JPH05333128A - Magnetic domain structure analyzing device - Google Patents

Magnetic domain structure analyzing device

Info

Publication number
JPH05333128A
JPH05333128A JP13655692A JP13655692A JPH05333128A JP H05333128 A JPH05333128 A JP H05333128A JP 13655692 A JP13655692 A JP 13655692A JP 13655692 A JP13655692 A JP 13655692A JP H05333128 A JPH05333128 A JP H05333128A
Authority
JP
Japan
Prior art keywords
magnetic domain
image
domain structure
sample
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13655692A
Other languages
Japanese (ja)
Inventor
Shioji Fujita
塩地 藤田
Kenji Furusawa
賢司 古澤
Takao Yonekawa
隆生 米川
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13655692A priority Critical patent/JPH05333128A/en
Publication of JPH05333128A publication Critical patent/JPH05333128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To clear up a magnetic domain structure of a medium by changing freely the sample observing (light incident on the medium) direction in the medium in-plane direction, and measuring the magnetic domain magnetizing direction in the medium in-plane direction. CONSTITUTION:Light of a mercury lamp 1 is deflected (2), and passes through a prism 3, and is condensed, and is made incident, and is reflected on a measurement sample 5 by an objective lens 4. The reflected light is reflected in the horizontal direction by the prism 3, and an analyzer 6 generates a dark and bright magnetic domain image according to a magnetic domain structure of the sample 5, and a CCD camera 7 observes it. Image processing (8) is carried out on it, and a computer 9 to control a sample driving system 11 inputs it. The driving system 11 rotates with an observation point as its center, and changes the observing direction. The sample 5 is observed, and the range of a brightness change caused by a difference of the magnetization direction is determined, and angle dependency of the magnetic domain image is measured, and the computer 9 takes in the magnetic domain image. Next, the distribution of illumination and an angle of rotation of the sample 5 are corrected, and an average brightness value is calculated on respective microscopic parts whose images are divided, and the magnetization direction of the respective microscopic parts is determined. Thereby, the magnetic domain structure in the medium in-plane direction can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜磁気テープ、薄膜
ヘッド、スパッタ磁気ディスクなど、特に、金属磁性薄
膜において、膜面内方向での磁区構造および磁化過程を
解析するためのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for analyzing a magnetic domain structure and a magnetization process in a film in-plane direction of a thin film magnetic tape, a thin film head, a sputtered magnetic disk, etc., particularly a metal magnetic thin film.

【0002】[0002]

【従来の技術】磁気記録技術が進歩するにつれて、記録
密度は高くなり、磁気的に記録されるパターンの最小寸
法は1μm以下と細かくなってきている。記録パターン
が小さくなると、磁性媒体の単磁区の大きさ、粒径、粒
子間相互作用など、磁性媒体自身の特性が、磁区の挙動
を通して、記録特性により大きく影響する。また、記録
パターンを読み出す磁気ヘッドも、記録されたパターン
にあわせてヘッドの大きさを小さくすることが必要で、
その結果、読み出し時のヘッドの磁区構造が出力に影響
することが明らかにされてきている。従来、記録特性の
解析は、読み出し、書き込み等の電気特性に重点が置か
れ、電気特性をもたらす要因として磁気特性を測定し、
磁気特性を与える原因として膜物性の解析が行われ、こ
れら電気特性、磁気特性、膜物性を突き合わせて考察す
ることで進められてきた。また、これらの間接的な手法
に加えて、磁化状態を直接観察する方法としてビッター
法、ローレンツ電子顕微鏡による観察がある。磁化状態
を直接見ることで、磁気記録現象を直感的に捕える事が
出来る。近年、スピンSEM、光磁気効果を用いた顕微
鏡の開発によって、記録状態と磁区の挙動の関係につい
ての研究はさらに進んできている。
2. Description of the Related Art As the magnetic recording technology has advanced, the recording density has increased, and the minimum dimension of a magnetically recorded pattern has become finer at 1 μm or less. As the recording pattern becomes smaller, the characteristics of the magnetic medium itself, such as the size, particle size, and particle-particle interaction of the single magnetic domain of the magnetic medium, have a greater influence on the recording characteristics through the behavior of the magnetic domain. In addition, the magnetic head that reads the recording pattern also needs to be reduced in size according to the recorded pattern.
As a result, it has been clarified that the magnetic domain structure of the head during reading affects the output. Conventionally, the analysis of the recording characteristics has focused on the electric characteristics such as reading and writing, and the magnetic characteristics are measured as a factor that brings about the electric characteristics.
The physical properties of the film have been analyzed as a cause of giving the magnetic properties, and the progress has been made by considering these electrical properties, magnetic properties, and physical properties of the film. In addition to these indirect methods, there are a Bitter method and a Lorentz electron microscope as a method for directly observing the magnetization state. The magnetic recording phenomenon can be intuitively grasped by directly looking at the magnetization state. In recent years, with the development of a microscope using a spin SEM and a magneto-optical effect, research on the relationship between the recording state and the behavior of magnetic domains has been further advanced.

【0003】ピッター法、ローレンツ電子顕微鏡、スピ
ンSEMは、特殊な場合をのぞき、動的な磁化現象を観
察することはできない。このため、磁区を直接見ること
による研究は、最初、静的に磁区を観察するだけであっ
た。これに対して、光磁気効果を用いる方法は、磁気バ
ブルの研究により明らかなように、動的な磁区の挙動を
実験的に観察することに適している。
The Pitter method, Lorentz electron microscope, and spin SEM cannot observe the dynamic magnetization phenomenon except for special cases. For this reason, research by directly looking at magnetic domains only initially observed them statically. On the other hand, the method using the magneto-optical effect is suitable for experimentally observing the behavior of the dynamic magnetic domain, as is clear from the study of magnetic bubbles.

【0004】また、ビッター法では、厳密な意味では磁
化自身を見るのではなく、磁化の作る磁極を見ている。
このためビッター法は、実験上、記録状態を観察するた
めには簡便で有効な方法であるが、磁区構造を解析する
ことには適していない。
In the Bitter method, in a strict sense, the magnetization itself is not seen, but the magnetic poles created by the magnetization are seen.
Therefore, the Bitter method is a simple and effective method for observing the recording state experimentally, but is not suitable for analyzing the magnetic domain structure.

【0005】ローレンツ電子顕微鏡、スピンSEMな
ど、電子顕微鏡を用いる方法は分解能が高い事を特徴と
する。しかし、ローレンツ電顕による観察は特殊な試料
を作成する必要があること。ローレンツ電顕、スピンS
EMは試料を真空の試料室に入れる事が必要であるこ
と、また、試料の磁化過程を観察するために試料に磁界
を加えることは、特殊な場合をのぞいてほとんど不可能
である。
A method using an electron microscope such as Lorentz electron microscope and spin SEM is characterized by high resolution. However, observation by Lorenz electron microscopy requires that a special sample be prepared. Lorenz electron microscope, Spin S
EM requires the sample to be placed in a vacuum sample chamber, and applying a magnetic field to the sample to observe the magnetization process of the sample is almost impossible except in special cases.

【0006】これに対して、光磁気効果を用いる方法
は、分解能が電子顕微鏡に比べ劣るものの大気中で測定
可能であり、また、外部磁界を加えての観察が可能であ
り、かつ非破壊測定という特徴がある。特に、面内方向
の磁区構造の観測は、特開昭63−104015号公報
に述べているように、マイクロカー光学系によって、縦
カー効果を用い磁区像を得る事が出来る。この装置で
は、磁性試料付近に電磁石を備え、能動的に磁化反転な
どの磁気現象を引き起こし、その過程を観察することも
できる。
On the other hand, the method using the magneto-optical effect is inferior in resolution to an electron microscope, but it can be measured in the atmosphere, can be observed by applying an external magnetic field, and is nondestructive. There is a feature called. In particular, in the observation of the magnetic domain structure in the in-plane direction, a magnetic domain image can be obtained by using the vertical Kerr effect with a micro Kerr optical system, as described in JP-A-63-104015. In this device, an electromagnet is provided in the vicinity of the magnetic sample to actively induce a magnetic phenomenon such as magnetization reversal, and the process can be observed.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開昭63−
104015号公報に述べてある装置は、一方向からの
磁区構造の観察にとどまり、磁区の磁化方向を特定して
いない。この結果、この装置では、磁気ヘッド等に用い
られる軟磁性材料のように明確な磁壁を持ち、単純な磁
区構造を取る磁性膜の磁区構造を観測することはできる
が、磁気記録媒体などに用いられる保磁力が大きい硬磁
性材料等、明確な磁壁構造を取らない磁性膜の複雑な磁
区構造は解析できないという問題があった。
However, JP-A-63-
The device described in Japanese Patent No. 104015 is limited to observing the magnetic domain structure from one direction and does not specify the magnetization direction of the magnetic domain. As a result, with this device, it is possible to observe the magnetic domain structure of a magnetic film that has a clear magnetic domain wall like the soft magnetic material used for magnetic heads and has a simple magnetic domain structure. There is a problem that a complicated magnetic domain structure of a magnetic film that does not have a clear domain wall structure, such as a hard magnetic material having a large coercive force, cannot be analyzed.

【0008】本発明の目的は、媒体の面内方向で磁区の
磁化方向を測定することで、媒体の磁区構造を明確にす
ることにある。
An object of the present invention is to clarify the magnetic domain structure of the medium by measuring the magnetization direction of the magnetic domain in the in-plane direction of the medium.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
特開昭63−104015号公報と同様な光学系に、試
料の観察方向(媒体への光の入射方向)を媒体の面内方
向で自由に変えられる手段を組み合わせ、観察方向を連
続的に変えながら撮像した複数の画像を計算機を用いて
解析することによって、媒体の面内方向での磁区構造を
決定する事ができる。
In order to achieve this object, in an optical system similar to that of Japanese Patent Laid-Open No. 63-104015, the observation direction of the sample (direction of incidence of light on the medium) is the in-plane direction of the medium. The magnetic domain structure in the in-plane direction of the medium can be determined by combining freely variable means and analyzing a plurality of images taken while continuously changing the observation direction using a computer.

【0010】[0010]

【作用】次に、その原因を説明する。Next, the cause will be described.

【0011】面内方向に磁化成分がある磁性膜を、偏向
子と検光子を用いて縦カー効果によって観察する場合、
図1に示すように、磁化方向によって濃淡を持つように
光学系を調整することができる。この図では、磁化方向
と観察方向が一致した場合に最も明るく、逆向きになっ
た場合に最も暗くなるように、光学系を調整している。
磁性膜を上方から見ると、観察方向を360°連続的に
変化させた場合に、観察方向と磁化がなす角度θに応じ
て、磁区の明るさは図1(b)に示すように変化する。
従って、実際では観察方向を変化させて、観察範囲内の
各点で最も明るくなる方向、又は、最も暗くなる方向に
記録しておくことで、各点の磁化方向を特定する事がで
きる。
When a magnetic film having a magnetization component in the in-plane direction is observed by the Kerr effect using a deflector and an analyzer,
As shown in FIG. 1, the optical system can be adjusted so as to have light and shade depending on the magnetization direction. In this figure, the optical system is adjusted so that it becomes brightest when the magnetization direction and the observation direction match and darkest when the magnetization direction is opposite.
When the magnetic film is viewed from above, when the observation direction is continuously changed by 360 °, the brightness of the magnetic domain changes as shown in FIG. 1B according to the angle θ formed by the observation direction and the magnetization. ..
Therefore, in actuality, the magnetization direction of each point can be specified by changing the observation direction and recording in the direction that becomes the brightest or the darkest at each point within the observation range.

【0012】具体的な例として、リングヘッドによって
面内磁気記録媒体に図2(a)に示すような磁化反転領
域が書き込まれていた場合を考える。この画像を計算機
によって、図2(b)に示すように微小部分に分割す
る。次に、観察方向を45°ずつ変えながら観察し、計
算機にそれぞれの像を取り込む。それぞれの方向で予想
される磁区像を図3(a)〜(h)に示す。計算機では
分割された微小部分内で画素の明るさを調べる。各微小
部分について、最も明るかった方向をその微小部分の磁
化方向、又は、最も暗かった方向を磁化の逆方向として
調整する。この結果、それぞれの微小部分について図4
(a)に示すように磁化方向を測定する事ができる。磁
化領域の形成過程を考慮すると図4(b)の磁区構造が
推定される。微小部分を形成するための分割の粗さ、観
察方向をもっと細かく変化させることで、より詳細な磁
区構造を得る事ができる。
As a concrete example, consider a case where a magnetization reversal region as shown in FIG. 2A is written in the in-plane magnetic recording medium by the ring head. This image is divided into minute parts by a computer as shown in FIG. 2 (b). Next, observation is performed while changing the observation direction by 45 °, and each image is captured in the computer. The magnetic domain images expected in each direction are shown in FIGS. The computer checks the brightness of the pixel within the divided minute portion. For each minute portion, the brightest direction is adjusted as the magnetization direction of the minute portion, or the darkest direction is adjusted as the opposite direction of the magnetization. As a result, FIG.
The magnetization direction can be measured as shown in (a). Considering the formation process of the magnetization region, the magnetic domain structure of FIG. 4B is estimated. A finer magnetic domain structure can be obtained by changing the roughness of division for forming a minute portion and the observation direction more finely.

【0013】[0013]

【実施例】次に本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0014】磁区構造解析装置のブロック図を図5に示
す。水銀灯1からでは光は、偏向子2によって直線偏
向、または直線偏向に近い楕円偏向になり、プリズム3
によって垂直下方に投射され、対物レンズ4によって斜
め方向から測定対象物5上に集光して、入射し、反射さ
れる。偏向した光が測定対象で反射されるときに、反射
光は測定対象の面内磁化成分に応じて偏向面が回転す
る。反射光は、対物レンズ4を通り、垂直上方に進み、
プリズム3によって水平方向に反射され、検光子6を通
過する。検光子6は、偏向子に対して、クロスニコル位
置からカー回転角度分程度ずらしてあるために、測定対
象物の磁区構造に応じて濃淡の像を生じさせる。この磁
区像をCCDカメラ7で観察する。
A block diagram of the magnetic domain structure analysis apparatus is shown in FIG. The light from the mercury lamp 1 is linearly deflected by the deflector 2 or becomes an elliptic polarization close to the linear deflection, and the prism 3
Is projected vertically downward by the objective lens 4, and is collected by the objective lens 4 from an oblique direction onto the measuring object 5, is incident, and is reflected. When the deflected light is reflected by the measuring object, the deflecting surface of the reflected light rotates according to the in-plane magnetization component of the measuring object. The reflected light passes vertically through the objective lens 4,
It is reflected in the horizontal direction by the prism 3 and passes through the analyzer 6. Since the analyzer 6 is displaced from the crossed Nicols position by the Kerr rotation angle with respect to the deflector, it produces a grayscale image according to the magnetic domain structure of the measurement target. This magnetic domain image is observed by the CCD camera 7.

【0015】CCDカメラ7には、画像処理装置8を接
続してある。画像処理装置8は、感度を非常に高くする
ことができて、極めて狭い範囲の濃淡を識別することが
できる。また、画像の加算による像の強調、画像間での
減算を行って関係の無い背景像を消すこともできる。画
像処理装置8には計算機がGP−IBを通して接続して
あり、計算機9から画像処理装置8を制御したり、互い
の間で画像を転送することもできる。また、この計算機
9は試料の駆動系をGP−IBを通して制御している。
なお、9は電磁石、10は電磁石電源、11は試料駆動
系、12は定盤である。
An image processing device 8 is connected to the CCD camera 7. The image processing device 8 can have a very high sensitivity and can distinguish light and shade in an extremely narrow range. Further, it is also possible to eliminate unrelated background images by performing image enhancement by adding images and subtracting between images. A computer is connected to the image processing device 8 through the GP-IB, and the computer 9 can control the image processing device 8 or transfer images between them. The computer 9 also controls the drive system of the sample through the GP-IB.
In addition, 9 is an electromagnet, 10 is an electromagnet power source, 11 is a sample drive system, and 12 is a surface plate.

【0016】試料の駆動系の斜視図を図6に示す。この
試料の駆動系は、観察点を中心に回転することで、観察
方向(試料に対する光の入射方向)を変えることができ
る。本実施例では、−90〜540°まで0.1°ステ
ップで回転させることができる。回転の中心を観察点に
選ぶことが出来るように、回転ステージはXステージ、
Yステージに載っている。また試料の任意の点を観察す
ることが出来るように、回転ステージの上にXYステー
ジがある。Zステージは顕微鏡の焦点を合わせるための
もので、その位置は回転ステージの上でも下でもよい。
FIG. 6 is a perspective view of the drive system of the sample. The driving system of this sample can change the observation direction (the incident direction of light to the sample) by rotating around the observation point. In the present embodiment, it is possible to rotate from -90 to 540 ° in 0.1 ° steps. The rotation stage is the X stage, so that the center of rotation can be selected as the observation point.
It's on the Y stage. Further, there is an XY stage on the rotary stage so that an arbitrary point of the sample can be observed. The Z stage is for focusing the microscope, and its position may be above or below the rotary stage.

【0017】本装置による軟磁性薄膜の観察例は三角形
の環流磁区構造をとっている。しかし、一様な磁区構造
にかかわらず、濃淡が変化している。これは光源による
照明に、明るさの分布があるためである。この光源によ
る明るさの分布は、磁化方向の変化による濃淡の差より
大きい。計算機を用いて磁区像の濃淡から磁区構造を得
るためには、光源による明るさの分布を補正することが
必要である。本実施例では、最初に鏡面の非磁性の試料
について明るさの分布を測定し、X方向、Y方向につい
て平均値より明るさの傾きを求め、最大値を用いて規格
化して補正した。
An example of observation of the soft magnetic thin film by this apparatus has a triangular circulating magnetic domain structure. However, the shading changes regardless of the uniform magnetic domain structure. This is because the illumination by the light source has a brightness distribution. The distribution of brightness by this light source is larger than the difference in light and shade due to the change in the magnetization direction. In order to obtain the magnetic domain structure from the light and shade of the magnetic domain image using a computer, it is necessary to correct the brightness distribution due to the light source. In this example, first, the brightness distribution was measured for a non-magnetic sample having a mirror surface, the brightness gradient was obtained from the average value in the X and Y directions, and the maximum value was used for normalization and correction.

【0018】次に測定の手順をフローチャートにして図
7に示す。最初に鏡面基板(NiPめっきを行い、鏡面
研磨したアルミニウム板)を測定する(1−1−2)。
これは、計算機で光源の明るさを補正するテーブルを作
るためである。次に、測定対象を観察し、磁区がある場
合には、最も明るい磁区と最も暗い磁区の明るさを測定
し、磁化方向の違いによる明るさの変化範囲を定める
(1−1−3)。磁区が見当らない場合には、電磁石で
磁性体を両方向に飽和させた場合の明るさを測定し、明
るさの変化範囲とする。磁化方向の違いによる明るさの
変化範囲を定める理由は、磁化方向による明るさの変化
以上に、傷など、観察対象の表面の状態によって局所的
に明るさが変化する場合があり、そのような点を評価か
ら除くためである。次に記録媒体の磁区像の角度依存性
を測定し、磁区像を計算機に取り込む(1−2)。角度
依存性を測定する場合に、試料を回転させると、観察点
が回転の中心より振れるのでXステージ、Yステージを
用いて修正する。
Next, FIG. 7 shows a flow chart of the measurement procedure. First, a specular substrate (aluminum plate that has been subjected to NiP plating and specular polishing) is measured (1-1-2).
This is because a computer creates a table for correcting the brightness of the light source. Next, the measurement target is observed, and if there is a magnetic domain, the brightness of the brightest magnetic domain and the darkest magnetic domain is measured, and the change range of the brightness due to the difference in the magnetization direction is determined (1-1-3). When no magnetic domain is found, the brightness when the magnetic body is saturated in both directions with an electromagnet is measured, and the brightness change range is set. The reason for defining the range of change in brightness depending on the difference in the magnetization direction is that the brightness may change locally depending on the surface condition of the observation target such as a scratch, in addition to the change in brightness depending on the magnetization direction. This is because the points are excluded from the evaluation. Next, the angle dependence of the magnetic domain image of the recording medium is measured, and the magnetic domain image is taken into the computer (1-2). When measuring the angle dependency, when the sample is rotated, the observation point swings from the center of rotation, so the correction is performed using the X stage and the Y stage.

【0019】次に、データ処理を行う。最初に、測定し
た明るさ補正テーブルを用い、各像の明るさを補正する
(2−1−1)。次に、ソフト上で像を回転させ、回転
ステージによって試料を回転させたぶんを元に戻す(2
−1−2)。次に、像を分割し、微小部分に分ける(2
−2)。各微小部分の中で、明るさの平均値を計算する
(2−2−1)。明るさの平均値を計算する場合に、
(1−1−3)に定めた明るさの範囲から外れる画素
は、平均値の計算に含めない。
Next, data processing is performed. First, the brightness of each image is corrected using the measured brightness correction table (2-1-1). Next, rotate the image on the software, and rotate the sample by the rotation stage to restore the original state (2
-1-2). Next, the image is divided into small parts (2
-2). The average value of brightness is calculated in each minute portion (2-2-1). When calculating the average brightness,
Pixels outside the brightness range defined in (1-1-3) are not included in the calculation of the average value.

【0020】この結果から図8の磁区構造が得られる。From this result, the magnetic domain structure of FIG. 8 is obtained.

【0021】本実施例では、磁区像の濃淡に影響するた
めに、測定中は偏向子、検光子の状態を一定にした。し
かし、検光子にディジタルエンコーダを付けて角度設定
の再現性が得られれば、測定中にクロスニコル位置の両
側に検光子を動かし差像を取り、磁区に関係しない背景
像を消去し、磁区像を強調する事もできる。
In this embodiment, the states of the deflector and the analyzer were kept constant during the measurement in order to influence the density of the magnetic domain image. However, if a digital encoder is attached to the analyzer and the reproducibility of the angle setting is obtained, the analyzer is moved to both sides of the crossed Nicols position during measurement to take a difference image, and the background image not related to the magnetic domain is erased, and the magnetic domain image is removed. Can be emphasized.

【0022】また、本実施例では、適用の範囲を広げる
ために、白色光源として水銀灯を用いた。しかし、表面
の平坦性が良く、カー回転角が大きい場合には、レーザ
光源を用いると、磁区像をより鮮明に観察することがで
きる。
Further, in this embodiment, a mercury lamp is used as a white light source in order to expand the range of application. However, when the surface flatness is good and the Kerr rotation angle is large, it is possible to more clearly observe the magnetic domain image by using the laser light source.

【0023】[0023]

【発明の効果】【The invention's effect】 【図面の簡単な説明】[Brief description of drawings]

【図1】縦カー効果の原理の説明図。FIG. 1 is an explanatory diagram of a principle of a vertical Kerr effect.

【図2】磁化反転領域を示す説明図。FIG. 2 is an explanatory diagram showing a magnetization reversal region.

【図3】方向を変えて観察した磁区像を微小領域に分け
て明るさの平均値とった説明図。
FIG. 3 is an explanatory diagram in which a magnetic domain image observed by changing a direction is divided into minute regions and an average value of brightness is taken.

【図4】図3(a)に示す明るさの分布から決定できる
磁区構造の説明図。
FIG. 4 is an explanatory diagram of a magnetic domain structure that can be determined from the brightness distribution shown in FIG.

【図5】磁区構造解析装置のブロック図。FIG. 5 is a block diagram of a magnetic domain structure analysis apparatus.

【図6】試料駆動系の斜視図。FIG. 6 is a perspective view of a sample drive system.

【図7】測定から磁区構造決定までのフローチャート。FIG. 7 is a flowchart from measurement to determination of magnetic domain structure.

【図8】図7に示す軟磁性膜で磁区像の角度依存性を撮
像し、計算機で明るさを解析し、磁区構造を決定した例
の説明図。
8 is an explanatory diagram of an example in which the angle dependence of a magnetic domain image is imaged by the soft magnetic film shown in FIG. 7, the brightness is analyzed by a computer, and the magnetic domain structure is determined.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 勝男 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuo Abe 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock Engineering Institute, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】縦カー効果を用いてφ0.5〜100μm
の領域の磁区構造を解析する装置において、光源からで
て、偏向子、プリズ、対物レンズを通り、偏向している
光を、磁性薄膜である測定対象物上に斜め方向から入射
させ、集光し、その反射光を前記対物レンズ、前記プリ
ズム、検光子によって撮像装置に導き、画像処理を行い
磁区像を得る装置に、前記偏向した光の入射方向を前記
測定対象物の面内方向で自由に変えられる手段を組み合
わせることを特徴とする磁区構造解析装置。
1. φ0.5 to 100 μm using the vertical Kerr effect
In the device for analyzing the magnetic domain structure of the region, the light deflected from the light source, passing through the deflector, the prism, and the objective lens is obliquely incident on the measurement target, which is a magnetic thin film, and is condensed. Then, the reflected light is guided to the image pickup device by the objective lens, the prism, and the analyzer, and the incident direction of the deflected light is freely set in the in-plane direction of the measurement target in the device for obtaining the magnetic domain image by image processing. A magnetic domain structure analyzing apparatus characterized by combining means capable of changing to.
【請求項2】請求項1において、前記対物レンズは5〜
100倍の倍率であり、前記撮像装置は1〜15倍の倍
率を持つ磁区構造解析装置。
2. The objective lens according to claim 1, wherein
The magnetic domain structure analysis apparatus has a magnification of 100 times and the imaging apparatus has a magnification of 1 to 15 times.
【請求項3】請求項1において、前記画像処理では、画
像の積算による像の強調、画像間の減算による背景像の
消去ができて、前記撮像装置で撮像した画像を記憶する
ことができる外部記憶装置を持った計算機を備え、前記
計算機を用いて前記磁区像を細かい微小領域に分割し、
前記の微小領域の平均の明るさを求め、他の前記磁区像
と微小領域の明るさを比較する磁区構造解析装置。
3. The image processing according to claim 1, wherein the image processing is capable of emphasizing the image by integrating the images, deleting the background image by subtracting the images, and storing the image captured by the image capturing apparatus. A calculator having a storage device is provided, and the calculator is used to divide the magnetic domain image into fine minute regions.
A magnetic domain structure analyzing apparatus for obtaining an average brightness of the micro area and comparing the brightness of the micro area with another magnetic domain image.
【請求項4】請求項1において、前記計算機は、前記偏
向した光の入射方向を前記測定対象物の面内方向で自由
に変えられる手段を制御出来る磁区構造解析装置。
4. The magnetic domain structure analysis apparatus according to claim 1, wherein the computer can control means for freely changing the incident direction of the deflected light in the in-plane direction of the measurement target.
【請求項5】請求項1において、前記測定対象物付近
に、前記測定対象物を磁気的に飽和させられる電磁石を
備えた磁区構造解析装置。
5. The magnetic domain structure analyzing apparatus according to claim 1, further comprising an electromagnet near the measurement target, the electromagnet magnetically saturating the measurement target.
JP13655692A 1992-05-28 1992-05-28 Magnetic domain structure analyzing device Pending JPH05333128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13655692A JPH05333128A (en) 1992-05-28 1992-05-28 Magnetic domain structure analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13655692A JPH05333128A (en) 1992-05-28 1992-05-28 Magnetic domain structure analyzing device

Publications (1)

Publication Number Publication Date
JPH05333128A true JPH05333128A (en) 1993-12-17

Family

ID=15177991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13655692A Pending JPH05333128A (en) 1992-05-28 1992-05-28 Magnetic domain structure analyzing device

Country Status (1)

Country Link
JP (1) JPH05333128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003789A1 (en) * 2004-06-30 2006-01-12 Japan Science And Technology Agency Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
JP2014070975A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Apparatus and method for detecting magnetic domain discontinuous portion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003789A1 (en) * 2004-06-30 2006-01-12 Japan Science And Technology Agency Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
US7560921B2 (en) 2004-06-30 2009-07-14 Japan Science And Technology Agency Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
JP2014070975A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Apparatus and method for detecting magnetic domain discontinuous portion

Similar Documents

Publication Publication Date Title
Kuo et al. Development of methodology for low exposure, high resolution electron microscopy of biological specimens
US8659291B2 (en) Magneto-optical detection of a field produced by a sub-resolution magnetic structure
US8289818B2 (en) Magneto-optic write-head characterization using the recording medium as a transducer layer
JP2003014667A (en) Apparatus and method for observing using electron beam
Durkan et al. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope
WO2006003789A1 (en) Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
JPH0643885B2 (en) Charged particle microprobe device
US5436449A (en) Transmission electron microscope and method of observing magnetic phenomena using its apparatus
JPH05215828A (en) Magnetic domain structure analyzing device
Smith On‐line digital computer techniques in electron microscopy: general introduction
JPH05333128A (en) Magnetic domain structure analyzing device
CN108710090B (en) Method for measuring distribution of antiferromagnetic magnetic domain by utilizing magneto-optical Kerr effect
JP4726048B2 (en) Observation method using phase recovery electron microscope
JPH0458622B2 (en)
US6759654B1 (en) High contrast inspection and review of magnetic media and heads
CN116047379A (en) Dynamic magnetic domain imaging and local hysteresis loop synchronous measurement system
JPS62102103A (en) Measuring instrument for fine magnetized pattern
Herman et al. Magneto-optic observation of domain motions and instabilities in small permalloy elements
JP2002340811A (en) Surface evaluation device
US6936816B2 (en) High contrast inspection and review of magnetic media and heads
TWI259285B (en) Method of measuring sub-micrometer hysteresis loops of magnetic films
US6593739B1 (en) Apparatus and method for measuring magnetization of surfaces
Rohrmann et al. High-resolution Kerr observation of magnetic domains
Guerra Photon tunneling microscopy
Argyle et al. Efficient Kerr Microscopy: Innovations enabling Kerr microscopes to image components of surface magnetism.