JPH05335011A - Non-aqueous electrolyte secondary battery and its manufacture - Google Patents

Non-aqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH05335011A
JPH05335011A JP4160086A JP16008692A JPH05335011A JP H05335011 A JPH05335011 A JP H05335011A JP 4160086 A JP4160086 A JP 4160086A JP 16008692 A JP16008692 A JP 16008692A JP H05335011 A JPH05335011 A JP H05335011A
Authority
JP
Japan
Prior art keywords
explosion
battery
proof valve
insulating layer
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4160086A
Other languages
Japanese (ja)
Other versions
JP3230279B2 (en
Inventor
Masayuki Endo
正幸 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16008692A priority Critical patent/JP3230279B2/en
Publication of JPH05335011A publication Critical patent/JPH05335011A/en
Application granted granted Critical
Publication of JP3230279B2 publication Critical patent/JP3230279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent a battery from breakage certainly with actuation of an anti- explosion valve by furnishing an electric isulative layer on that surface of valve, at least a part thereof, on the side which receives the battery internal pressure besides the lead connection part. CONSTITUTION:A negative electrode 1 formed by coating a negative electrode current collector 9 with a negative electrode active material and a positive electrode 2 prepared by coating a positive electrode current collector 10 with a positive electrode active material are wound round while a separator 3 is interposed and accommodated in a battery can 5 in the condition that an insulative substance 4 is laid on and under this roll obtained. A positive electrode lead 12 is installed as welded fast to an anti- explosive valve 8 made in aluminum and connected electrically with a battery lid 7 through this valve 8. When the battery internal pressure rises, the valve 8 is heaved to make deformation, and the lead 12 is cut while the part welded to the valve 8 is left. An insulative layer 13 is formed on the surface of valve 8 other than the lead connection part, at least a part thereof, on the side which receives the battery internal pressure. This prevents the battery certainly from temp. rise and breakage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電流遮断用の防爆弁を
備えた非水電解液二次電池およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery provided with an explosion-proof valve for interrupting current and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器に使用される二次電池にも高エネルギー密度である
ことが要求されるようになっている。従来、これらの電
子機器に使用される二次電池としては、ニッケル・カド
ミウム電池や鉛電池等が挙げられるが、これら電池は放
電電位が低く、エネルギー密度の高い電池を得るという
点ではまだ不十分である。
2. Description of the Related Art In recent years, due to advances in electronic technology, high performance, miniaturization, and portability of electronic devices have advanced, and secondary batteries used in these electronic devices are also required to have high energy density. It is like this. Conventionally, nickel-cadmium batteries and lead batteries have been used as secondary batteries used in these electronic devices, but these batteries are still insufficient in terms of low discharge potential and high energy density. Is.

【0003】そこで、最近、リチウムやリチウム合金も
しくは炭素材料のようなリチウムイオンをドープ及び脱
ドープ可能な物質を負極として用い、また正極にリチウ
ムコバルト複合酸化物等のリチウム複合酸化物を使用す
る非水電解液二次電池の研究・開発が行われている。こ
の電池は電池電圧が高く、高エネルギー密度を有し、自
己放電も少なく、かつ、サイクル特性に優れている。
Therefore, recently, a material capable of doping and dedoping lithium ions such as lithium, a lithium alloy or a carbon material is used as a negative electrode, and a lithium composite oxide such as a lithium cobalt composite oxide is used as a positive electrode. Research and development of water electrolyte secondary batteries are being conducted. This battery has a high battery voltage, a high energy density, little self-discharge, and excellent cycle characteristics.

【0004】ところで、一般に電池は、密閉型の構造で
ある場合、充電時に所定以上の電気量の電流が流れて過
充電状態になると電池電圧が高くなり、電解液等が分解
してガスが発生し電池内圧が上昇する。さらに、この過
充電状態が続くと、電解質や活物質の急速な分解といっ
た異常反応が起こり、電池温度が急速に上昇してしまう
こともある。このような異常がおこると、電池の急速な
破損が起こって電池がその機能を失い、あるいは周辺機
器に対しても損傷を与えてしまう。
By the way, in general, when a battery has a closed structure, a battery voltage increases when an electric current of a predetermined amount or more flows during charging and the battery is overcharged, and an electrolyte solution is decomposed to generate gas. The battery internal pressure rises. Furthermore, if this overcharged state continues, an abnormal reaction such as rapid decomposition of the electrolyte or active material may occur, and the battery temperature may rise rapidly. When such an abnormality occurs, the battery is rapidly damaged, the battery loses its function, and peripheral devices are damaged.

【0005】かかる問題の対策として、電池内圧の上昇
に応じて作動する防爆弁を備えてなる防爆型密閉電池が
特願昭63−265783号公報において提案されてい
る。すなわち、この電池は、図7に示すように、負極端
子を兼ねる電池缶21内に電極22が収納され、この電
池缶21の上側に正極端子を兼ねる電池蓋23が取付け
られてなるものである。上記電池缶21は負極リード2
6を介して電極と電気的に接続され、電池蓋23はアル
ミニウム製防爆弁24および防爆弁24に溶接して取付
けられた正極リード25を介して電極22と電気的に接
続されている。
As a measure against such a problem, Japanese Patent Application No. 63-265783 proposes an explosion-proof sealed battery provided with an explosion-proof valve that operates in response to an increase in battery internal pressure. That is, as shown in FIG. 7, the battery has an electrode 22 housed in a battery can 21 that also serves as a negative electrode terminal, and a battery lid 23 that also serves as a positive electrode terminal is attached to the upper side of the battery can 21. .. The battery can 21 has a negative electrode lead 2
6, the battery lid 23 is electrically connected to the electrode 22 through an aluminum explosion-proof valve 24 and a positive electrode lead 25 attached to the explosion-proof valve 24 by welding.

【0006】このような構成を有する電池において、電
池内部の圧力が上昇すると、前記防爆弁24が押し上げ
られて変形する。すると、正極リード25が防爆弁24
と溶接された部分を残して切断され、電流が遮断され
る。これにより、電池内部の異常反応の進行が停止し、
電池温度の急速な上昇や電池内圧の上昇を防止される。
In the battery having such a structure, when the pressure inside the battery rises, the explosion-proof valve 24 is pushed up and deformed. Then, the positive electrode lead 25 becomes the explosion-proof valve 24.
The current is cut off by cutting with the welded part left. This stops the progress of abnormal reactions inside the battery,
A rapid increase in battery temperature and an increase in battery internal pressure are prevented.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような防
爆型密閉電池においては、防爆弁が変形し、正極リード
が切断されたにもかかわらず、温度が引き続き上昇し、
電池の破損に至るものがある。このような異常現象は特
に電源電圧が高い場合に発生し易く、高電圧充電時にお
いて安全性を確保するのが困難である。
However, in such an explosion-proof sealed battery, the temperature continues to rise despite the deformation of the explosion-proof valve and the disconnection of the positive electrode lead.
Some things can lead to battery damage. Such an abnormal phenomenon is likely to occur especially when the power supply voltage is high, and it is difficult to ensure safety during high voltage charging.

【0008】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、防爆弁の作動によって電
池の破損を確実に防止することが可能な非水電解液二次
電池およびその製造方法を提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and a non-aqueous electrolyte secondary battery capable of reliably preventing damage to the battery by the operation of the explosion-proof valve and the same. It is intended to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明者らが鋭意検討を重ねた結果、防爆弁変形
後にも継続する温度上昇は、防爆弁の電池内圧を受ける
側の面に絶縁層を設けることにより防止できることを見
い出した。本発明の非水電解液二次電池はこのような知
見に基づいて完成されたものであって、電池内圧の上昇
に伴い変形を生じる導体製の防爆弁を有し、防爆弁が電
極リードと電気的に接続され、防爆弁の変形により防爆
弁と電極リードの電気的接続が破断される非水電解液二
次電池において、上記防爆弁の電池内圧を受ける側の面
であってリード接続部以外の部分の少なくとも一部に電
気的絶縁層が設けられていることを特徴とするものであ
る。
In order to achieve the above-mentioned object, the inventors of the present invention have conducted extensive studies, and as a result, the temperature rise that continues after the explosion-proof valve is deformed is increased on the side receiving the battery internal pressure of the explosion-proof valve. It has been found that this can be prevented by providing an insulating layer on the surface. The non-aqueous electrolyte secondary battery of the present invention has been completed based on such findings, and has a conductor explosion-proof valve that deforms with an increase in battery internal pressure, and the explosion-proof valve is an electrode lead. In a non-aqueous electrolyte secondary battery that is electrically connected and the electrical connection between the explosion-proof valve and the electrode lead is broken due to deformation of the explosion-proof valve, a surface of the explosion-proof valve on the side that receives the battery internal pressure and a lead connecting portion. An electrically insulating layer is provided on at least a part of the other parts.

【0010】また、電気的絶縁層が有機高分子化合物よ
りなることを特徴とするものである。さらに、有機高分
子化合物よりなる電気的絶縁層が接着剤を介して防爆弁
に固定されていることを特徴とするものである。また、
本発明の非水電解液二次電池の製造方法は、防爆弁に有
機高分子化合物よりなる電気的絶縁層を設けるに際し、
電極リードを防爆弁に接続するのに先行して、防爆弁の
電極リード取付け部を除いた部分に予め有機高分子化合
物塗料を塗布し、電気的絶縁層を形成しておくことを特
徴とするものである。
The electrically insulating layer is made of an organic polymer compound. Further, the present invention is characterized in that an electrically insulating layer made of an organic polymer compound is fixed to the explosion-proof valve via an adhesive. Also,
The method for producing a non-aqueous electrolyte secondary battery of the present invention, when providing an electrically insulating layer made of an organic polymer compound in the explosion-proof valve,
Prior to connecting the electrode lead to the explosion-proof valve, the part excluding the electrode lead attachment part of the explosion-proof valve is previously coated with an organic polymer compound paint to form an electrically insulating layer. It is a thing.

【0011】さらに、防爆弁に有機高分子化合物よりな
る電気的絶縁層を設けるに際し、電極リードを防爆弁に
接続するのに先行して、防爆弁の電極リード取付け部を
除いた部分に予め接着剤を塗布して有機高分子化合物膜
を固定し、電気的絶縁層を形成しておくことを特徴とす
るものである。
Further, in providing an electrically insulating layer made of an organic polymer compound on the explosion-proof valve, prior to connecting the electrode lead to the explosion-proof valve, the electrode lead-attaching portion of the explosion-proof valve is preliminarily adhered to the portion. This is characterized in that an organic polymer compound film is fixed by applying an agent to form an electrically insulating layer.

【0012】[0012]

【作用】電池内圧の上昇に伴い変形を生じる導体製防爆
弁を有し、防爆弁の変形により防爆弁と電極リードの電
気的接続が破断される非水電解液二次電池において、防
爆弁の電池内圧を受ける側の面であってリード接続部以
外の部分の少なくとも一部に電気的絶縁層を設けると、
電源電圧が高い場合に過充電となったときにも防爆弁の
変形によって電池の破損が確実に防止される。
[Function] In a non-aqueous electrolyte secondary battery, which has a conductor explosion-proof valve that deforms as the battery internal pressure increases, and the electrical connection between the explosion-proof valve and the electrode lead is broken by the deformation of the explosion-proof valve, When an electrically insulating layer is provided on at least a part of the surface other than the lead connection portion on the surface receiving the battery internal pressure,
Even if the battery is overcharged when the power supply voltage is high, the explosion-proof valve is deformed to reliably prevent damage to the battery.

【0013】この理由は明らかではないが、以下のよう
に推測される。
The reason for this is not clear, but it is presumed as follows.

【0014】すなわち、絶縁層を有しない電池では、過
充電によって防爆弁が変形した場合に、防爆弁変形によ
って電極リードが切断されても切断された電極リードと
防爆弁の距離が近いため、ある程度の電流が防爆弁に漏
洩する。これにより異常反応が継続し、温度上昇を引き
起こして電池破損に至る。防爆弁に絶縁層が設けられて
いる電池では、このような防爆弁への電流漏洩が絶縁層
により阻まれるので、電池破損が確実に防止される。
That is, in a battery having no insulating layer, when the explosion-proof valve is deformed due to overcharging, the distance between the cut electrode lead and the explosion-proof valve is short even if the electrode lead is cut due to the deformation of the explosion-proof valve. Current leaks to the explosion proof valve. As a result, the abnormal reaction continues, causing the temperature to rise, resulting in battery damage. In a battery in which the explosion-proof valve is provided with an insulating layer, the current leakage to the explosion-proof valve is blocked by the insulating layer, so that damage to the battery is reliably prevented.

【0015】[0015]

【実施例】以下、本発明を具体的な実験結果に基づいて
説明する。
EXAMPLES The present invention will be described below based on concrete experimental results.

【0016】非水電解液二次電池は、図1に示すよう
に、負極集電体9に負極活物質を塗布してなる負極1
と、正極集電体10に正極活物質を塗布してなる正極2
とを、セパレータ3を介して巻回し、この巻回体の上下
に絶縁体4を載置した状態で電池缶5に収納してなるも
のである。
As shown in FIG. 1, the non-aqueous electrolyte secondary battery has a negative electrode 1 formed by coating a negative electrode current collector 9 with a negative electrode active material.
And a positive electrode 2 formed by applying a positive electrode active material to the positive electrode current collector 10.
Are wound via the separator 3, and the insulator 4 is placed on the upper and lower sides of the wound body and housed in the battery can 5.

【0017】前記電池缶5には電池蓋7が封口ガスケッ
ト6を介してかしめることによって取付けられ、それぞ
れ負極リード11及び正極リード12を介して負極1あ
るいは正極2と電気的に接続され、電池の負極あるいは
正極として機能するように構成されている。
A battery lid 7 is attached to the battery can 5 by caulking with a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 via a negative electrode lead 11 and a positive electrode lead 12, respectively, It is configured to function as a negative electrode or a positive electrode.

【0018】そして、上記電池では、前記正極リード1
2はアルミニウム製防爆弁8に溶接されて取付けられ、
この防爆弁8を介して電池蓋7との電気的接続が図られ
ている。この防爆弁8は、図2に示すように電池内圧が
上昇するとそれに伴って押し上げられて変形するように
なっており、上記正極リード12は、この防爆弁8の変
形によって防爆弁8と溶接された部分を残して切断され
るようになっている。
In the above battery, the positive electrode lead 1
2 is welded and attached to the aluminum explosion-proof valve 8,
Electrical connection is made with the battery lid 7 via the explosion-proof valve 8. As shown in FIG. 2, the explosion-proof valve 8 is pushed up and deformed when the battery internal pressure rises, and the positive electrode lead 12 is welded to the explosion-proof valve 8 by the deformation of the explosion-proof valve 8. It is designed to be cut with the remaining part left.

【0019】本発明においては、図3および図4に示す
ようにこのような電池において、防爆弁8の電池内圧を
受ける側の面であってリード接続部以外の部分の少なく
とも一部に絶縁層13が形成されている。これにより防
爆弁変後に継続する異常反応,温度上昇を防止し、電池
破損を確実に防止できるようになっている。
According to the present invention, as shown in FIGS. 3 and 4, in such a battery, an insulating layer is formed on at least a part of the surface of the explosion-proof valve 8 on the side receiving the battery internal pressure and other than the lead connecting portion. 13 is formed. As a result, it is possible to prevent abnormal reactions and temperature rise that continue after the explosion-proof valve changes and to reliably prevent battery damage.

【0020】ここで、上記絶縁層によって十分な効果を
得るには、その膜厚は1〜50μmであることが好まし
い。
Here, in order to obtain a sufficient effect by the insulating layer, its thickness is preferably 1 to 50 μm.

【0021】また、上記絶縁層13の材料としては、有
機高分子化合物、無機絶縁材料のいずれでもよい。無機
絶縁材料の場合には、たとえばスパッタリング法,陽極
酸化法等によって絶縁層として形成される。有機高分子
化合物の場合には、有機高分子化合物塗料の塗布あるい
はテープ状有機高分子化合物膜を接着剤で固定すること
によって絶縁層として形成される。たとえば塗布によっ
て絶縁層となるものには、ポリイミド樹脂,フッ素樹,
シリコン樹脂があり、接着剤で固定することによって絶
縁層となるものとしては、ポリイミドテープ,フッ素樹
脂テープ等がある。
The material of the insulating layer 13 may be either an organic polymer compound or an inorganic insulating material. In the case of an inorganic insulating material, it is formed as an insulating layer by, for example, a sputtering method, an anodic oxidation method or the like. In the case of an organic polymer compound, it is formed as an insulating layer by applying an organic polymer compound coating or fixing a tape-shaped organic polymer compound film with an adhesive. For example, polyimide resin, fluorine resin,
There is silicone resin, and polyimide tape, fluororesin tape, etc. are used as an insulating layer when fixed with an adhesive.

【0022】これらの材料によって絶縁層を形成するに
は、いずれの場合にも、リードの溶接に先行して予めリ
ード溶接部以外を除いて絶縁層を形成しておく方が製造
操作が容易である。また、テープ状のものを接着剤で固
定する場合において、接着面が段差があるときには、例
えば図5に示すような各段に対応する外側テープ13
a,内側テープ13bを用意し、図6に示すように段ご
とそれぞれ固定するようにしてもよい。
In order to form the insulating layer with these materials, in any case, it is easier to perform the manufacturing operation if the insulating layer is formed in advance except for the lead welding portion prior to the lead welding. is there. Further, in the case of fixing a tape-shaped object with an adhesive, when the adhesive surface has a step, for example, the outer tape 13 corresponding to each step as shown in FIG.
Alternatively, the inner tape 13a and the inner tape 13b may be prepared and fixed in stages as shown in FIG.

【0023】なお、上記非水電解液二次電池において、
正極活物質としては、LiX MO2(ただし、Mは1種
以上の遷移金属、好ましくは、CoまたはNiの少なく
とも1種をあらわし、0.05≦X≦1.10であ
る。)を含んだ活物質が使用される。かかる活物質とし
ては、LiCoO2 ,LiNiO2 ,LiNiy Co
(1-y) 2 (ただし、0.05≦X≦1.10 ,0<
y<1)で表される複合酸化物が挙げられる。上記複合
酸化物は、例えばリチウム、コバルト、ニッケルの炭酸
塩を出発原料とし、これら炭酸塩を組成に応じて混合
し、酸素存在雰囲気下600℃〜1000℃の温度範囲
で焼成することにより得られる。また、出発原料は炭酸
塩に限定されず、水酸化物、酸化物からも同様に合成可
能である。
In the above non-aqueous electrolyte secondary battery,
As the positive electrode active material, Li X MO 2 (where M represents at least one transition metal, preferably at least one of Co or Ni, and 0.05 ≦ X ≦ 1.10) is included. Active material is used. Examples of such active materials include LiCoO 2 , LiNiO 2 , and LiNi y Co.
(1-y) O 2 (however, 0.05 ≦ X ≦ 1.10, 0 <
The compound oxide represented by y <1) is mentioned. The composite oxide is obtained by, for example, using carbonates of lithium, cobalt, and nickel as starting materials, mixing these carbonates according to the composition, and firing in a temperature range of 600 ° C. to 1000 ° C. in an oxygen-present atmosphere. .. Further, the starting material is not limited to carbonate, and it can be similarly synthesized from hydroxide or oxide.

【0024】一方、負極には、リチウムをドープ・脱ド
ープ可能なものであれば良く、熱分解炭素類、コークス
類(ピッチコークス、ニードルコークス、石油コークス
等)、グラファイト類、ガラス状炭素類、有機高分子化
合物焼成体(フェノール樹脂、フラン樹脂等を適当な温
度で焼成し炭素化したもの)、炭素繊維、活性炭等、あ
るいは、金属リチウム、リチウム合金(例えば、リチウ
ム−アルミ合金)の他、ポリアセチレン、ポリピロール
等のポリマーも使用可能である。
On the other hand, the negative electrode may be any one that can be doped or dedoped with lithium, such as pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, Organic polymer compound fired body (phenolic resin, furan resin, etc. fired at an appropriate temperature to carbonize), carbon fiber, activated carbon, etc., or metallic lithium, lithium alloy (for example, lithium-aluminum alloy), Polymers such as polyacetylene and polypyrrole can also be used.

【0025】電解液としては、例えば、リチウム塩を電
解質とし、これを有機溶媒に溶解させた電解液が用いら
れる。ここで有機溶媒としては、特に限定されるもので
はないが、プロピレンカーボネート、エチレンカーボネ
ート、1,2−ジメトキシエタン、γ−ブチルラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、スルホラン、アセトニトリ
ル、ジエチルカーボネート、ジプロピルカーボネート等
の単独もしくは2種類以上の混合溶媒が使用可能であ
る。
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, sulfolane, acetonitrile. A single solvent or a mixed solvent of two or more kinds such as diethyl carbonate and dipropyl carbonate can be used.

【0026】電解質としては、LiClO4 ,LiAs
6 ,LiPF6 ,LiBF4 ,LiB(C6 5)4
LiCl,LiBr,CH3 SO3 Li,CF3 SO3
Li等が使用可能である。
As the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 ,
LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3
Li or the like can be used.

【0027】また、上記防爆弁としては、上記防爆弁に
限定されるものではなく、電池の内圧に応じて電流を遮
断できるものであればいずでれも良い。
The explosion-proof valve is not limited to the explosion-proof valve, but may be any one as long as it can interrupt the current according to the internal pressure of the battery.

【0028】次に、実際に非水電解液二次電池を作製
し、電池損傷の発生率を調べた。
Next, a non-aqueous electrolyte secondary battery was actually manufactured and the occurrence rate of battery damage was examined.

【0029】実施例1 まず、正極2は次のようにして作製した。炭酸リチウム
と炭酸コバルトをLi/Co(モル比)=1になるよう
に混合し、空気中で900℃、5時間焼成して正極活物
質(LiCoO2 )を合成した。この正極活物質につい
てX線回折測定を行った結果JCPDSカードのLiC
oO2 と良く一致していた。また、正極活物質中の炭酸
リチウムを定量したところほとんど検出されず、0%で
あった。なお、正極活物質中の炭酸リチウム量は、試料
を硫酸で分解し生成したCO2 を塩化バリウムと水酸化
ナトリウム溶液中に導入して吸収させた後、塩酸標準溶
液で滴定することによりCO2 を定量し、そのCO2
から換算して求めた。この正極活物質を自動乳鉢を用い
て粉砕し、LiCoO2 粉末を得た。
Example 1 First, the positive electrode 2 was manufactured as follows. Lithium carbonate and cobalt carbonate were mixed so that Li / Co (molar ratio) = 1 and fired in air at 900 ° C. for 5 hours to synthesize a positive electrode active material (LiCoO 2 ). X-ray diffraction measurement was performed on the positive electrode active material. LiC of JCPDS card
It was in good agreement with oO 2 . Moreover, when the amount of lithium carbonate in the positive electrode active material was quantified, it was hardly detected and was 0%. Incidentally, lithium carbonate content in the positive electrode active material, after the CO 2 that samples were generated decomposed with sulfuric acid is absorbed by introducing into the sodium hydroxide and barium chloride solution, CO 2 by titration with hydrochloric acid standard solution Was quantified and calculated from the amount of CO 2 . This positive electrode active material was crushed using an automatic mortar to obtain LiCoO 2 powder.

【0030】このようにして得られたLiCoO2 粉末
95重量%,炭酸リチウム5重量%を混合して得られた
混合品を91重量%、導電体材としてグラファイト6重
量%、結着剤としてポリフッ化ビニリデン3重量%の割
合で混合して正極合剤を作成し、これをN−メチル−2
−ピロリドンに分散してスラリー状とした。そして、こ
の正極合剤スラリーを正極集電体10である帯状のアル
ミニウム箔の両面に塗布し、乾燥後ローラープレス機で
圧縮成形して正極2を作成した。
91% by weight of a mixture obtained by mixing 95% by weight of the LiCoO 2 powder thus obtained and 5% by weight of lithium carbonate, 6% by weight of graphite as a conductor material, and polyfluoride as a binder. Vinylidene chloride was mixed at a ratio of 3% by weight to prepare a positive electrode mixture, which was mixed with N-methyl-2.
-Disperse in pyrrolidone to make a slurry. Then, the positive electrode mixture slurry was applied to both sides of a strip-shaped aluminum foil that is the positive electrode current collector 10, dried and then compression-molded with a roller press to form a positive electrode 2.

【0031】負極1は次のようにして作製した。出発物
質に石油ピッチを用い、これに酸素を含む官能基を10
〜20%導入(いわゆる酸素架橋)した後、不活性ガス
中1000℃で焼成してガラス状炭素に近い性質の難黒
鉛化炭素材料を得た。この炭素材料について、X線回折
測定を行った結果、(002)面の面間隔は3.76Å
で、また真比重は1.58であった。
The negative electrode 1 was manufactured as follows. Petroleum pitch was used as a starting material, and a functional group containing oxygen was added thereto.
After introducing about 20% (so-called oxygen crosslinking), it was fired at 1000 ° C. in an inert gas to obtain a non-graphitizable carbon material having properties close to those of glassy carbon. As a result of X-ray diffraction measurement of this carbon material, the interplanar spacing of the (002) plane is 3.76Å
And the true specific gravity was 1.58.

【0032】この炭素材料を90重量%、結着剤として
ポリフッ化ビニリデン10重量%の割合で混合して負極
合剤を作成し、これをN−メチル−2−ピロリドンに分
散してスラリー状とした。この負極合剤スラリーを負極
集電体である帯状銅箔の両面に塗布し、乾燥後ローラー
プレス機で圧縮成形して負極1を作成した。
90% by weight of this carbon material and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry. did. The negative electrode mixture slurry was applied on both sides of a strip-shaped copper foil as a negative electrode current collector, dried and then compression-molded with a roller press machine to prepare a negative electrode 1.

【0033】この帯状の正極2、負極1及び25μmの
微孔性ポリプロピレンフィルムからなるセパレーター3
を順々に積層してから渦巻型に多数回巻回することによ
り渦巻き型電極を作成した。
The strip-shaped positive electrode 2, negative electrode 1 and separator 3 made of a 25 μm microporous polypropylene film
Then, a spirally-wound electrode was prepared by stacking the layers in sequence and then winding the layers in a spiral shape.

【0034】次に、ニッケルメッキを施した鉄製の電池
缶5の底部に絶縁板4を挿入し、上記渦巻き型電極を収
納した。そして、負極の集電をとるためにニッケル製の
負極リード11の一端を負極1に圧着し、他端を電池缶
5に溶接した。また、正極の集電をとるためにアルミニ
ウム製の正極リード12の一端を正極2に取り付け、他
端を電池内圧に応じて電流を遮断する防爆弁8を持つ電
池蓋7に溶接した。
Next, the insulating plate 4 was inserted into the bottom of the nickel-plated iron battery can 5 to house the spiral electrode. Then, in order to collect current from the negative electrode, one end of a negative electrode lead 11 made of nickel was pressure-bonded to the negative electrode 1, and the other end was welded to the battery can 5. Further, one end of a positive electrode lead 12 made of aluminum was attached to the positive electrode 2 in order to collect current from the positive electrode, and the other end was welded to a battery lid 7 having an explosion-proof valve 8 for shutting off current according to the internal pressure of the battery.

【0035】ただし、この防爆弁8には、あらかじめ内
圧を受ける面であってリード溶接部以外の部分にポリイ
ミド樹脂(日本ポリイミド社製,商品名ケルイミド10
50)を塗布し、絶縁層13を形成した。そして、この
電池缶5に中にプロピレンカーボネート50容量%とジ
エチルカーボネート50容量%混合溶媒中にLiPF6
1mol/l溶解させてなる電解液を注入した。そし
て、アスファルトを塗布した絶縁封口ガスケット6を介
して電池缶5をかしめることで、電池蓋7を固定し直径
14mm、高さ50mm円筒型電池(実施例電池1)を
作成した。
However, in the explosion-proof valve 8, a polyimide resin (trade name: Kelimide 10 manufactured by Nippon Polyimide Co., Ltd., which is a surface to be preliminarily subjected to internal pressure and other than the lead welded portion) is used.
50) was applied to form the insulating layer 13. Then, in the battery can 5, 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate were mixed in a mixed solvent of LiPF 6
An electrolytic solution prepared by dissolving 1 mol / l was injected. Then, the battery can 5 was caulked through the insulating sealing gasket 6 coated with asphalt to fix the battery lid 7, and a cylindrical battery (Example battery 1) having a diameter of 14 mm and a height of 50 mm was prepared.

【0036】実施例2 防爆弁8にフッ素樹脂(旭硝子社製,商品名LF−10
0)を塗布して絶縁層13を形成したこと以外は実施例
1と同様にして円筒型電池(実施例電池2)を作成し
た。
Example 2 A fluororesin (made by Asahi Glass Co., Ltd., trade name LF-10) was used for the explosion-proof valve 8.
0) was applied to form the insulating layer 13, and a cylindrical battery (Example battery 2) was prepared in the same manner as in Example 1.

【0037】実施例3 防爆弁8にシリコン樹脂(東芝シリコン社製,商品名T
SE389−C)を塗布して絶縁層13を形成したこと
以外は実施例1と同様にして円筒型電池(実施例電池
3)を作成した。
Example 3 Silicon resin (made by Toshiba Silicon Co., trade name T
A cylindrical battery (Example battery 3) was prepared in the same manner as in Example 1 except that SE389-C) was applied to form the insulating layer 13.

【0038】実施例4 防爆弁8に円形ポリイミドテープ(日東電工社製,商品
名No360UL)を接着剤で固定して絶縁層13を形
成したこと以外は実施例1と同様にして円筒型電池(実
施例電池4)を作成した。
Example 4 A cylindrical battery (as in Example 1) except that a circular polyimide tape (manufactured by Nitto Denko Corp., trade name No360UL) was fixed to the explosion-proof valve 8 with an adhesive to form the insulating layer 13. Example battery 4) was prepared.

【0039】実施例5 防爆弁8に円形フッ素樹脂粘着テープ(日東電工社製,
商品名No453)を接着剤で固定して絶縁層13を形
成したこと以外は実施例1と同様にして円筒型電池(実
施例電池5)を作成した。
Example 5 A circular fluororesin adhesive tape (made by Nitto Denko Corporation,
A cylindrical battery (Example battery 5) was prepared in the same manner as in Example 1 except that the insulating layer 13 was formed by fixing the product name No. 453) with an adhesive.

【0040】比較例1 防爆弁8に絶縁層を形成しないこと以外は、実施例1と
同様にして円筒型電池(比較例電池1)を作成した。
Comparative Example 1 A cylindrical battery (Comparative Example Battery 1) was prepared in the same manner as in Example 1 except that the insulating layer was not formed on the explosion-proof valve 8.

【0041】このようにして作製される電池各々20個
について、電流2.0Aに設定し、電源電圧を20V,
25V,30Vと変えて過充電を行い、防爆弁変形後の
発熱、破損の発生状況を調べ、電池損傷品の発生率を調
査した。その結果を表1に示す。
For each of the 20 batteries thus produced, the current was set to 2.0 A and the power supply voltage was 20 V.
Overcharging was performed while changing the voltage to 25V and 30V, and the generation of heat and damage after deformation of the explosion-proof valve was examined, and the incidence of battery-damaged products was investigated. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1からわかるように、実施例電池1〜実
施例電池5においては、電源電圧を30Vと高くした場
合でも電池破損の発生は防爆弁の変形によって確実に防
止される。これに対し、比較例電池1では、電圧が低い
場合には防爆弁の変形によって破損が防止されるもの
の、電源電圧を25V以上とすると、防爆弁変形後にお
いても異常反応,温度上昇が継続するものが出てくる。
As can be seen from Table 1, in Example battery 1 to Example battery 5, even if the power supply voltage was raised to 30 V, the occurrence of battery damage is reliably prevented by the deformation of the explosion-proof valve. On the other hand, in Comparative Example Battery 1, when the voltage is low, damage is prevented by deformation of the explosion-proof valve, but when the power supply voltage is 25 V or higher, abnormal reaction and temperature rise continue even after deformation of the explosion-proof valve. Things come out.

【0044】したがって、防爆弁に絶縁層を設けること
は、電池破損率が低く、安全性の高い非水電解液二次電
池を得る上で有効であることがわかった。
Therefore, it has been found that providing the explosion-proof valve with an insulating layer is effective in obtaining a non-aqueous electrolyte secondary battery having a low battery damage rate and high safety.

【0045】[0045]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池においては、防爆弁に絶縁層が
形成されているので、電源電圧が高い場合に過充電とな
ったときでも防爆弁の作動によって電池の温度上昇、電
池破損を確実に防止することが可能である。
As is apparent from the above description, in the non-aqueous electrolyte secondary battery of the present invention, the explosion-proof valve has the insulating layer, so that overcharge occurs when the power supply voltage is high. Even if it does, it is possible to reliably prevent the battery temperature from rising and the battery from being damaged by operating the explosion-proof valve.

【0046】したがって、本発明によれば、高エネルギ
ー密度,低自己放電率,長サイクル寿命であるとともに
極めて安全性の高い非水電解液二次電池を得ることが可
能である。
Therefore, according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery having high energy density, low self-discharge rate, long cycle life and extremely high safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の一例を示す概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】防爆弁変形後の非水電解液二次電池を示す概略
縦断面図である。
FIG. 2 is a schematic vertical sectional view showing a non-aqueous electrolyte secondary battery after deformation of an explosion-proof valve.

【図3】絶縁層が形成された防爆弁を示す概略平面図で
ある。
FIG. 3 is a schematic plan view showing an explosion-proof valve having an insulating layer formed thereon.

【図4】絶縁層が形成された防爆弁を示す概略断面図で
ある。
FIG. 4 is a schematic sectional view showing an explosion-proof valve having an insulating layer formed thereon.

【図5】内側テープと外側テープの形状の一例を示す概
略平面図である。
FIG. 5 is a schematic plan view showing an example of shapes of an inner tape and an outer tape.

【図6】テープ状の有機高分子化合物膜が固定された防
爆弁を示す概略断面図である。
FIG. 6 is a schematic sectional view showing an explosion-proof valve to which a tape-shaped organic polymer compound film is fixed.

【図7】従来の非水電解液二次電池を示す概略縦断面図
である。
FIG. 7 is a schematic vertical sectional view showing a conventional non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 4・・・絶縁板 5・・・電池缶 6・・・封口ガスケット 7・・・電池蓋 8・・・防爆弁 9・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード 13・・・絶縁層 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Insulating plate 5 ... Battery can 6 ... Seal gasket 7 ... Battery lid 8 ... Explosion-proof valve 9 ... Negative electrode Current collector 10 ... Positive electrode current collector 11 ... Negative electrode lead 12 ... Positive electrode lead 13 ... Insulating layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池内圧の上昇に伴い変形を生じる導体
製の防爆弁を有し、防爆弁が電極リードと電気的に接続
され、防爆弁の変形により防爆弁と電極リードの電気的
接続が破断される非水電解液二次電池において、 上記防爆弁の電池内圧を受ける側の面であってリード接
続部以外の部分の少なくとも一部に電気的絶縁層が設け
られていることを特徴とする非水電解液二次電池。
1. An explosion-proof valve made of a conductor that deforms as the internal pressure of a battery increases, the explosion-proof valve is electrically connected to an electrode lead, and the explosion-proof valve and the electrode lead are electrically connected by deformation of the explosion-proof valve. In a non-aqueous electrolyte secondary battery to be broken, an electrical insulating layer is provided on at least a part of the surface of the explosion-proof valve on the side receiving the battery internal pressure and other than the lead connecting portion. Non-aqueous electrolyte secondary battery.
【請求項2】 電気的絶縁層が有機高分子化合物よりな
ることを特徴とする請求項1記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrically insulating layer is made of an organic polymer compound.
【請求項3】 有機高分子化合物よりなる電気的絶縁層
が接着剤を介して防爆弁に固定されていることを特徴と
する請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrically insulating layer made of an organic polymer compound is fixed to the explosion-proof valve via an adhesive.
【請求項4】 防爆弁に有機高分子化合物よりなる電気
的絶縁層を設けるに際し、電極リードを防爆弁に接続す
るのに先行して、防爆弁の電極リード取付け部を除いた
部分に予め有機高分子化合物塗料を塗布し、電気的絶縁
層を形成しておくことを特徴とする非水電解液二次電池
の製造方法。
4. When providing an electrically insulating layer made of an organic polymer compound on the explosion-proof valve, prior to connecting the electrode lead to the explosion-proof valve, a portion of the explosion-proof valve excluding the electrode lead attachment portion is preliminarily formed with an organic material. A method for producing a non-aqueous electrolyte secondary battery, which comprises applying a polymer compound coating to form an electrically insulating layer.
【請求項5】 防爆弁に有機高分子化合物よりなる電気
的絶縁層を設けるに際し、電極リードを防爆弁に接続す
るのに先行して、防爆弁の電極リード取付け部を除いた
部分に予め接着剤を塗布して有機高分子化合物膜を固定
し、電気的絶縁層を形成しておくことを特徴とする非水
電解液二次電池の製造方法。
5. When providing an electrically insulating layer made of an organic polymer compound on the explosion-proof valve, prior to connecting the electrode lead to the explosion-proof valve, the electrode lead of the explosion-proof valve is preliminarily adhered to the part excluding the electrode lead attachment portion. A method for producing a non-aqueous electrolyte secondary battery, which comprises applying an agent to fix an organic polymer compound film and forming an electrically insulating layer in advance.
JP16008692A 1992-05-28 1992-05-28 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Fee Related JP3230279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16008692A JP3230279B2 (en) 1992-05-28 1992-05-28 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16008692A JP3230279B2 (en) 1992-05-28 1992-05-28 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05335011A true JPH05335011A (en) 1993-12-17
JP3230279B2 JP3230279B2 (en) 2001-11-19

Family

ID=15707564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16008692A Expired - Fee Related JP3230279B2 (en) 1992-05-28 1992-05-28 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3230279B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008066A (en) * 2013-06-25 2015-01-15 株式会社豊田自動織機 Electricity storage device
KR20160035617A (en) * 2014-09-22 2016-04-01 삼성에스디아이 주식회사 Rechargeable battery having heat resistance insulation layer
JP2017045715A (en) * 2015-08-28 2017-03-02 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2019082711A1 (en) * 2017-10-23 2019-05-02 三洋電機株式会社 Cylindrical battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008066A (en) * 2013-06-25 2015-01-15 株式会社豊田自動織機 Electricity storage device
KR20160035617A (en) * 2014-09-22 2016-04-01 삼성에스디아이 주식회사 Rechargeable battery having heat resistance insulation layer
JP2017045715A (en) * 2015-08-28 2017-03-02 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2019082711A1 (en) * 2017-10-23 2019-05-02 三洋電機株式会社 Cylindrical battery

Also Published As

Publication number Publication date
JP3230279B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
KR0140531B1 (en) Battery with current blocking valve
US7060386B2 (en) Nonaqueous electrolyte solution secondary battery
CA2098531C (en) Cell electrolyte solvent, cell electrolyte comprising the solvent and non-aqueous electrolyte battery comprising the electrolyte
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
EP2161776B1 (en) Polyvinylpyridine additives for nonaqueous electrolytes
US20230083371A1 (en) Secondary battery
JPH10112318A (en) Nonaqueous electrolyte secondary battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP3049727B2 (en) Non-aqueous electrolyte secondary battery
JP2000036324A (en) Nonaqueous secondary battery
JPH11176478A (en) Organic electrolyte secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JPH04332479A (en) Nonaqueous electrolyte secondary battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP3230279B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001126684A (en) Non-aqueous electrolyte battery
EP0924787B1 (en) Method of making a nonaqueous electrolytic secondary battery
JPH09213375A (en) Non-aqueous electrolyte secondary battery
JPH11260413A (en) Secondary battery
JP2002100408A (en) Flat nonaqueous electrolyte secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP4240422B2 (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010814

LAPS Cancellation because of no payment of annual fees