JPH05335337A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPH05335337A
JPH05335337A JP16207492A JP16207492A JPH05335337A JP H05335337 A JPH05335337 A JP H05335337A JP 16207492 A JP16207492 A JP 16207492A JP 16207492 A JP16207492 A JP 16207492A JP H05335337 A JPH05335337 A JP H05335337A
Authority
JP
Japan
Prior art keywords
thin film
film transistor
semiconductor thin
glass substrate
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16207492A
Other languages
Japanese (ja)
Inventor
Masamune Kusunoki
雅統 楠
Koji Mori
孝二 森
Nobuaki Kondo
信昭 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16207492A priority Critical patent/JPH05335337A/en
Publication of JPH05335337A publication Critical patent/JPH05335337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To provide a simple process for a high-quality thin-film transistor in which metallic contaminant is eliminated at the interface between insulating layers and semiconductor layers. CONSTITUTION:A polycrystalline silicon film is formed on a glass substrate in an annealing chamber 1. Immediately before a gate insulator of silicon oxide is formed on the polycrystalline silicon film, the glass substrate is transferred to a cleaning chamber 2, where metallic impurities on the polycrystalline silicon film are removed in the form of chloride by applying ArF excimer laser in a high-purity chlorine gas atmosphere from a laser source 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁基板上に薄膜トラ
ンジスタを形成する方法に関し、より詳しくは、信頼性
の高い高性能の薄膜トランジスタを製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a thin film transistor on an insulating substrate, and more particularly to a method of manufacturing a highly reliable and high performance thin film transistor.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイの大面積化が進
んでおり、その駆動方式もアクティブマトリックス方式
に移りつつある。大面積化のためにはディスプレイ基板
は安価なガラス基板が好ましく、また、アクティブマト
リックス方式では基板上に多数の薄膜トランジスタを形
成しなければならない。
2. Description of the Related Art In recent years, the area of liquid crystal displays has been increasing, and the drive system thereof is also shifting to the active matrix system. An inexpensive glass substrate is preferable as the display substrate for increasing the area, and a large number of thin film transistors must be formed on the substrate in the active matrix system.

【0003】そして、特開昭62−119974号公報
は、ガラス基板にダメージのないプロセス温度で良好な
特性をもつ薄膜トランジスタを形成するために、ゲート
絶縁膜をより低温で形成可能なCVD法、プラズマCV
D法、光CVD法、プラズマ陽極酸化法などで形成した
後、トランジスタ領域の全部、又は一部にレーザ光を照
射して、下地ガラス基板等の前記基板を過熱変形させる
ことなしに、活性層(多結晶シリコン)と絶縁膜との界
面の特性を向上させようとしている。
Japanese Unexamined Patent Publication (Kokai) No. 62-119974 discloses a CVD method and a plasma method in which a gate insulating film can be formed at a lower temperature in order to form a thin film transistor having good characteristics at a process temperature without damaging a glass substrate. CV
After being formed by the D method, the photo CVD method, the plasma anodic oxidation method, or the like, the active layer is irradiated without irradiating the whole or a part of the transistor region with a laser beam without overheating the substrate such as a base glass substrate. Attempts to improve the characteristics of the interface between (polycrystalline silicon) and the insulating film.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の従来技
術では、レーザ光の照射をゲート絶縁膜形成後に行うも
のであり、絶縁膜と半導体薄膜との界面には薄膜トラン
ジスタの電気特性や信頼性上問題となるアルカリ金属や
重金属などの物質が存在している場合がある。また、絶
縁膜形成前にウェットクリーニングなどで表面クリーニ
ングを行うとしても、基板面積大型化による使用薬品量
の増大、廃液処理の困難性、工程の自動化への要請か
ら、溶液を使うウェットクリーニングには不便な点があ
る。
However, in the above-mentioned prior art, the laser light irradiation is performed after the gate insulating film is formed, and the interface between the insulating film and the semiconductor thin film has a problem in electrical characteristics and reliability of the thin film transistor. There may be a problematic substance such as an alkali metal or heavy metal. Even if surface cleaning is performed by wet cleaning before forming an insulating film, wet cleaning using a solution is not recommended due to an increase in the amount of chemicals used due to an increase in the substrate area, the difficulty of waste liquid treatment, and the demand for automation of the process. There are inconveniences.

【0005】ウェットクリーニングに代る技術として、
ドライクリーニング法がある。このドライクリーニング
は、これまではプラズマやイオン照射を利用して行って
きたが、制御性は十分といえず、さらに、損傷や二次汚
染の問題がある。
As an alternative technique to wet cleaning,
There is a dry cleaning method. Up to now, this dry cleaning has been performed by using plasma or ion irradiation, but it cannot be said that the controllability is sufficient, and furthermore, there are problems of damage and secondary contamination.

【0006】本発明は、上記の点を解決しようとするも
ので、その目的は絶縁膜と半導体薄膜との界面から金属
や重金属などの物質を除去し、信頼性の高い薄膜トラン
ジスタ特性を有する薄膜トランジスタを得ることができ
る薄膜トランジスタの製造方法を提供することにある。
The present invention is intended to solve the above problems, and an object thereof is to remove a substance such as a metal or a heavy metal from an interface between an insulating film and a semiconductor thin film, and to provide a thin film transistor having highly reliable thin film transistor characteristics. It is to provide a method for manufacturing a thin film transistor that can be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は、基板ダメージ
のないクリーニング法である紫外線照射による光クリー
ニングを絶縁膜形成直前に半導体薄膜表面に行なうこと
により上記の目的を達成し得ることを見出したことに基
づきなされたものである。
The present invention has found that the above object can be achieved by performing optical cleaning by ultraviolet irradiation, which is a cleaning method without substrate damage, on the surface of a semiconductor thin film immediately before forming an insulating film. It was made based on that.

【0008】すなわち、本発明の請求項1に記載の発明
は、少なくとも表面が絶縁物質である基板上に形成され
た半導体薄膜を活性層として有する薄膜トランジスタを
形成するにあたり、前記半導体薄膜上にゲート絶縁膜を
成膜する直前に、光エネルギーを用いて、前記半導体薄
膜上の不純物を除去することを特徴とする。
That is, in the invention described in claim 1 of the present invention, in forming a thin film transistor having a semiconductor thin film formed on a substrate of which at least the surface is an insulating material as an active layer, a gate insulating film is formed on the semiconductor thin film. Immediately before forming the film, light energy is used to remove impurities on the semiconductor thin film.

【0009】また、請求項2に記載の発明は、半導体薄
膜上の不純物が金属不純物である場合において、この金
属不純物を除去するための雰囲気ガスとしてハロゲンガ
スを使用することを特徴としている。
Further, the invention according to claim 2 is characterized in that, when the impurities on the semiconductor thin film are metal impurities, a halogen gas is used as an atmosphere gas for removing the metal impurities.

【0010】さらに、請求項3に記載の発明は、半導体
薄膜上の不純物を除去するための光エネルギーとして、
波長が400nm以下の紫外線を使用することを特徴と
する。
Further, in the invention described in claim 3, as light energy for removing impurities on the semiconductor thin film,
It is characterized by using ultraviolet rays having a wavelength of 400 nm or less.

【0011】薄膜トランジスタ(TFT)特性の電気的
特性や信頼性上問題となる金属微粒子には、Fe,C
u,Ni,Cr,Mg,Al,Na,Ca等がある。こ
れらを除去するために光クリーニングをする場合には、
雰囲気ガスとしてハロゲンガスが適しており、特に、塩
素(Cl2 )ガスが好ましい。塩素は、400nm以下
の波長の光照射によって、[化1]のように光解離す
る。
Fe, C may be used as metal fine particles which are problematic in terms of electrical characteristics and reliability of thin film transistor (TFT) characteristics.
u, Ni, Cr, Mg, Al, Na, Ca and the like. When performing light cleaning to remove these,
A halogen gas is suitable as the atmosphere gas, and chlorine (Cl 2 ) gas is particularly preferable. Chlorine is photodissociated as shown in [Chemical Formula 1] by irradiation with light having a wavelength of 400 nm or less.

【0012】[0012]

【化1】 [Chemical 1]

【0013】光源には光圧水銀ランプやArF,KrF
などのエキシマレーザが適しており、生産性向上のため
には、高出力のエキシマレーザが適している。上記の金
属微粒子は光励起した塩素ラジカルと反応して揮発性の
塩化物として表面から除去される。
The light source is a light pressure mercury lamp, ArF or KrF.
Excimer laser is suitable, and a high-output excimer laser is suitable for improving productivity. The above metal fine particles react with photoexcited chlorine radicals and are removed from the surface as volatile chlorides.

【0014】よって、不純物除去後にゲート絶縁膜を形
成し、しかる後に紫外線レーザによって熱処理を行え
ば、熱処理時の不純物拡散の割合も小さく、より安定な
信頼性の高い薄膜トランジスタを製造することが可能と
なる。
Therefore, if the gate insulating film is formed after the impurities are removed and then the heat treatment is performed by the ultraviolet laser, the ratio of impurity diffusion during the heat treatment is small, and a more stable and highly reliable thin film transistor can be manufactured. Become.

【0015】[0015]

【作用】半導体薄膜に、例えばハロゲンガス雰囲気下で
光エネルギーを照射すれば、この半導体薄膜上のFe,
Cu等の不純物は揮発性のハロゲン化物として半導体薄
膜表面から除去される。
When the semiconductor thin film is irradiated with light energy in, for example, a halogen gas atmosphere, Fe on the semiconductor thin film,
Impurities such as Cu are removed from the surface of the semiconductor thin film as volatile halides.

【0016】[0016]

【実施例】次に本発明を、実施例によりさらに詳細に説
明する。 実施例1 薄膜トランジスタ製造装置の概略構造は図1,2に示す
とおりで、この装置は、サンプルすなわちTFT素子9
が順次処理されるアニール室1、クリーニング室2、C
VD室3及びレーザ光照射装置4から構成されている。
前記クリーニング室2には高純度塩素ガスのボンベ7a
が、CVD室3にはシリコン酸化膜形成用原料のボンベ
7bがそれぞれ連絡配備され、アニール室1乃至CVD
室3は排気系8に連絡されている。また、前記レーザ光
照射装置4はレーザ4a,ミラー5及び光学系6を備え
て構成されている。10はヒータである。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 A schematic structure of a thin film transistor manufacturing apparatus is as shown in FIGS.
Annealing chamber 1, cleaning chamber 2, C
It is composed of a VD chamber 3 and a laser beam irradiation device 4.
The cleaning chamber 2 has a cylinder 7a of high-purity chlorine gas.
However, the CVD chamber 3 is provided with cylinders 7b of silicon oxide film forming material, and the annealing chambers 1 to CVD are connected to each other.
The chamber 3 is connected to the exhaust system 8. Further, the laser light irradiation device 4 includes a laser 4a, a mirror 5 and an optical system 6. 10 is a heater.

【0017】上記装置を使用し、以下の工程により薄膜
トランジスタを製造した〔図3(a)〜(f)を参
照〕。 (1)まず有機洗浄を行ったガラス基板11上にプラズ
マCVD法により非晶質シリコン12(a−Si:H)
の膜を膜厚1000Åに堆積させた。堆積条件は、基板
温度250℃、真空度1×10-5torrである〔図3
(a)〕。 (2)次に、ガラス基板11をアニール室1にセット
し、基板温度500℃で1時間加熱し脱水素を行った
後、基板温度は室温、真空度は1×10-5torrの状
態でArFエキシマレーザ14(波長193nm、半値
幅10nsec)によって350mJ/cm2 のレーザ
パワーを1ショット照射し、多結晶シリコン13を得た
〔図3(b)〕。 (3)次に、ガラス基板11をクリーニング室2へ移動
させボンベ7aからの99.999%の塩素ガス15中
にて前述のArFエキシマレーザ14を照射して多結晶
シリコン13表面の光クリーニングを行った。光クリー
ニングの条件は、チャンバー内圧が20torr、ガス
流量が50sccm、基板温度150℃でArFレーザ
14を垂直照射した。レーザパワーは300mJ/cm
2 で、ショット数は20ショットである〔図3
(c)〕。 (4)次にガラス基板11をCVD室3へ移動させ、常
圧CVD法によりゲート絶縁膜となるシリコン酸化物1
6を450℃で膜厚1500Åに堆積させた〔図3
(d)〕。 (5)ガラス基板11を再びアニール室1へ移動させ、
基板温度は室温、真空度は1×10-5torrの状態で
前述のArFエキシマレーザ14によりガラス基板11
を照射、熱処理した。照射条件は350mJ/cm2
20ショットである〔図3(e)〕。 (6)次に公知技術によってソース/ドレインのコンタ
クト形成、不純物混入、不純物活性化、ゲート電極17
及びソース/ドレイン電極18の形成、層間絶縁膜形成
を経て、MOS TFT素子を形成した〔図3
(f)〕。 その結果、良好なTFT特性と高い信頼性を得ることが
できた。
Using the above apparatus, a thin film transistor was manufactured by the following steps [see FIGS. 3 (a) to 3 (f)]. (1) First, amorphous silicon 12 (a-Si: H) is formed on a glass substrate 11 that has been organically cleaned by a plasma CVD method.
Was deposited to a film thickness of 1000Å. The deposition conditions are a substrate temperature of 250 ° C. and a vacuum degree of 1 × 10 −5 torr [FIG.
(A)]. (2) Next, the glass substrate 11 is set in the annealing chamber 1 and heated at a substrate temperature of 500 ° C. for 1 hour to carry out dehydrogenation. Then, the substrate temperature is room temperature and the degree of vacuum is 1 × 10 −5 torr. The ArF excimer laser 14 (wavelength 193 nm, half-value width 10 nsec) was irradiated with a laser power of 350 mJ / cm 2 for one shot to obtain polycrystalline silicon 13 [FIG. 3 (b)]. (3) Next, the glass substrate 11 is moved to the cleaning chamber 2, and the ArF excimer laser 14 is irradiated in the 99.999% chlorine gas 15 from the cylinder 7a to perform optical cleaning of the surface of the polycrystalline silicon 13. went. The optical cleaning conditions were as follows: the chamber internal pressure was 20 torr, the gas flow rate was 50 sccm, and the substrate temperature was 150 ° C. and the ArF laser 14 was vertically irradiated. Laser power is 300 mJ / cm
2 , the number of shots is 20 [Fig. 3
(C)]. (4) Next, the glass substrate 11 is moved to the CVD chamber 3, and the silicon oxide 1 to be the gate insulating film is formed by the atmospheric pressure CVD method.
6 was deposited at a film thickness of 1500Å at 450 ° C [Fig. 3
(D)]. (5) Move the glass substrate 11 to the annealing chamber 1 again,
The substrate temperature is room temperature and the degree of vacuum is 1 × 10 −5 torr.
Was irradiated and heat-treated. The irradiation condition is 350 mJ / cm 2 ,
20 shots (FIG. 3 (e)). (6) Next, source / drain contact formation, impurity mixing, impurity activation, and gate electrode 17 are performed by known techniques.
After forming the source / drain electrodes 18 and the interlayer insulating film, a MOS TFT element was formed [Fig.
(F)]. As a result, good TFT characteristics and high reliability could be obtained.

【0018】[0018]

【発明の効果】以上の説明で明らかなとおり、請求項1
に記載の薄膜トランジスタの製造方法では、ゲート絶縁
膜を形成する直前に光エネルギーを用いて半導体薄膜上
の不純物を除去することにより、界面特性改善のための
熱処理工程で界面に存在する不純物拡散によって引き起
こされるTFT特性の不安定性と信頼性の低下を防止す
ることができる。また、光プロセスによるものなので、
半導体薄膜へのダメージがなく界面への悪影響もない。
請求項2に記載の薄膜トランジスタの製造方法では、活
性の強いハロゲンガスを使用することにより、TFT特
性の不安定化と信頼性低下の原因物質である金属不純物
を効率良く除去することができる。請求項3に記載の薄
膜トランジスタの製造方法では、波長が400nm以下
の紫外線を使用することにより、ハロゲンガスが光励起
され、金属不純物を確実に除去することができる。
As is apparent from the above description, claim 1
In the method of manufacturing a thin film transistor described in (1), the impurities on the semiconductor thin film are removed by using light energy immediately before forming the gate insulating film, so that it is caused by the diffusion of impurities existing at the interface in the heat treatment step for improving the interface characteristics. It is possible to prevent the instability of the TFT characteristics and the deterioration of the reliability. Also, because of the optical process,
There is no damage to the semiconductor thin film and no adverse effect on the interface.
In the method of manufacturing a thin film transistor according to the second aspect of the present invention, by using a halogen gas having a strong activity, it is possible to efficiently remove the metal impurities that are the causative substance of destabilizing the TFT characteristics and lowering the reliability. In the method of manufacturing a thin film transistor according to the third aspect, by using ultraviolet rays having a wavelength of 400 nm or less, the halogen gas is photoexcited and the metal impurities can be reliably removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する薄膜トランジスタ製造装置の
概略説明図である。
FIG. 1 is a schematic explanatory diagram of a thin film transistor manufacturing apparatus used in the present invention.

【図2】図1装置におけるガラス基板の流れを示す説明
図である。
FIG. 2 is an explanatory diagram showing a flow of a glass substrate in the apparatus shown in FIG.

【図3】本発明の実施例を示す薄膜トランジスタ製造工
程の説明図である。
FIG. 3 is an explanatory view of a thin film transistor manufacturing process showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 アニール室 2 クリーニング室 3 CVD室 4 レーザ光照射装置 4a レーザ 5 ミラー 6 光学系 7a,7b ボンベ 8 排気系 9 TFT素子(サンプル) 10 ヒータ 11 ガラス基板 12 非晶質シリコン 13 多結晶シリコン 14 レーザ 15 塩素ガス 16 シリコン酸化物(ゲート絶縁膜) 17 ゲート電極 18 ソース/ドレイン電極 1 Annealing Room 2 Cleaning Room 3 CVD Room 4 Laser Light Irradiation Device 4a Laser 5 Mirror 6 Optical System 7a, 7b Cylinder 8 Exhaust System 9 TFT Element (Sample) 10 Heater 11 Glass Substrate 12 Amorphous Silicon 13 Polycrystalline Silicon 14 Laser 15 chlorine gas 16 silicon oxide (gate insulating film) 17 gate electrode 18 source / drain electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面が絶縁物質である基板上
に形成された半導体薄膜を活性層として有する薄膜トラ
ンジスタを形成するにあたり、前記半導体薄膜上にゲー
ト絶縁膜を成膜する直前に、光エネルギーを用いて、前
記半導体薄膜上の不純物を除去することを特徴とする薄
膜トランジスタの製造方法。
1. When forming a thin film transistor having a semiconductor thin film as an active layer, which is formed on a substrate having at least a surface made of an insulating material, light energy is used immediately before forming a gate insulating film on the semiconductor thin film. And removing impurities on the semiconductor thin film.
【請求項2】 前記半導体薄膜上の金属不純物を除去す
るための雰囲気ガスとしてハロゲンガスを使用すること
を特徴とする請求項1に記載の薄膜トランジスタの製造
方法。
2. The method of manufacturing a thin film transistor according to claim 1, wherein a halogen gas is used as an atmosphere gas for removing metal impurities on the semiconductor thin film.
【請求項3】 前記半導体薄膜上の不純物を除去するた
めの光エネルギーとして、波長が400nm以下の紫外
線を使用することを特徴とする請求項1又は2に記載の
薄膜トランジスタの製造方法。
3. The method of manufacturing a thin film transistor according to claim 1, wherein ultraviolet light having a wavelength of 400 nm or less is used as light energy for removing impurities on the semiconductor thin film.
JP16207492A 1992-05-28 1992-05-28 Manufacture of thin-film transistor Pending JPH05335337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16207492A JPH05335337A (en) 1992-05-28 1992-05-28 Manufacture of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16207492A JPH05335337A (en) 1992-05-28 1992-05-28 Manufacture of thin-film transistor

Publications (1)

Publication Number Publication Date
JPH05335337A true JPH05335337A (en) 1993-12-17

Family

ID=15747599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16207492A Pending JPH05335337A (en) 1992-05-28 1992-05-28 Manufacture of thin-film transistor

Country Status (1)

Country Link
JP (1) JPH05335337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667137A (en) * 1992-08-19 1994-03-11 Shibuya Kogyo Co Ltd Method for cleaning liquid crystal glass
KR100539045B1 (en) * 1997-07-16 2006-02-28 소니 가부시끼 가이샤 Method of forming a semiconductor thin film
JP2022048080A (en) * 2020-09-14 2022-03-25 セメス株式会社 Facilities and method for processing substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667137A (en) * 1992-08-19 1994-03-11 Shibuya Kogyo Co Ltd Method for cleaning liquid crystal glass
KR100539045B1 (en) * 1997-07-16 2006-02-28 소니 가부시끼 가이샤 Method of forming a semiconductor thin film
KR100581626B1 (en) * 1997-07-16 2006-05-22 소니 가부시끼 가이샤 Method of forming a semiconductor thin film on a plastic substrate, and plastic substrate
JP2022048080A (en) * 2020-09-14 2022-03-25 セメス株式会社 Facilities and method for processing substrate

Similar Documents

Publication Publication Date Title
JP3977455B2 (en) Method for manufacturing semiconductor device
JPH01187814A (en) Manufacture of thin film semiconductor device
JP3781787B2 (en) Multipurpose substrate processing apparatus, operation method thereof, and manufacturing method of thin film integrated circuit
JPH06124890A (en) Fabricating method for film-like semiconductor device
CN1251331C (en) Semiconductor device
JPH05335337A (en) Manufacture of thin-film transistor
JP3844526B2 (en) Crystalline silicon film manufacturing method
JP2002151693A (en) Bottom gate thin-film transistor, manufacturing method thereof, etching device, and nitriding device
JP4001906B2 (en) Method for manufacturing semiconductor device
KR100305255B1 (en) Method for manufacturing a poly-crystal silicon thin film
JP3897836B2 (en) Method for manufacturing semiconductor device
JP4901020B2 (en) Method for manufacturing polysilicon thin film transistor
JP3279280B2 (en) Method for manufacturing thin film semiconductor device
JPH07183234A (en) Multipurpose substrate treating device, its operating method, and manufacture of thin film integrated circuit
JP3957777B2 (en) Laser irradiation method
JP2898365B2 (en) Method for manufacturing gate insulating film of insulated gate field effect transistor and gate insulating film of insulated gate field effect transistor manufactured by the manufacturing method
JP3972991B2 (en) Method for manufacturing thin film integrated circuit
JPH05291220A (en) Manufacture of semiconductor device
JPH10135136A (en) Manufacturing crystalline semiconductor
JPH0661198A (en) Manufacture of thin film device
JPH03266434A (en) Manufacture of semiconductor device
JP2002184995A (en) Manufacturing method of semiconductor device
JPH0653503A (en) Thin film transistor and fabrication thereof
CN111223754A (en) Polycrystalline silicon film and preparation method thereof
JPS62299084A (en) Manufacture of thin film transistor