JPH05335600A - Diode element - Google Patents

Diode element

Info

Publication number
JPH05335600A
JPH05335600A JP16177392A JP16177392A JPH05335600A JP H05335600 A JPH05335600 A JP H05335600A JP 16177392 A JP16177392 A JP 16177392A JP 16177392 A JP16177392 A JP 16177392A JP H05335600 A JPH05335600 A JP H05335600A
Authority
JP
Japan
Prior art keywords
layer
oxide film
nickel
conductivity type
diode element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16177392A
Other languages
Japanese (ja)
Inventor
Shigenari Endo
重成 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16177392A priority Critical patent/JPH05335600A/en
Publication of JPH05335600A publication Critical patent/JPH05335600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To avoid separation of metal of a diode element to improve reliability by diffusing impurity layer of the one conductivity type to the one surface of a semiconductor substrate and then diffusing impurity layer of the opposed conductivity type and semiconductor growth layer of the opposed conductivity type on the other surface. CONSTITUTION:After an N type substrate semiconductor substrate 1 is heated and then a thermally oxide film 2 is formed on the rear surface BCl3 is diffused to the front surface to form a P<+> layer 3 and a thermally oxide film 2 is then formed thereon. Next, after the thermally oxide film 2 is removed from the rear surface, POCl3 is diffused to form an N<+> layer 4 in high concentration. Next, after a As-doped epiaxial layer 5 is grown on the N<+> layer 4, the oxide film is removed entirely and a nickel plated layer is formed to both front rear surfaces and sintering is carried out to form a nickel silicide layer 6. After unwanted nickel is removed, the nickel plated layer 7 is formed again and a gold plated layer 8 is then formed thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダイオード素子に関し、
特に表裏面に形成される電極としてのメタルメッキ層の
剥がれを防止して信頼性を改善したダイオード素子に関
する。
FIELD OF THE INVENTION The present invention relates to a diode element,
In particular, the present invention relates to a diode element in which peeling of metal plating layers as electrodes formed on the front and back surfaces is prevented and reliability is improved.

【0002】[0002]

【従来の技術】従来、この種のダイオードは、図3にそ
の製造工程の断面図を示すように、先ず図3(a)のよ
うに、N- 型基板1の表裏面に熱酸化法により1μm程
度酸化膜を成長した後、裏面の酸化膜2のみを残し表面
を除去する。続いて、表面より1250℃程度で50Hr程度の
BCl3 を拡散し、厚さ40μm〜50μmのP+ 層3を形
成する。更に、図3(b)のように、再び熱酸化膜を形
成し、表面の酸化膜2のみを残して裏面全面を除去し、
その上で裏面に1250℃程度で5Hr程度のPOCl3 を拡
散し、厚さ20μm〜25μm程度のN+ 層4を形成する。
Conventionally, this type of diode, as shown in the sectional view of the manufacturing process in FIG. 3, first, as shown in FIG. 3 (a), N - on the front and back surfaces of the mold substrate 1 by thermal oxidation After the oxide film is grown to about 1 μm, only the oxide film 2 on the back surface is left and the front surface is removed. Subsequently, BCl 3 of about 50 Hr is diffused from the surface at about 1250 ° C. to form a P + layer 3 having a thickness of 40 μm to 50 μm. Further, as shown in FIG. 3B, a thermal oxide film is formed again, and the entire back surface is removed leaving only the oxide film 2 on the front surface.
Then, POCl 3 of about 5 Hr is diffused on the back surface at about 1250 ° C. to form an N + layer 4 having a thickness of about 20 μm to 25 μm.

【0003】次に、図3(c)のように、酸化膜を全面
除去し、無電解メッキ法によりニッケルメッキを表,裏
面全体に同時に着け、その後にシンタリングを行ってニ
ッケルシリサイド層6を形成する。その後、余分なニッ
ケル層をエッチングにより除去した後、再び表,裏全面
にニッケルメッキ層7を着け、さらに電解メッキ法によ
り金メッキ層8を形成する。しかる後、ワイヤソウによ
り所望の大きさの個片に切断し、弗酸,硝酸の混合液に
より切断、側面をエッチングし、所定のパッケージに搭
載する。
Next, as shown in FIG. 3C, the oxide film is entirely removed, and nickel plating is simultaneously applied to the entire front and back surfaces by electroless plating, and thereafter sintering is performed to form the nickel silicide layer 6. Form. Then, after removing the excess nickel layer by etching, the nickel plating layer 7 is applied again on the front and back surfaces, and the gold plating layer 8 is further formed by the electrolytic plating method. After that, it is cut into pieces of a desired size with a wire saw, cut with a mixed solution of hydrofluoric acid and nitric acid, the side surfaces are etched, and then mounted in a predetermined package.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のダイオ
ード素子では、裏面N+ 層4を構成するPOCl3 の高
濃度層と、ニッケルメッキ層7が化学反応し、一般的に
黒化現象と呼ばれる物理的な変化を起こす。この変化は
時間の経過とともに一層激しくなり、シリコン表面とニ
ッケル面からメタル剥がれを発生させ、電気的特性の劣
化を生じるという問題がある。本発明の目的は、ダイオ
ード素子のメタル剥がれを回避して、信頼性を高めたダ
イオード素子を提供することにある。
In the conventional diode element described above, the high concentration layer of POCl 3 forming the back surface N + layer 4 and the nickel plating layer 7 chemically react with each other, which is generally called a blackening phenomenon. Cause a physical change. This change becomes more severe with the passage of time, and there is a problem that metal peeling occurs from the silicon surface and the nickel surface, resulting in deterioration of electrical characteristics. An object of the present invention is to provide a diode element with improved reliability by avoiding metal peeling of the diode element.

【0005】[0005]

【課題を解決するための手段】本発明のダイオード素子
は、半導体基板の一方の面に拡散形成された一導電型の
不純物層と、他方の面に拡散形成された逆導電型の不純
物層と、この他方の面に形成された逆導電型の半導体成
長層とで構成される。例えば、N型半導体基板の一方の
面にはBCl3 の不純物層を形成し、他方の面にはPO
Cl3 の不純物層を有し、半導体成長層はAsが高濃度
にドープされたエピタキシャル成長層或いはポリシリコ
ン層で構成する。
A diode element according to the present invention comprises an impurity layer of one conductivity type diffused and formed on one surface of a semiconductor substrate, and an impurity layer of opposite conductivity type diffused and formed on the other surface. , And a semiconductor growth layer of the opposite conductivity type formed on the other surface. For example, a BCl 3 impurity layer is formed on one surface of an N-type semiconductor substrate, and PO is formed on the other surface.
The semiconductor growth layer has an impurity layer of Cl 3 and is composed of an epitaxial growth layer or a polysilicon layer heavily doped with As.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第1実施例を製造工程順に示す断面
図である。先ず、図1(a)のように、N型基板半導体
基板1を1000℃程度の温度で加熱し、1μm程度の熱酸
化膜2を表,裏全面に形成する。そして裏面の酸化膜2
を残して表面の熱酸化膜を全面除去し、この表面から12
50℃程度で50HrぐらいのBCl3 拡散を行い厚さ40μm
〜50μmぐらいのP+ 層3を形成する。次いで、図1
(b)のように、再び熱酸化法により表,裏全面に酸化
膜2を形成し、裏面の酸化膜を全面除去した後1250℃程
度で5Hr程度のPOCl3 拡散を行い、厚さ20μm〜25
μmの高濃度のN+ 層4を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention in the order of manufacturing steps. First, as shown in FIG. 1A, the N-type substrate semiconductor substrate 1 is heated at a temperature of about 1000 ° C. to form a thermal oxide film 2 of about 1 μm on the entire front and back surfaces. And the oxide film 2 on the back surface
The thermal oxide film on the surface is completely removed, leaving 12
BCl 3 is diffused for about 50 hours at about 50 ℃ and the thickness is 40μm.
A P + layer 3 of about 50 μm is formed. Then, FIG.
As shown in (b), the oxide film 2 is again formed on the entire front and back surfaces by the thermal oxidation method, the oxide film on the back surface is completely removed, and then POCl 3 is diffused at about 1250 ° C. for about 5 hours to obtain a thickness of 20 μm. twenty five
A high concentration N + layer 4 of μm is formed.

【0007】更に、図1(c)のように、このN+ 層4
上にAsのドープされた1×1019cm/□以上の濃度のエ
ピタキシャル層5を1μm〜2μm程度の厚さで成長す
る。その後、図1(d)のように、酸化膜を全面除去
し、無電解メッキ法によりニッケルメッキ層を表,裏全
面に形成し、かつシンタリングを行いニッケルシリサイ
ド層6を形成する。シリサイド層形成後は余分なニッケ
ルをエッチングにより除去し再び表・裏全面に1μm〜
2μm程度のニッケル層7を形成する。ニッケル層7の
形成後は電解メッキ法により2μm〜5μm程度の金メ
ッキ層8を形成する。
Further, as shown in FIG. 1C, this N + layer 4
An epitaxial layer 5 with a concentration of 1 × 10 19 cm / □ or more doped with As is grown thereon to a thickness of about 1 μm to 2 μm. Thereafter, as shown in FIG. 1D, the oxide film is entirely removed, a nickel plating layer is formed on the entire front and back surfaces by electroless plating, and sintering is performed to form a nickel silicide layer 6. After the silicide layer is formed, excess nickel is removed by etching and the entire front and back surfaces are 1 μm-
A nickel layer 7 having a thickness of about 2 μm is formed. After the nickel layer 7 is formed, the gold plating layer 8 having a thickness of about 2 μm to 5 μm is formed by electrolytic plating.

【0008】しかる後、ワイヤソウにより所望の大きさ
の個片に切断した後に、弗酸,硝酸の混合液にて10秒〜
15秒間エッチングし、流水中で洗浄した後アルコール置
換を行う。このようにして形成されたダイオード素子
は、裏面に設けたPOCl3 拡散のN+ 層4上に、高濃
度にドープされたAsによるエピタキシャル層5を有し
ていることにより、従来のような黒化現象の発生もな
く、黒化現象部からのメタル剥がれも防止され、良好な
電気的特性と、安定した歩留が維持されるという利点が
ある。
Then, after cutting into pieces of a desired size with a wire saw, a mixed solution of hydrofluoric acid and nitric acid is used for 10 seconds to
It is etched for 15 seconds, washed in running water, and then replaced with alcohol. The diode element formed in this manner has the epitaxial layer 5 of As highly doped on the N + layer 4 of POCl 3 diffusion provided on the back surface. There is an advantage that the metalization phenomenon is not generated, metal peeling from the blackening phenomenon portion is prevented, and good electrical characteristics and stable yield are maintained.

【0009】次に本発明による第2の実施例を図2の製
造工程断面図を用いて説明する。本実施例では図2
(a)及び(b)に示すように、裏面にPOCl3 拡散
のN+ 層4を形成する迄は第1実施例と同様に行うが、
その後に図2(c)のように、裏面にAsをドープした
ガラス層を被着させた上で、1000℃程度の温度で2μm
〜3μmになる迄、As押込を行いAs拡散層9を形成
する。以後、第1の実施例と同様に行ない、図2(d)
のダイオード素子を得る。この実施例においても、第1
実施例と同様の効果を得ることができるが、更に作業工
程が短縮でき、製造原価が低コストでできるという利点
がある。尚、第1実施例のエピタキシャル層、第2実施
例のAs押込層はポリシリコンの薄膜層で形成してもよ
い。
Next, a second embodiment according to the present invention will be described with reference to manufacturing process sectional views of FIGS. In this embodiment, FIG.
As shown in (a) and (b), the same procedure as in the first embodiment is performed until the N + layer 4 of POCl 3 diffusion is formed on the back surface.
After that, as shown in FIG. 2 (c), a glass layer doped with As is deposited on the back surface, and 2 μm at a temperature of about 1000 ° C.
As is pushed into the As diffusion layer 9 until the thickness becomes 3 μm. After that, the same procedure as in the first embodiment is performed, and as shown in FIG.
To obtain the diode element. Also in this embodiment, the first
Although the same effect as the embodiment can be obtained, there are advantages that the working process can be further shortened and the manufacturing cost can be reduced. The epitaxial layer of the first embodiment and the As push layer of the second embodiment may be formed of polysilicon thin film layers.

【0010】[0010]

【発明の効果】以上説明したように本発明は、ダイオー
ド素子の裏面にPOCl3 を拡散して形成したN+ 層上
に、高濃度にドープされたAsのエピタキシャル成長層
を設けているので、N+ 層をメッキ層が直接反応して生
じる従来のような黒化現象の発生もなく、黒化現象部か
らのメタル剥がれも防止され、良好な電気的特性と、安
定した歩留が維持されるという利点がある。又、エピタ
キシャル層に代えてAs拡散層を形成することで、作業
工程が短縮され、製造原価が低コストでできるという利
点がある。
As described above, according to the present invention, since the epitaxially grown layer of As highly doped is provided on the N + layer formed by diffusing POCl 3 on the back surface of the diode element, There is no blackening phenomenon that occurs when the + layer directly reacts with the plating layer, metal peeling from the blackening portion is prevented, and good electrical characteristics and stable yield are maintained. There is an advantage that. Further, by forming the As diffusion layer instead of the epitaxial layer, there is an advantage that the working process can be shortened and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のダイオード素子の第1実施例を製造工
程順に示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a diode element of the present invention in the order of manufacturing steps.

【図2】本発明のダイオード素子の第2実施例の製造工
程順に示す断面図である。
FIG. 2 is a cross-sectional view showing a second embodiment of the diode element of the present invention in the order of manufacturing steps.

【図3】従来のダイオード素子を製造工程順に示す断面
図である。
FIG. 3 is a cross-sectional view showing a conventional diode element in the order of manufacturing steps.

【符号の説明】[Explanation of symbols]

1 N型半導体基板 3 P+ 層 4 N+ 層 5 As高濃度エピタキシャル層 6 ニッケルシリサイド層 7 ニッケルメッキ層 8 金メッキ層 9 As拡散層1 N-type semiconductor substrate 3 P + layer 4 N + layer 5 As high concentration epitaxial layer 6 Nickel silicide layer 7 Nickel plating layer 8 Gold plating layer 9 As diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一方の面に拡散形成された
一導電型の不純物層と、他方の面に拡散形成された逆導
電型の不純物層と、この他方の面に形成された逆導電型
の半導体成長層とを備えるダイオード素子。
1. A one conductivity type impurity layer diffused and formed on one surface of a semiconductor substrate, an opposite conductivity type impurity layer diffused and formed on the other surface, and an opposite conductivity type formed on the other surface. Element having a semiconductor growth layer of the type.
【請求項2】 半導体基板の一方の面にはBCl3 の不
純物層を形成し、他方の面にはPOCl3 の不純物層を
有し、半導体成長層はAsが高濃度にドープされたエピ
タキシャル成長層或いはポリシリコン層である請求項1
のダイオード素子。
2. An epitaxial growth layer in which an impurity layer of BCl 3 is formed on one surface of a semiconductor substrate and a POCl 3 impurity layer is formed on the other surface, and the semiconductor growth layer is heavily doped with As. Alternatively, it is a polysilicon layer.
Diode element.
JP16177392A 1992-05-29 1992-05-29 Diode element Pending JPH05335600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16177392A JPH05335600A (en) 1992-05-29 1992-05-29 Diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16177392A JPH05335600A (en) 1992-05-29 1992-05-29 Diode element

Publications (1)

Publication Number Publication Date
JPH05335600A true JPH05335600A (en) 1993-12-17

Family

ID=15741633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16177392A Pending JPH05335600A (en) 1992-05-29 1992-05-29 Diode element

Country Status (1)

Country Link
JP (1) JPH05335600A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070288A (en) * 1996-07-23 1998-03-10 Zowie Technol Corp Silicon semiconductor diode chip having full-open p-n junction subjected to passivation with glass, and fabrication thereof
US7368380B2 (en) 2003-06-09 2008-05-06 Fuji Electric Device Technology Co., Ltd. Method of manufacturing semiconductor device
US7800204B2 (en) 2008-07-31 2010-09-21 Mitsubishi Electric Corporation Semiconductor device and method of fabricating the same
US9035434B2 (en) 2009-06-04 2015-05-19 Mitsubishi Electric Corporation Semiconductor device having first and second portions with opposite conductivity type which contact an electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070288A (en) * 1996-07-23 1998-03-10 Zowie Technol Corp Silicon semiconductor diode chip having full-open p-n junction subjected to passivation with glass, and fabrication thereof
US7368380B2 (en) 2003-06-09 2008-05-06 Fuji Electric Device Technology Co., Ltd. Method of manufacturing semiconductor device
US7800204B2 (en) 2008-07-31 2010-09-21 Mitsubishi Electric Corporation Semiconductor device and method of fabricating the same
US8420496B2 (en) 2008-07-31 2013-04-16 Mitsubishi Electric Corporation Semiconductor device and method of fabricating the same
US9035434B2 (en) 2009-06-04 2015-05-19 Mitsubishi Electric Corporation Semiconductor device having first and second portions with opposite conductivity type which contact an electrode
US9786796B2 (en) 2009-06-04 2017-10-10 Mitsubishi Electric Corporation Semiconductor device having first and second layers with opposite conductivity types
US10749043B2 (en) 2009-06-04 2020-08-18 Mitsubishi Electric Corporation Semiconductor device including a trench structure

Similar Documents

Publication Publication Date Title
JPS60201666A (en) Semiconductor device
JPS63193562A (en) Manufacture of bipolar transistor
JP3127455B2 (en) Semiconductor device manufacturing method
JPS5824007B2 (en) Manufacturing method of semiconductor device
JPH05335600A (en) Diode element
JPS6024074A (en) Gallium arsenide semiconductor device and method of producing same
US3486087A (en) Small capacity semiconductor diode
JPH0645340A (en) Semiconductor device and its manufacture
EP0303390B1 (en) Manufacture of diodes
JP3786809B2 (en) Solar cell manufacturing method
KR100600850B1 (en) Thin film silicon solar cell and method for fabricating the same
JP3219969B2 (en) Light emitting diode manufacturing method
JPH06112527A (en) Silicon carbide light emitting diode device and its manufacture
JPS6156617B2 (en)
KR960011182B1 (en) Bipolar device fabrication process
JP2553201B2 (en) Manufacturing method of light receiving element
JPS5938730B2 (en) Manufacturing method of semiconductor device
JPS6048097B2 (en) Manufacturing method of semiconductor device
JPS5877256A (en) Electrode structure of semiconductor device
JPH03135030A (en) Semiconductor device and manufacture thereof
GB2033149A (en) Semiconductor device
JPS58223375A (en) Manufacture of semiconductor device
JPS613470A (en) Semiconductor device
JPS6213033A (en) Manufacture of semiconductor device
JPH06232181A (en) Manufacture of schottky junction type field-effect transistor