JPH05335211A - Aligner for semiconductor manufacture - Google Patents

Aligner for semiconductor manufacture

Info

Publication number
JPH05335211A
JPH05335211A JP4134580A JP13458092A JPH05335211A JP H05335211 A JPH05335211 A JP H05335211A JP 4134580 A JP4134580 A JP 4134580A JP 13458092 A JP13458092 A JP 13458092A JP H05335211 A JPH05335211 A JP H05335211A
Authority
JP
Japan
Prior art keywords
lens
wafer stage
light
reticle
magnification error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4134580A
Other languages
Japanese (ja)
Inventor
Junichi Naganami
純一 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP4134580A priority Critical patent/JPH05335211A/en
Publication of JPH05335211A publication Critical patent/JPH05335211A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To achieve that a lens distortion and a magnification error as lens performances in an aligner for semiconductor manufacture are corrected automatically, in a short time, with high accuracy and ease. CONSTITUTION:The following are installed a reticle 11, for mesurement, or which vernier main scale is formed above a wafer stage 8 in order to measure the performance of a projection lens 10; and a light-sending part 6 which sends reference light used as the main scale on the wafer stage 8. A photo-detection part 1, a signal processing part 4 and a dislocation-amount operation part 5 are installed at the illumination part in an aligner. Thereby, a lens distorion and a magnification error as lens performances are measured by processing an image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造用露光装置に
関し、特にレンズディストーションを自動計測し、倍率
誤差を自動補正する機能を有する半導体製造用露光装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing exposure apparatus, and more particularly to a semiconductor manufacturing exposure apparatus having a function of automatically measuring a lens distortion and automatically correcting a magnification error.

【0002】[0002]

【従来の技術】従来の半導体製造用露光装値において、
投影レンズの光学性能であるレンズディストーションや
倍率誤差を測定する場合、図9のフローチャートに示す
ように、専用のレチクルとレジストを塗布したウェーハ
を用い、露光を行なっていた。これは、まず露光範囲全
域に任意の間隔でバーニアの主尺を第1露光し、次に主
尺をマスキングし、ウェーハステージの送りによりレチ
クル上のバーニアの副尺を任意の間隔に従い第2露光す
る2重露光法を行ない、このウェーハを現像し、バーニ
アのずれ量を光学顕微鏡により読み取っていた。
2. Description of the Related Art In the conventional exposure value for semiconductor manufacturing,
When measuring the lens distortion and magnification error, which are the optical performances of the projection lens, exposure was performed using a dedicated reticle and a resist-coated wafer as shown in the flowchart of FIG. This is because the vernier main scale is first exposed over the entire exposure range at an arbitrary interval, then the main scale is masked, and the vernier sub-scale on the reticle is second exposed at an arbitrary interval by feeding the wafer stage. The double exposure method was performed, the wafer was developed, and the deviation amount of vernier was read by an optical microscope.

【0003】[0003]

【発明が解決しようとする課題】この従来の半導体製造
用露光装置では、レジスト塗布したウェーハに任意の間
隔でウェーハステージの送り精度を頼りに主尺と副尺を
2重露光し、現像後、人が光学顕微鏡でバーニアを読み
取り、レンズディストーションや倍率誤差を求めていた
為、測定値にはウェーハステージの送り精度のばらつき
と人間がバーニアを読み取るばらつきとが含まれること
になり、測定値の信頼性が低いという問題があった。
In this conventional exposure apparatus for semiconductor production, the main scale and the subscale are double-exposed on the resist-coated wafer at arbitrary intervals depending on the feeding accuracy of the wafer stage, and after development, Since humans read the vernier with an optical microscope to obtain the lens distortion and magnification error, the measured values include variations in the wafer stage feed accuracy and human variability in reading the vernier. There was a problem of low sex.

【0004】また近年、レンズディストーションや倍率
誤差の装置規格がこれらの測定精度のばらつきと同レベ
ルである3/100〜5/100ミクロンとなってきて
おり、実測値の精度を上げる必要があった。
Further, in recent years, the device standard for lens distortion and magnification error has become 3/100 to 5/100 microns, which is at the same level as the dispersion of these measurement accuracy, and it is necessary to improve the accuracy of the actual measurement value. .

【0005】[0005]

【課題を解決するための手段】本発明の半導体製造用露
光装置は、計測を行なう為の副尺マークを持つ測定用レ
チクルと、主尺マークとなる基準格子状に配列されたス
リット光の送光部をウェーハステージ上に備え、光学的
に主尺と副尺の位置ずれを検出するハーフミラー、集光
レンズ、受光部からなる光学系と、受光信号を画像処理
する信号処理部と、位置ずれ量演算部及び倍率誤差演算
部とを備えている。
SUMMARY OF THE INVENTION An exposure apparatus for semiconductor manufacturing according to the present invention includes a measuring reticle having a vernier scale mark for performing measurement, and a slit light beam arranged in a reference grid serving as a main scale mark. An optical system is provided on the wafer stage, and an optical system consisting of a half mirror that optically detects the displacement between the main scale and the vernier scale, a condenser lens, and a light receiving unit, a signal processing unit that performs image processing of the received light signal, and a position. A deviation amount calculator and a magnification error calculator are provided.

【0006】[0006]

【作用】次に本発明の露光装置の測定原理について、図
面を用いて説明する。図3は副尺となるBOXマーク
(測定マーク)が設けられた測定用レチクルの平面図で
あり、図4はその部分拡大図である。図5は主尺となる
BOXマーク状の光を照射する送光部の平面図であり、
図6はその部分拡大図である。測定用レチクルと送光部
とは、縮小投影された測定用レチクルのレチクルセット
マークと送光部に設けられているレチクルアライメント
基準マークとにより相対的に位置合わせが可能となる
為、測定用レチクル中心と送光部中心とが一致した状態
で送光部より光を照射すれば、図7の計測原理説明図に
示すような光信号を受光部で検出することが可能とな
り、△L=(L1−L2)/2で位置ずれを算出でき
る。
Next, the measurement principle of the exposure apparatus of the present invention will be described with reference to the drawings. FIG. 3 is a plan view of a measurement reticle provided with a BOX mark (measurement mark) as a vernier scale, and FIG. 4 is a partially enlarged view thereof. FIG. 5 is a plan view of a light transmitting unit that irradiates BOX mark-shaped light, which is the main scale,
FIG. 6 is a partially enlarged view thereof. The measurement reticle and the light transmitting unit can be relatively aligned with each other by the reticle set mark of the measurement reticle reduced and projected and the reticle alignment reference mark provided on the light transmitting unit. If the light is emitted from the light transmitting section in a state where the center coincides with the center of the light transmitting section, the light receiving section can detect an optical signal as shown in the measurement principle explanatory diagram of FIG. 7, and ΔL = ( The positional deviation can be calculated by (L1-L2) / 2.

【0007】図8はウェーハステージを上下方向に動か
した時の受光信号の変化を示した波形図である。図に示
すように、レチクルとステージ上の送光部とのフォーカ
スが合致した場合、信号強度Hが最高となり、コントラ
ストBが最大となる。従って、計測時のフォーカス合わ
せも自動で行なうことが可能となる。
FIG. 8 is a waveform diagram showing a change in a light receiving signal when the wafer stage is moved in the vertical direction. As shown in the figure, when the reticle and the light-transmitting unit on the stage are in focus, the signal intensity H is highest and the contrast B is highest. Therefore, it is possible to automatically perform focusing at the time of measurement.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の実施例1の構成図である。なお、本
実施例の機構部のうち、ウェーハホルダ9、メインコン
デンサレンズ12、反射ミラー13、リレーレンズ1
4、15、反射ミラー16、だ円鏡17、光学部18、
水銀ランプ19等は従来の装置と同様の構成となってい
る。
The present invention will be described below with reference to the drawings. 1 is a configuration diagram of a first embodiment of the present invention. In addition, among the mechanical parts of the present embodiment, the wafer holder 9, the main condenser lens 12, the reflection mirror 13, and the relay lens 1
4, 15, a reflection mirror 16, an elliptical mirror 17, an optical unit 18,
The mercury lamp 19 and the like have the same structure as the conventional device.

【0009】まず、測定用レチクル11を露光装置に位
置決めし、測定用レチクル11の中心と送光部6の中心
とが合致するようにウェーハステージ8を移動させ、ウ
ェーハステージ8停止後、送光部6より照明光を照射す
ることにより、ウェーハステージ8上の送光部6に設け
られた基準格子状に配列された送光ポイント(スリッ
ト)の光が投影レンズ10と測定用レチクル11を透過
し、ハーフミラー3により集光レンズ2を経由し、受光
部1に到達する。ここで信号処理部4にて画像処理を行
ない、ウェーハステージ制御部7の座標データにより位
置ずれ演算部5で各基準格子点でのX、Y方向の位置ず
れ量を算出する。この値がレンズディストーション及び
倍率誤差となる。
First, the measurement reticle 11 is positioned in the exposure apparatus, the wafer stage 8 is moved so that the center of the measurement reticle 11 and the center of the light transmitting section 6 are aligned, and after the wafer stage 8 is stopped, the light transmission is performed. By irradiating the illumination light from the section 6, the light of the light-sending points (slits) arranged in the reference grid pattern provided on the light-sending section 6 on the wafer stage 8 passes through the projection lens 10 and the measurement reticle 11. Then, the half mirror 3 reaches the light receiving section 1 through the condenser lens 2. Here, the signal processing unit 4 performs image processing, and the position shift calculation unit 5 calculates the amount of position shift in the X and Y directions at each reference grid point based on the coordinate data of the wafer stage control unit 7. This value becomes the lens distortion and magnification error.

【0010】図2は実施例2の部分構成図である。機構
部は実施例1と同様である。従来の半導体製造用露光装
置は投影レンズに照射される紫外線の量を演算し、紫外
線エネルギーによる投影レンズの倍率変化を自動的に制
御するレンズコントロール部21を備えている。そこで
本発明の実施例1により計測したレンズディストーショ
ンや倍率誤差の値を用い、レンズ倍率誤差演算部20で
補正量を算出し、自動的にレンズコントロール部21に
制御を加え補正するものである。
FIG. 2 is a partial configuration diagram of the second embodiment. The mechanical part is the same as that of the first embodiment. The conventional exposure apparatus for manufacturing a semiconductor includes a lens control unit 21 that calculates the amount of ultraviolet rays applied to the projection lens and automatically controls a change in magnification of the projection lens due to ultraviolet energy. Therefore, using the values of the lens distortion and the magnification error measured according to the first embodiment of the present invention, the correction amount is calculated by the lens magnification error calculation unit 20, and the lens control unit 21 is automatically controlled to perform the correction.

【0011】[0011]

【発明の効果】以上説明したように本発明は、レンズデ
ィストーション、倍率誤差測定専用レチクルと、ウェー
ハステージ上に設けられた送光部とにより、送光部に設
けた基準格子に対する投影レンズの誤差を受光部にて検
出する為、ウェーハ上にバーニアパターンを露光、現像
することなしに、画像処理レベルの高精度で短時間にレ
ンズディストーション、倍率誤差を測定できるという効
果を有する。
As described above, according to the present invention, the error of the projection lens with respect to the reference grating provided in the light sending unit is adjusted by the reticle dedicated to measuring the lens distortion and the magnification error and the light sending unit provided on the wafer stage. Since it is detected by the light receiving portion, there is an effect that the lens distortion and the magnification error can be measured in a short time with high accuracy at the image processing level without exposing and developing the vernier pattern on the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】本発明の実施例2の構成図である。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】本発明に用いる測定用レチクルの平面図であ
る。
FIG. 3 is a plan view of a measurement reticle used in the present invention.

【図4】図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG.

【図5】本発明に用いる送光部の平面図である。FIG. 5 is a plan view of a light transmitting section used in the present invention.

【図6】図5の部分拡大図である。6 is a partially enlarged view of FIG.

【図7】本発明における計測原理の説明図である。FIG. 7 is an explanatory diagram of a measurement principle in the present invention.

【図8】本発明における信号変化の波形図である。FIG. 8 is a waveform diagram of a signal change in the present invention.

【図9】従来の露光装置のレンズディストーション測定
を示すフロー図である。
FIG. 9 is a flow chart showing lens distortion measurement of a conventional exposure apparatus.

【符号の説明】[Explanation of symbols]

1 受光部 2 集光レンズ 3 ハーフミラー 4 信号処理部 5 位置ずれ量演算部 6 送光部 7 ウェーハステージ制御部 8 ウェーハステージ 9 ウェーハホルダ 10 投影レンズ 11 測定用レチクル 12 メインコンデンサレンズ 13 反射ミラー 14、15 リレーレンズ 16 反射ミラー 17 だ円鏡 18 光学部 19 水銀ランプ 20 レンズ倍率誤差演算部 21 レンズコントロール部 DESCRIPTION OF SYMBOLS 1 Light receiving part 2 Condensing lens 3 Half mirror 4 Signal processing part 5 Position shift amount calculating part 6 Light transmitting part 7 Wafer stage control part 8 Wafer stage 9 Wafer holder 10 Projection lens 11 Measurement reticle 12 Main condenser lens 13 Reflection mirror 14 , 15 Relay lens 16 Reflective mirror 17 Elliptical mirror 18 Optical section 19 Mercury lamp 20 Lens magnification error calculation section 21 Lens control section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 Z 7352−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 21/66 Z 7352-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウェーハステージ上に設けられた基準ス
リット光を照射する送光部と、測定用の基準マークが設
けられているレチクルと、そのレチクルを透過した光を
受光する受光部と、この信号を処理する信号処理部及び
ウェーハステージ制御部の座標データと信号処理部のデ
ータとにより位置ずれ量を演算する位置ずれ量演算部と
を備えることを特徴とする半導体製造用露光装置。
1. A light transmitting section provided on a wafer stage for irradiating reference slit light, a reticle provided with a reference mark for measurement, a light receiving section for receiving light transmitted through the reticle, and An exposure apparatus for semiconductor manufacturing, comprising: a signal processing unit that processes a signal; and a positional deviation amount calculation unit that calculates a positional deviation amount based on the coordinate data of the wafer stage control unit and the data of the signal processing unit.
【請求項2】 前記位置ずれ量演算部で計測された値に
基づき倍率誤差の補正量を算出するレンズ倍率誤差演算
部を有し、この演算部からの信号によりレンズコントロ
ール部を制御する請求項1記載の半導体製造用露光装
置。
2. A lens magnification error calculation unit for calculating a correction amount of a magnification error based on a value measured by the position shift amount calculation unit, and a lens control unit is controlled by a signal from this calculation unit. 1. The exposure apparatus for semiconductor manufacturing according to 1.
JP4134580A 1992-05-27 1992-05-27 Aligner for semiconductor manufacture Withdrawn JPH05335211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134580A JPH05335211A (en) 1992-05-27 1992-05-27 Aligner for semiconductor manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134580A JPH05335211A (en) 1992-05-27 1992-05-27 Aligner for semiconductor manufacture

Publications (1)

Publication Number Publication Date
JPH05335211A true JPH05335211A (en) 1993-12-17

Family

ID=15131687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134580A Withdrawn JPH05335211A (en) 1992-05-27 1992-05-27 Aligner for semiconductor manufacture

Country Status (1)

Country Link
JP (1) JPH05335211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105433A (en) * 2004-12-23 2009-05-14 Asml Netherlands Bv Lithographic equipment with two-dimensional alignment measurement arrangement, and two-dimensional alignment measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105433A (en) * 2004-12-23 2009-05-14 Asml Netherlands Bv Lithographic equipment with two-dimensional alignment measurement arrangement, and two-dimensional alignment measurement method

Similar Documents

Publication Publication Date Title
JP4505989B2 (en) Aberration measurement apparatus, measurement method, projection exposure apparatus including the apparatus, device manufacturing method using the method, and exposure method
JP2546350B2 (en) Alignment device
JP3181050B2 (en) Projection exposure method and apparatus
JP2893778B2 (en) Exposure equipment
JPH0845814A (en) Exposure device and positioning method
JPH0883753A (en) Focal point detecting method
US6124922A (en) Exposure device and method for producing a mask for use in the device
JPH07226357A (en) Position detecting device
US6344896B1 (en) Method and apparatus for measuring positional shift/distortion by aberration
JP3446287B2 (en) Reduction projection exposure apparatus and optical axis shift correction method
JP2897345B2 (en) Projection exposure equipment
JPH08162397A (en) Projection light exposure device and manufacture of semiconductor device by use thereof
JP4174324B2 (en) Exposure method and apparatus
JPH05335211A (en) Aligner for semiconductor manufacture
US20060215140A1 (en) Method of measuring the performance of an illumination system
JPH08227844A (en) Device and method for exposure
JPH07130641A (en) Position detector and manufacture of semiconductor element using same
JP3313932B2 (en) Projection exposure equipment
JP3358109B2 (en) Projection exposure method and apparatus, and device manufacturing method
JP2926581B1 (en) Reduction projection exposure equipment
JP2005175383A (en) Aligner, method of alignment and device manufacturing method
JPH06104158A (en) Position detecting device
US20050112481A1 (en) Exposure method and apparatus
JPS60177625A (en) Projection exposure device
JP2000091219A (en) Position detecting device and aligner using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803