生を小さく抑えることができる。
FIG. 4 schematically shows the state of the internal electrodes when the electrostrictive / piezoelectric element is viewed from the side. When the thickness of the electrostrictive / piezoelectric material is t and the voltage applied between the layers is V, the electric field strength E can be expressed by E = V / t. The electric field strength at the extreme end (position) of the element is zero because no voltage is applied because there is no electrode. The electric field strength at the position where the width W 1 is entered from the outermost end is three layers of electrostrictive / piezoelectric material (interval is 3
Since there are electrodes every t), V / 3t = E / 3. Furthermore, the electric field strength at the position where the width W 2 is entered from the outermost portion is V / t = E because the electrodes are present in each layer. Since the internal electrodes are all present inside the position, the electric field strength is E (constant). from these things,
The electric field strength distribution at the end of the element is as shown in FIG.
The electric field strength at the end of the element gradually changes gradually, and therefore stress strain can be suppressed to a small level.

【0017】電極パターンの種類を増やすことによっ
て、電界強度の変化を更に緩やかにできる。その例を図
6〜図8に示す。この実施例は無電極部の幅の種類nを
3にした場合である。電極パターンAとFとは、無電極
部18の幅が同一で(W1 )且つ電極引出し部16の位
置が逆になっており、電極パターンBとEとは、無電極
部18の幅が同一で(W2 )且つ電極引出し部16の位
置が逆になっている。更に電極パターンCとDとは、無
電極部18の幅が同一で(W3 )且つ電極引出し部16
の位置が逆である。但し、無電極部18の幅は、W1
2 <W3 であって、ここではW2 ≒2W1 、W3 ≒3
1 の関係となっている。
By increasing the types of electrode patterns, the change in electric field strength can be made more gradual. Examples thereof are shown in FIGS. In this embodiment, the width n of the electrodeless portion is set to 3. The electrode patterns A and F have the same width of the electrodeless portion 18 (W 1 ) and the positions of the electrode lead-out portions 16 are opposite, and the electrode patterns B and E have the width of the electrodeless portion 18. They are the same (W 2 ) and the positions of the electrode lead-out portions 16 are reversed. Further, the electrode patterns C and D have the same width of the electrodeless portion 18 (W 3 ) and the electrode lead-out portion 16
The position of is the opposite. However, the width of the electrodeless portion 18 is W 1 <
W 2 <W 3 , where W 2 ≈ 2W 1 and W 3 ≈ 3
The relationship is W 1 .

【0018】このような電極パターンをもつ多数の薄板
を、A,B,C,D,E,F,E,D,C,B,A,
B,…の順序で積層する。これによって電極引出し部1
6が一層おきに交互に同じ位置となり、薄板端部から露
出する。そして両方の電極引出し部形成位置の間には無
電極部18が位置することになる。外部電極により内部
電極は一層ずつ交互に接続される。これによって無電極
部18の幅についてみると、幅が異なる3種類(W1
2 <W3 )が、その幅に応じて、W1 ,W2 ,W3
3 ,W2 ,W1 ,W2 ,…の順序で積層されているこ
とになる。
A large number of thin plates having such an electrode pattern are formed by A, B, C, D, E, F, E, D, C, B, A,
B, ... are stacked in this order. As a result, the electrode lead-out portion 1
6 are alternately arranged at the same position every other layer and exposed from the end of the thin plate. Then, the electrodeless portion 18 is located between both electrode lead-out portion forming positions. The internal electrodes are alternately connected one by one by the external electrodes. Thus, regarding the width of the electrodeless portion 18, three kinds (W 1 <
W 2 <W 3 ) depends on its width, W 1 , W 2 , W 3 ,
It means that W 3 , W 2 , W 1 , W 2 , ... Are laminated in this order.

【0019】図8は、電歪/圧電素子を側面から見た時
の内部電極の状況を模式的に表している。素子の最端部
(位置)での電界強度は、電極が存在しないため電圧
が加わらずゼロである。最端部から幅W1 だけ入り込ん
だ位置での電界強度は、5層おきに電極が存在するた
めE/5である。最端部から幅W2 だけ入り込んだ位置
での電界強度は、平均すると(E+E/3)/2=2
E/3である。更に最端部から幅W3 だけ入り込んだ位
置での電界強度は、各層に電極が存在するためEとな
る。位置よりも内側には全て内部電極が存在するた
め、電界強度はE(一定)である。素子端部での電界強
度分布は、図8に示すようになる。素子端部での電界強
度は一層緩やかに変化し、そのため応力歪みの発生をよ
り小さく抑えることができる。
FIG. 8 schematically shows the state of the internal electrodes when the electrostrictive / piezoelectric element is viewed from the side surface. The electric field strength at the extreme end (position) of the element is zero because no voltage is applied because there is no electrode. The electric field strength at the position where the width W 1 is entered from the outermost portion is E / 5 because there are electrodes every 5 layers. The electric field strength at the position where the width W 2 enters from the outermost end is (E + E / 3) / 2 = 2 on average.
It is E / 3. Further, the electric field strength at the position where the width W 3 is entered from the outermost end is E because the electrodes are present in each layer. Since the internal electrodes are all present inside the position, the electric field strength is E (constant). The electric field strength distribution at the end of the element is as shown in FIG. The electric field strength at the end of the element changes more gradually, so that the occurrence of stress strain can be further suppressed.

【0020】電極は、スクリーン印刷法などによって形
成する。焼結セラミック板の接着一体化構造の場合は、
銀ペースト等の焼付けにより形成できる。未焼結セラミ
ックシートの焼結一体化構造の場合は、白金など高融点
の電極材料を用いる。
The electrodes are formed by a screen printing method or the like. In the case of a bonded integrated structure of sintered ceramic plates,
It can be formed by baking silver paste or the like. In the case of a sintered integrated structure of unsintered ceramic sheets, a high melting point electrode material such as platinum is used.

【0021】以上、本発明の好ましい二つの実施例につ
いて説明したが、本発明はこのような構成のみに限定さ
れるものではない。いずれもA,B,C,というよう
に、Aの電極パターンから始めているが、他の電極パタ
ーンから始めてもよい。上記の考え方を、無電極部の幅
の種類nが4以上に適用しうる。そして、それによって
素子端部での電界強度の分布をより一層緩やかにしうる
が、必要な電極パターンの種類は2nとなり増大するた
め、製作は煩瑣となる。そのため、実際には上記nの値
は2又は3程度が良好である。上記の実施例では電極引
出し部を電歪/圧電材料の角部に設けたが、特に角部の
みに限られるものではない。電歪/圧電材料の形状も適
宜変更しうる。各実施例では、段階的な電界強度分布を
与える電極形状を電歪/圧電材料の一辺のみに施してい
るが、他の辺の一部或いは全てに施すことも可能であ
る。
The two preferred embodiments of the present invention have been described above, but the present invention is not limited to such a configuration. In each case, the electrode pattern A starts from A, B, and C, but may start from another electrode pattern. The above concept can be applied to the width n of the electrodeless portion of 4 or more. Then, although the distribution of the electric field strength at the end portion of the element can be made gentler by this, the number of kinds of required electrode patterns is increased to 2n, which makes the manufacture complicated. Therefore, in practice, the value of n is preferably about 2 or 3. Although the electrode lead-out portion is provided at the corner portion of the electrostrictive / piezoelectric material in the above-described embodiment, it is not particularly limited to the corner portion. The shape of the electrostrictive / piezoelectric material may be changed as appropriate. In each embodiment, the electrode shape that gives a stepwise electric field intensity distribution is applied to only one side of the electrostrictive / piezoelectric material, but it is also possible to apply it to some or all of the other sides.

【0022】[0022]

【発明の効果】本発明は上記のように、素子内部におけ
る各層の無電極部の幅を変え、薄板の配列順序を規定し
たことにより、素子端部での電界強度分布が段階的に緩
やかに変化することとなり、内部応力の分散を図ること
ができる。そのため、応力歪みによる破壊を防止でき
る。また電界強度分布が緩やかになることにより、絶縁
破壊も防止できる。これらによって本発明による積層型
電歪/圧電素子は、高い電圧で駆動できるため、小さな
素子であっても大きな変位を発生させることが可能とな
る。
As described above, according to the present invention, the width of the electrodeless portion of each layer inside the element is changed and the arrangement order of the thin plates is defined, so that the electric field strength distribution at the edge of the element is gradually increased. As a result, the internal stress can be dispersed. Therefore, damage due to stress strain can be prevented. Further, since the electric field strength distribution becomes gentle, dielectric breakdown can be prevented. As a result, the laminated electrostrictive / piezoelectric element according to the present invention can be driven at a high voltage, so that even a small element can generate a large displacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る積層型電歪/圧電素子の一実施例
を示す分解斜視図。
FIG. 1 is an exploded perspective view showing an embodiment of a laminated electrostrictive / piezoelectric element according to the present invention.

【図2】その電極パターンの説明図。FIG. 2 is an explanatory view of the electrode pattern.

【図3】その組み立て後の斜視図。FIG. 3 is a perspective view after the assembly.

【図4】その側面から見た内部電極の状態を示す説明
図。
FIG. 4 is an explanatory diagram showing a state of internal electrodes viewed from the side surface thereof.

【図5】素子端部の電界強度分布の説明図。FIG. 5 is an explanatory diagram of an electric field strength distribution at an element end portion.

【図6】本発明に係る電歪/圧電素子の他の実施例を示
す電極パターンの説明図。
FIG. 6 is an explanatory diagram of an electrode pattern showing another embodiment of the electrostrictive / piezoelectric element according to the present invention.

【図7】その組み立て後の側面から見た内部電極の状態
を示す説明図。
FIG. 7 is an explanatory view showing a state of the internal electrodes seen from the side surface after assembly.

【図8】素子端部の電界強度分布の説明図。FIG. 8 is an explanatory diagram of an electric field intensity distribution at an element end portion.

【符号の説明】[Explanation of symbols]

10 薄板 12 電歪/圧電材料 14 内部電極 16 電極引出し部 18 無電極部 10 Thin Plate 12 Electrostrictive / Piezoelectric Material 14 Internal Electrode 16 Electrode Leading Part 18 No Electrode Part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電歪/圧電材料の表面に内部電極を形成
した薄板を多数枚積層し、一対の外部電極により各内部
電極を交互に一層おきに接続した積層型素子において、
前記薄板は、それに形成する内部電極と片側の外部電極
との導通を阻止するための無電極部を備え、該無電極部
は、幅が異なるn種類(但し、nは2以上の整数で、各
無電極部の幅の大小はW1 <W2 <…<Wn とする)存
在し、それらの薄板が無電極部の幅に応じて、…,
1 ,W2 ,…,Wn ,Wn ,…,W2 ,W1 ,W2
…の順序で積層されていることを特徴とする積層型電歪
/圧電素子。
1. A laminated element in which a plurality of thin plates each having an internal electrode formed on the surface of an electrostrictive / piezoelectric material are laminated and each internal electrode is alternately connected by a pair of external electrodes.
The thin plate is provided with an electrodeless portion for blocking conduction between an internal electrode formed on the thin plate and an external electrode on one side, and the electrodeless portion has n types having different widths (where n is an integer of 2 or more, The size of the width of each electrodeless portion is W 1 <W 2 <... <W n ), and these thin plates are arranged according to the width of the electrodeless portion.
W 1 , W 2 , ..., W n , W n , ..., W 2 , W 1 , W 2 ,
A laminated electrostrictive / piezoelectric element characterized by being laminated in this order.
【請求項2】 電歪/圧電材料の表面に内部電極を形成
した薄板を多数枚積層し、一対の外部電極により各内部
電極を交互に一層おきに接続した積層型素子において、
各内部電極と連続し薄板端部に達して外部電極と導通す
る電極引出し部が一層おきに交互に同じ位置に存在し、
且つ両方の電極引出し部形成位置の間には無電極部が設
けられ、それらの無電極部は、幅が異なるn種類(但
し、nは2以上の整数で、各無電極部の幅の大小はW1
<W2 <…<Wn とする)有り、それらの薄板が無電極
部の幅に応じて、…,W1 ,W2 ,…,Wn ,Wn
…,W2 ,W1 ,W2 ,…の順序で積層されていること
を特徴とする積層型電歪/圧電素子。
2. A laminated element in which a large number of thin plates each having an internal electrode formed on the surface of an electrostrictive / piezoelectric material are laminated and each internal electrode is alternately connected by a pair of external electrodes.
Electrode lead-out portions that are continuous with each internal electrode, reach the end of the thin plate, and are electrically connected to the external electrodes are alternately present at the same position every other layer,
Further, an electrodeless portion is provided between both electrode lead-out portion forming positions, and these electrodeless portions have n types of different widths (where n is an integer of 2 or more, and the width of each electrodeless portion is large or small). Is W 1
<W 2 <... <W n ), and the thin plates are arranged according to the width of the electrodeless portion, ..., W 1 , W 2 , ..., W n , W n ,
, W 2 , W 1 , W 2 , ... Laminated electrostrictive / piezoelectric elements, which are laminated in this order.
【請求項3】 無電極部の幅の変化を、ほぼ等差的に設
定した請求項1又は2記載の素子。
3. The device according to claim 1, wherein the change in the width of the electrodeless portion is set substantially equal to each other.
【請求項4】 nの値を2又は3とした請求項1、2又
は3記載の素子。
4. The device according to claim 1, wherein the value of n is 2 or 3.
【請求項5】 薄板が四角形状をなしていて、その一辺
の片側に電極引出し部が位置し、同じ辺の残りの部分が
無電極部であり、他の三辺は全て端部まで内部電極が形
成されている請求項3又は4記載の素子。
5. The thin plate has a quadrangular shape, an electrode lead-out portion is located on one side of one side thereof, the remaining portion of the same side is an electrodeless portion, and the other three sides are all internal electrodes up to the end portion. The element according to claim 3, wherein the element is formed.
JP4166935A 1992-06-02 1992-06-02 Multilayer type electrostrictive / piezoelectric element Expired - Lifetime JP2645628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166935A JP2645628B2 (en) 1992-06-02 1992-06-02 Multilayer type electrostrictive / piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166935A JP2645628B2 (en) 1992-06-02 1992-06-02 Multilayer type electrostrictive / piezoelectric element

Publications (2)

Publication Number Publication Date
JPH05335644A true JPH05335644A (en) 1993-12-17
JP2645628B2 JP2645628B2 (en) 1997-08-25

Family

ID=15840385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166935A Expired - Lifetime JP2645628B2 (en) 1992-06-02 1992-06-02 Multilayer type electrostrictive / piezoelectric element

Country Status (1)

Country Link
JP (1) JP2645628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024286A1 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Piezo-electric actuator
JP2002316411A (en) * 2001-04-19 2002-10-29 Ricoh Co Ltd Laminated piezoelectric element and piezoelectric actuator
US8240582B2 (en) 2007-02-26 2012-08-14 Denso Corporation Stacked piezoelectric device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119190A (en) * 1988-10-28 1990-05-07 Onoda Cement Co Ltd Laminated piezoelectric electrostriction device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119190A (en) * 1988-10-28 1990-05-07 Onoda Cement Co Ltd Laminated piezoelectric electrostriction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024286A1 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Piezo-electric actuator
JP2002316411A (en) * 2001-04-19 2002-10-29 Ricoh Co Ltd Laminated piezoelectric element and piezoelectric actuator
JP4678809B2 (en) * 2001-04-19 2011-04-27 株式会社リコー Multilayer piezoelectric element, piezoelectric actuator, inkjet head, and image forming apparatus
US8240582B2 (en) 2007-02-26 2012-08-14 Denso Corporation Stacked piezoelectric device

Also Published As

Publication number Publication date
JP2645628B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JP4475294B2 (en) Multilayer capacitor
KR20000052836A (en) Piezo electric actuator with a new type of contacting and a method for the production thereof
KR20080071514A (en) Multilayer capacitor
JPH04333295A (en) Electrostrictive effect element and manufacture thereof
JP4479747B2 (en) Multilayer capacitor
JP2014007253A (en) Stacked piezoelectric element
JP2006351602A (en) Multilayer piezoelectric actuator device
JPH04159785A (en) Electrostrictive effect element
JP3440883B2 (en) Chip type negative characteristic thermistor
US7323807B2 (en) Multilayer electronic component
US6140749A (en) Monolithic piezoelectric body and piezoelectric actuator
JP2003133172A (en) Snubber capacitor
JP2645628B2 (en) Multilayer type electrostrictive / piezoelectric element
JP6076051B2 (en) Piezoelectric element
JP2004296772A (en) Electrically driving method of stacked piezo-electric element
JP2001025268A (en) Laminated piezoelectric actuator
JP3334651B2 (en) Piezoelectric transformer and method of manufacturing the same
JP2748830B2 (en) Multilayer electrostrictive effect element
JP2000261055A (en) Piezoelectric actuator
JPH0354876A (en) Laminate type displacement device
JP6053467B2 (en) Method for manufacturing piezoelectric element
JP2001044059A (en) Multilayer ceramic capacitor
JP2004158494A (en) Multilayer piezoelectric actuator and its manufacturing method
JPH0256822B2 (en)
JP2012529180A (en) Piezoelectric multilayer actuator assembly