JP4726048B2 - Observation method using phase recovery electron microscope - Google Patents

Observation method using phase recovery electron microscope Download PDF

Info

Publication number
JP4726048B2
JP4726048B2 JP2005155069A JP2005155069A JP4726048B2 JP 4726048 B2 JP4726048 B2 JP 4726048B2 JP 2005155069 A JP2005155069 A JP 2005155069A JP 2005155069 A JP2005155069 A JP 2005155069A JP 4726048 B2 JP4726048 B2 JP 4726048B2
Authority
JP
Japan
Prior art keywords
electron
electron beam
image
sample
real image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005155069A
Other languages
Japanese (ja)
Other versions
JP2006331901A (en
Inventor
博司 柿林
一寿 郷原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Hitachi Ltd
Original Assignee
Hokkaido University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Hitachi Ltd filed Critical Hokkaido University NUC
Priority to JP2005155069A priority Critical patent/JP4726048B2/en
Publication of JP2006331901A publication Critical patent/JP2006331901A/en
Application granted granted Critical
Publication of JP4726048B2 publication Critical patent/JP4726048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子線を試料に照射して、試料を透過した電子を検出して拡大像を得る電子顕微鏡装置に係り、特に、位相回復方式の電子顕微鏡による観察技術に関する。   The present invention relates to an electron microscope apparatus that obtains an enlarged image by irradiating a sample with an electron beam and detecting electrons transmitted through the sample, and more particularly to an observation technique using a phase recovery type electron microscope.

電子顕微鏡の高分解能化技術の主なものとして、分解能を制限する要因である対物レンズの収差を電子光学系のハードウエア技術によって取り除き高分解能な実像を観察する方法と、試料の電子回折像と試料外側はゼロポテンシャルという条件を用いて位相回復アルゴリズムで演算処理することにより、高分解能な実像を得る方法の2つがある。前者の技術は、例えば、「Journal of Electron Microscopy, Vol. 48, p. 821-826 (1999)」に示されている。後者の技術は、例えば、「SCIENCE Vol. 300, p. 1419-1421 (2003)」に示されている。   The main technologies for high resolution electron microscopes are a method of observing a high-resolution real image by removing the aberration of the objective lens, which is a factor limiting the resolution, by the electron optical system hardware technology, and an electron diffraction image of the sample. There are two methods of obtaining a high-resolution real image by performing arithmetic processing with a phase recovery algorithm using the condition of zero potential outside the sample. The former technique is shown, for example, in “Journal of Electron Microscopy, Vol. 48, p. 821-826 (1999)”. The latter technique is shown, for example, in “SCIENCE Vol. 300, p. 1419-1421 (2003)”.

後者の技術内容を図示すると、図1のようになる。例えば、試料が結晶性の微粒子である場合、電子顕微鏡の電子回折像モードにより、図1(a)に示すような微粒子の電子回折像(逆空間拘束条件)を得る。微粒子の形状を何らかの観察法で観察し、図1(b)に示すような、微粒子の外側をゼロポテンシャルとしたデータを得る。図1(b)は、微粒子の外側のポテンシャル分布(実空間拘束条件)を示し、図中、白い部分は微粒子の形状、黒い部分はゼロポテンシャルを示す。それらを入力データとして位相回復アルゴリズムを用いたプログラムによる位相回復再生像の計算をコンピューターで行う。その結果、図1(c)に示すような、微粒子の高分解能な実像(位相回復再生像)が得られ、原子配列が見えるようになる。   The latter technique is illustrated in FIG. For example, when the sample is a crystalline fine particle, an electron diffraction image (inverse space constraint condition) of the fine particle as shown in FIG. 1A is obtained by the electron diffraction image mode of the electron microscope. The shape of the fine particles is observed by some observation method, and data having zero potential on the outside of the fine particles as shown in FIG. 1B is obtained. FIG. 1B shows the potential distribution outside the fine particles (actual space constraint condition). In the figure, the white portion indicates the shape of the fine particle and the black portion indicates zero potential. Using these as input data, the computer calculates the phase-recovered reproduced image by a program using a phase-recovery algorithm. As a result, a high-resolution real image (phase recovery reproduction image) of the fine particles as shown in FIG. 1C is obtained, and the atomic arrangement becomes visible.

位相回復のアルゴリズムを、図2に示す。実空間における試料の構造(ポテンシャル分布)をρtとすると、それをフーリエ変換(FT)したものは、
f = |f(K)|eiφ(K)
と表せる。ここで、f(K)、φ(K)はK空間(逆空間)における振幅と位相である。fを逆フーリエ変換すれば、元の試料構造ρtが得られる。
The phase recovery algorithm is shown in FIG. When the structure (potential distribution) of the sample in real space is ρ t , the Fourier transform (FT) of it is
f = | f (K) | e iφ (K)
It can be expressed. Here, f (K) and φ (K) are the amplitude and phase in the K space (inverse space). If f is subjected to inverse Fourier transform, the original sample structure ρ t is obtained.

電子顕微鏡において試料に電子線を照射すると対物レンズの後焦点面には電子回折像が形成されるが、それは|f(K)|2に相当する。すなわち、試料を構成する周期構造の振幅情報のみが含まれており、位相情報は失われている。しかし、電子回折像には電子顕微鏡の実像が有する分解能以上の高周波数の周期構造情報が含まれている。一方、電子顕微鏡で観察される実像は、対物レンズの実像面に形成される像を後段のレンズで拡大したものであるが、それはρtの投影像に相当する。ただし、実像の分解能は、対物レンズの収差、伝染の波長やエネルギー幅などで制限される。さらに、測定時の試料ドリフトや振動、磁場などの外乱影響が付加され、記録された実像の分解能が決まる。結果として、その分解能以上の微細構造情報は失われている。従って、電子回折像の位相情報を回復できれば、それを逆フーリエ変換することにより、電子顕微鏡の実像が有する分解能あるいは記録された像の分解能以上の実像を再生できる可能性がある。 When the sample is irradiated with an electron beam in an electron microscope, an electron diffraction image is formed on the back focal plane of the objective lens, which corresponds to | f (K) | 2 . That is, only amplitude information of the periodic structure constituting the sample is included, and phase information is lost. However, the electron diffraction image includes high-frequency periodic structure information that exceeds the resolution of the real image of the electron microscope. On the other hand, the real image observed with the electron microscope is an image formed on the real image plane of the objective lens enlarged by the subsequent lens, and corresponds to the projected image of ρ t . However, the resolution of a real image is limited by the aberration of the objective lens, the wavelength of transmission, the energy width, and the like. Furthermore, disturbance effects such as sample drift, vibration, and magnetic field during measurement are added, and the resolution of the recorded real image is determined. As a result, fine structure information beyond that resolution is lost. Therefore, if the phase information of the electron diffraction image can be recovered, it may be possible to reproduce a real image having a resolution higher than the resolution of the real image of the electron microscope or the resolution of the recorded image by performing inverse Fourier transform.

電子顕微鏡で観察した試料の電子回折像と、何らかの観察法で得た試料外形と試料の外側をゼロポテンシャルとしたデータを用いて、位相回復により高分解能実像を得るための手順は、次のようになる。先ず、試料構造ρtの初期値としてランダム構造ρを仮定し、それをフーリエ変換してfを求める。fの振幅|f(K)|に電子回折像の強度分布から求めた値|f'(K)|を逆空間拘束の条件として代入する。これによってfは、
f' = |f'(K)|eiφ(K)
となる。これを逆フーリエ変換して、試料構造の位相が回復したρ'tが得られる。次に実空間拘束の条件として試料外形と試料の外側をゼロポテンシャルとしたデータを代入する。これによって位相情報の回復が高速化される。こうして試料の実像が再生される。これを新たなρtとして上記の操作を繰り返す。操作終了の目安は、再生した実像において試料が存在しない領域の強度の総和を、実像を構成する全画素数で割った値が収束することである。
The procedure for obtaining a high-resolution real image by phase recovery using the electron diffraction image of the sample observed with an electron microscope and the sample outline obtained by some observation method and the data with the outside of the sample as zero potential is as follows. become. First, a random structure ρ 0 is assumed as an initial value of the sample structure ρ t , and f is obtained by Fourier transforming it. A value | f ′ (K) | obtained from the intensity distribution of the electron diffraction image is substituted as an inverse space constraint condition into the amplitude | f (K) | of f. With this, f
f '= | f' (K) | e iφ (K)
It becomes. This is subjected to inverse Fourier transform to obtain ρ ′ t in which the phase of the sample structure has been recovered. Next, data with zero potential on the outside of the sample and the outside of the sample is substituted as a real space constraint condition. This speeds up the recovery of the phase information. In this way, a real image of the sample is reproduced. This as a new ρ t repeat the above operation. The criterion for the end of the operation is that the value obtained by dividing the sum of the intensities of the regions where the sample does not exist in the reproduced real image divided by the total number of pixels constituting the real image converges.

逆空間の拘束条件となる電子回折像は、以下のようにして測定される。先ず、位相回復アルゴリズムを用いたプログラムによる位相回復再生像の計算を行う際に、扱える電子回折像と試料の外側をゼロポテンシャルとしたデータのサイズには条件がある。そのため、図3に示すように、試料3の電子線照射領域2に照射する電子線1の直径を通常観察の場合よりも小さくする必要がある。許容される最大の電子線径は、電子線の波長と電子回折像のカメラ長との積を撮像デバイスの1画素のサイズで割って得られる。撮像デバイスとしてイメージングプレート(画素数:3200×4000個、画素サイズ:25×25μm)を用い、電子線の加速電圧を200kV(波長:0.0025nm)とし、カメラ長が1mである場合には、最大電子線径は100nmとなる。また、シャープな電子回折像を観察するために、平行な電子線を照射しなければならない。これらを満足させるために、前記従来技術では、図4(b)に示す電子光学経路で観察している。   An electron diffraction image which is a constraint condition of the inverse space is measured as follows. First, when calculating a phase recovery reproduction image by a program using a phase recovery algorithm, there are conditions on the electron diffraction image that can be handled and the data size in which the outside of the sample is zero potential. Therefore, as shown in FIG. 3, it is necessary to make the diameter of the electron beam 1 irradiated to the electron beam irradiation area | region 2 of the sample 3 smaller than the case of normal observation. The maximum allowable electron beam diameter is obtained by dividing the product of the wavelength of the electron beam and the camera length of the electron diffraction image by the size of one pixel of the imaging device. When an imaging plate (number of pixels: 3200 × 4000, pixel size: 25 × 25 μm) is used as the imaging device, the acceleration voltage of the electron beam is 200 kV (wavelength: 0.0025 nm), and the camera length is 1 m, The maximum electron beam diameter is 100 nm. In order to observe a sharp electron diffraction image, a parallel electron beam must be irradiated. In order to satisfy these, in the prior art, the observation is performed by the electron optical path shown in FIG.

以下に、従来技術による電子回折像の測定方法を、図4(b)を用いて説明する。従来技術では、電子顕微鏡のうち透過電子顕微鏡(TEM;Transmission Electron Microscope)を用いている。透過電子顕微鏡は、電子銃4、コンデンサー絞り5、照射レンズ6、対物レンズ(前磁場)7、対物レンズ(後磁場)8、中間レンズ9、投射レンズ10、撮像素子11から構成される。通常の観察では試料の広い領域(ミクロンのオーダー)に平行な電子線を照射するために、照射レンズ6によって電子線1を広げる。これに対して前記従来技術では、図4(b)に示すように、照射レンズ6によって電子線1を収束させ小さな電子線径にする。但し、この段階では電子線は平行ではないので、対物レンズ(前磁場)7を強励磁状態で用いて収束した電子線を平行にして、試料3(図中、黒色の矢印で示す。)の電子線照射領域(注目領域)2(図中、白色の矢印で示す。)に照射する。電子線照射領域2の大きさは、電子銃4の加速電圧や電子放出方式、コンデンサー絞り5の孔径、照射レンズ6と対物レンズ(前磁場)7の励磁条件などによって決まる。数十nm直径にすることが可能である。試料内部で散乱や回折した後に透過した電子線は、対物レンズ(後磁場)8、中間レンズ9、投射レンズ10によって結像される。図4(b)に示した電子回折像モードでは電子線照射領域の電子回折像12が観察される。   Below, the measuring method of the electron diffraction image by a prior art is demonstrated using FIG.4 (b). In the prior art, a transmission electron microscope (TEM) is used among electron microscopes. The transmission electron microscope includes an electron gun 4, a condenser aperture 5, an irradiation lens 6, an objective lens (front magnetic field) 7, an objective lens (rear magnetic field) 8, an intermediate lens 9, a projection lens 10, and an image sensor 11. In normal observation, the electron beam 1 is expanded by the irradiation lens 6 in order to irradiate an electron beam parallel to a wide region (on the order of microns) of the sample. On the other hand, in the prior art, as shown in FIG. 4B, the electron beam 1 is converged by the irradiation lens 6 so as to have a small electron beam diameter. However, since the electron beam is not parallel at this stage, the converged electron beam is made parallel using the objective lens (front magnetic field) 7 in a strong excitation state, and the sample 3 (indicated by a black arrow in the figure) is used. An electron beam irradiation region (region of interest) 2 (indicated by a white arrow in the figure) is irradiated. The size of the electron beam irradiation region 2 is determined by the acceleration voltage of the electron gun 4, the electron emission method, the hole diameter of the condenser aperture 5, the excitation conditions of the irradiation lens 6 and the objective lens (front magnetic field) 7, and the like. The diameter can be several tens of nm. An electron beam transmitted after being scattered or diffracted inside the sample is imaged by an objective lens (rear magnetic field) 8, an intermediate lens 9, and a projection lens 10. In the electron diffraction image mode shown in FIG. 4B, the electron diffraction image 12 in the electron beam irradiation region is observed.

また、従来技術では明記していないが、通常の透過電子顕微鏡の観察モードとして、図4(a)に示した実像モードがある。このモードでは電子線照射領域の実像13が観察できる。両モードでは、中間レンズ9と投射レンズ10の励磁条件が異なる。すなわち、(a)実像モードでは、対物レンズ(後磁場)8下方の実像面に形成された電子線照射領域の実像13を中間レンズ9、投射レンズ10で拡大する。(b)電子回折像モードでは、対物レンズ(後磁場)8下方の回折像面(後焦点面)に形成された電子線照射領域の電子回折像12を中間レンズ9、投射レンズ10で拡大する(カメラ長が可変である)。   Moreover, although not specified in the prior art, there is a real image mode shown in FIG. 4A as an observation mode of a normal transmission electron microscope. In this mode, the real image 13 of the electron beam irradiation region can be observed. In both modes, the excitation conditions of the intermediate lens 9 and the projection lens 10 are different. That is, (a) in the real image mode, the real image 13 of the electron beam irradiation area formed on the real image surface below the objective lens (rear magnetic field) 8 is enlarged by the intermediate lens 9 and the projection lens 10. (B) In the electron diffraction image mode, the electron diffraction image 12 of the electron beam irradiation region formed on the diffraction image surface (rear focal plane) below the objective lens (rear magnetic field) 8 is magnified by the intermediate lens 9 and the projection lens 10. (Camera length is variable).

Journal of Electron Microscopy, Vol. 48, p. 821-826 (1999)Journal of Electron Microscopy, Vol. 48, p. 821-826 (1999) SCIENCE Vol. 300, p. 1419-1421 (2003)SCIENCE Vol. 300, p. 1419-1421 (2003)

実像と電子回折像を観察する場合に、試料に照射する電子線は微小径かつ平行であるという条件の他に、明るさとその均一性が重要である。明るさは、実像や電子回折像を撮像デバイスで記録する時の露光時間や試料の観察視野を探す時の操作性に影響する。電子線が暗くて露光時間が長くなると、電子線照射による試料へのダメージの増大や試料のドリフトによる観察視野のずれが起こり、データの信頼性や精度が低下するという問題がある。また、暗い電子線では視野探しの効率が低下する。均一性は、特に観察した実像の明るさむらに影響し、試料構造と無関係なコントラストを与える。従って、その実像や実像から決定した試料外形と試料外側をゼロポテンシャルとしたデータを用いて位相回復した試料構造の精度を低下させる可能性がある。   When observing a real image and an electron diffraction image, brightness and uniformity thereof are important in addition to the condition that the electron beam applied to the sample is a minute diameter and parallel. Brightness affects the exposure time when recording a real image or electron diffraction image with an imaging device and the operability when searching for the observation field of view of a sample. When the electron beam is dark and the exposure time is long, there is a problem that the damage to the sample due to the electron beam irradiation and the observation visual field shift due to the sample drift occur, and the reliability and accuracy of the data are lowered. In addition, the efficiency of searching for a field of view decreases with a dark electron beam. The uniformity affects the brightness unevenness of the observed real image, and gives a contrast independent of the sample structure. Therefore, there is a possibility that the accuracy of the sample structure that is phase-recovered by using the real image and the sample outline determined from the real image and data with the sample outside as the zero potential may be lowered.

前記従来技術の電子光学経路では、電子線径を小さくするために、10μm程度の小さな孔径のコンデンサー絞り5を用いているので、電子線は必然的に暗くなる。また、数十nm直径に細く絞った電子線による照射領域の全体を撮影するので、実像には電子線の強度分布(ガウス分布)が反映され照射領域周辺部が暗くなったり、また、小さな孔径のコンデンサー絞りで散乱や反射された電子によって生じるフレネルフリンジの影響で照射領域周辺部が振動した強度分布になったりする。   In the prior art electron optical path, the condenser aperture 5 having a small hole diameter of about 10 μm is used to reduce the electron beam diameter, so that the electron beam inevitably becomes dark. In addition, since the entire irradiation area with an electron beam narrowed to a diameter of several tens of nanometers is photographed, the intensity distribution (Gaussian distribution) of the electron beam is reflected in the real image, and the periphery of the irradiation area becomes dark, and the small pore diameter In other words, the periphery of the irradiated region may have an intensity distribution due to the influence of Fresnel fringes caused by electrons scattered or reflected by the condenser aperture.

本発明の目的は、上述の問題点に鑑み、実像と電子回折像を測定する際の微小径かつ平行な電子線を、明るくかつ均一な強度分布にする位相回復方式の電子顕微鏡による観察技術を提供することにある。   In view of the above-mentioned problems, an object of the present invention is to provide an observation technique using a phase recovery method electron microscope that makes a minute diameter and parallel electron beam when measuring a real image and an electron diffraction image bright and uniform intensity distribution. It is to provide.

上記目的を達成するために、本発明では、以下のように構成する。
(1)収束電子線を試料上で走査することが可能な走査透過電子顕微鏡(STEM;Scanning Transmission Electron Microscope)の機能を有する電子顕微鏡を用いて、実像を観察する際には収束電子線を試料の注目領域(電子線照射領域)に走査しながら照射し、電子線検出器で検出した透過電子線の強度を収束電子線の走査と同期させてモニターに表示することによって注目領域を画像化し、電子回折像を観察する際には、前記注目領域の形状と面積に一致する孔を有する制限視野絞りを試料の直上に挿入し、静止した平行電子線を前記制限視野絞りを通して前記試料の注目領域に照射し、透過電子線が作る電子回折像を撮像素子で検出する。実像と電子回折像はデジタルデータとしてコンピューターに記録する。
(2)汎用型の透過電子顕微鏡(TEM;Transmission Electron Microscope)を用いて、実像と電子回折像を観察する際に、対物レンズの実像面に挿入する制限視野絞りの孔径を、対物レンズの実像面における倍率と電子線の波長とカメラ長との積を、撮像素子の1画素のサイズで割算した値よりも小さくする。実像と電子回折像は、それぞれ、TEMの実像モードと電子回折像モードにより観察し、デジタルデータとしてコンピューターに記録する。
In order to achieve the above object, the present invention is configured as follows.
(1) When observing a real image using an electron microscope having the function of a scanning transmission electron microscope (STEM) capable of scanning a focused electron beam on the sample, the focused electron beam is sampled. The region of interest is imaged by irradiating the region of interest (electron beam irradiation region) while scanning and displaying the intensity of the transmission electron beam detected by the electron beam detector on the monitor in synchronization with the scanning of the convergent electron beam, When observing an electron diffraction image, a limited field stop having a hole that matches the shape and area of the region of interest is inserted immediately above the sample, and a stationary parallel electron beam passes through the limited field stop and the region of interest of the sample. , And an electron diffraction image formed by a transmission electron beam is detected by an image sensor. Real images and electron diffraction images are recorded on a computer as digital data.
(2) When observing a real image and an electron diffraction image using a general-purpose transmission electron microscope (TEM), the hole diameter of the limited field stop to be inserted into the real image surface of the objective lens is changed to the real image of the objective lens. The product of the magnification on the surface, the wavelength of the electron beam and the camera length is made smaller than the value divided by the size of one pixel of the image sensor. The real image and the electron diffraction image are observed in the TEM real image mode and electron diffraction image mode, respectively, and recorded as digital data in a computer.

上記(1)あるいは(2)の観察方法により、数十nmの電子線照射領域に対して、従来技術の場合よりも多い電子線量で均一に照射できるので、明るくむらの無い実像と電子回折像を測定できる。   According to the observation method (1) or (2) above, an electron beam irradiation region of several tens of nanometers can be uniformly irradiated with a higher electron dose than in the case of the prior art, so a bright and uniform real image and electron diffraction image Can be measured.

上記(1)あるいは(2)の方法で測定した実像と電子回折像のデジタルデータを、位相回復アルゴリズムを用いて演算処理することにより、デジタル記録した実像よりも高分解能な実像を再生できる。   By processing digital data of the real image and electron diffraction image measured by the method (1) or (2) using a phase recovery algorithm, a real image with higher resolution than the digitally recorded real image can be reproduced.

以下、本発明の位相回復方式の電子顕微鏡による観察方法の代表的な構成例を列挙する。   Hereinafter, typical configuration examples of the observation method using the phase recovery type electron microscope of the present invention will be listed.

(1)加速した電子線を収束あるいは平行にして試料へ照射する電子線照射系と、前記試料を透過した電子線を撮像素子により検出して実像と電子回折像の強度分布を得る結像系とを備えた位相回復方式の電子顕微鏡にあって、前記実像を観察する際には、前記収束電子線を前記試料の注目領域に走査しながら照射し、前記撮像素子で検出した透過電子線の強度を前記収束電子線の走査と同期させてモニターに表示することによって前記注目領域を画像化し、前記電子回折像を観察する際には、前記注目領域の形状と面積に一致する孔を有する制限視野絞りを前記試料の直上に挿入し、静止した平行電子線を前記制限視野絞りを通して前記試料の注目領域に照射し、前記試料を透過した電子線が作る電子回折像を前記撮像素子により検出することを特徴とする。   (1) An electron beam irradiation system for irradiating a sample with an accelerated electron beam converged or parallel, and an imaging system for obtaining an intensity distribution of a real image and an electron diffraction image by detecting the electron beam transmitted through the sample with an imaging device When observing the real image, the focused electron beam is irradiated while scanning the region of interest of the sample, and the transmission electron beam detected by the image sensor is observed. When the region of interest is imaged by displaying the intensity on a monitor in synchronization with the scanning of the convergent electron beam, and the electron diffraction image is observed, a restriction having a hole that matches the shape and area of the region of interest A field stop is inserted immediately above the sample, a stationary parallel electron beam is irradiated to the region of interest of the sample through the limited field stop, and an electron diffraction image formed by the electron beam transmitted through the sample is detected by the imaging device. And wherein the door.

(2)前記(1)の位相回復方式電子顕微鏡による観察方法において、前記実像を観察する際に、前記撮像素子で検出される散乱電子の検出角度範囲を、前記撮像素子の上方に挿入した検出角度制限絞りを用いて設定するようにしたことを特徴とする。   (2) In the observation method using the phase recovery type electron microscope according to (1), when the real image is observed, a detection angle range of scattered electrons detected by the image sensor is inserted above the image sensor. It is characterized in that it is set using an angle limiting diaphragm.

(3)加速した電子線を対物レンズを介して試料へ照射する電子線照射系と、前記試料を透過した電子を撮像素子により検出して実像と電子回折像の強度分布を得る結像系とを備えた位相回復方式の電子顕微鏡にあって、前記実像と電子回折像を観察する際に、前記対物レンズの実像面に、前記対物レンズの実像面における倍率と電子線の波長とカメラ長との積を前記撮像素子の1画素のサイズで割算した値よりも小さい孔径を有する制限視野絞り挿入して、前記実像と電子回折像の強度分布を得るようにしたことを特徴とする。   (3) An electron beam irradiation system that irradiates a sample with an accelerated electron beam via an objective lens, and an imaging system that detects an electron transmitted through the sample with an imaging device and obtains an intensity distribution of a real image and an electron diffraction image When observing the real image and the electron diffraction image, on the real image surface of the objective lens, the magnification on the real image surface of the objective lens, the wavelength of the electron beam, the camera length, The intensity distribution of the real image and the electron diffraction image is obtained by inserting a limited field stop having a hole diameter smaller than a value obtained by dividing the product of the above by the size of one pixel of the image sensor.

(4)前記構成の位相回復方式の電子顕微鏡による観察方法において、前記実像と電子回折像の強度分布を、前記撮像素子や検出系によりデジタル記録したデータを、位相回復アルゴリズムを用いて演算処理することにより、デジタル記録した実像よりも高分解能な実像を再生するようにしたことを特徴とする。   (4) In the observation method using the phase recovery method electron microscope having the above-described configuration, the data obtained by digitally recording the intensity distribution of the real image and the electron diffraction image by the image sensor or the detection system is processed using a phase recovery algorithm. Thus, a real image having a higher resolution than that of the digitally recorded real image is reproduced.

(5)前記構成の位相回復方式の電子顕微鏡による観察方法において、前記制限視野絞りは、観察に用いる電子線が透過しない厚さの金属板に、収束イオンビームや機械研磨や化学研磨のうち少なくとも何れか一つの加工方法によって加工した孔を有し、かつ、前記孔の加工面は電子回折像の強度分布にノイズを与えない滑らかさを有していることを特徴とする。   (5) In the observation method using the phase recovery method electron microscope having the above-described configuration, the limited field stop is formed of at least one of a focused ion beam, mechanical polishing, and chemical polishing on a metal plate having a thickness that does not transmit an electron beam used for observation. It has a hole processed by any one processing method, and the processed surface of the hole has a smoothness that does not give noise to the intensity distribution of the electron diffraction image.

(6)前記(4)の位相回復方式の電子顕微鏡による観察方法において、前記制限視野絞りは、前記位相回復アルゴリズムを用いて演算処理するための実像や電子回折像の観察に用いる第1の孔および通常の制限視野観察に用いる第2の孔の両方、または前記第1の孔のみを有することを特徴とする。   (6) In the observation method using the phase recovery method electron microscope of (4), the limited field stop is a first hole used for observation of a real image or an electron diffraction image for processing using the phase recovery algorithm. And the second hole used for normal limited visual field observation, or only the first hole.

本発明によれば、実像と電子回折像を測定する際の微小径かつ平行な電子線を、明るくかつ均一な強度分布にする位相回復方式の電子顕微鏡による観察技術を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the observation technique by the electron microscope of a phase recovery system which makes a minute diameter and parallel electron beam at the time of measuring a real image and an electron diffraction image bright and uniform intensity distribution is realizable.

以下、本発明の実施例について、図面を参照して、詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
図5は、本発明の第1の実施例になる走査透過電子顕微鏡(STEM)を用いて観察する場合の電子光学系と検出系を示す。本実施例は、従来技術の図4に示した透過電子顕微鏡(TEM)の光学系とは、走査コイル14や微小制限視野絞り15や検出角度制限絞り16やモニター17が付加されていること、結像レンズである中間レンズと投射レンズが無いことなどが異なる。また、図5(a)に示す実像モードの場合の撮像素子11は、電子線強度を測定するための半導体検出器やシンチレーターとフォトマルチプライアーから成る検出器であり、図5(b)に示す電子回折モードの場合は、2次元画素を有するCCDカメラや撮像管などの検出器である。
Example 1
FIG. 5 shows an electron optical system and a detection system in the case of observation using a scanning transmission electron microscope (STEM) according to the first embodiment of the present invention. In this embodiment, the optical system of the transmission electron microscope (TEM) shown in FIG. 4 of the prior art is provided with a scanning coil 14, a minute limited field stop 15, a detection angle limit stop 16, and a monitor 17. The difference is that there is no intermediate lens that is an imaging lens and no projection lens. The imaging device 11 in the real image mode shown in FIG. 5A is a semiconductor detector for measuring the electron beam intensity, a detector composed of a scintillator and a photomultiplier, as shown in FIG. 5B. In the case of the electron diffraction mode, it is a detector such as a CCD camera or an imaging tube having two-dimensional pixels.

図5(a)に示す実像モードの場合、電子銃4から放出された電子線1は、照射レンズ6によって収束された後にコンデンサー絞り5によって小さな照射角を度有する部分のみにカットされ、さらに対物レンズ(前磁場)7によってサブnm径の細い電子線1に収束される。該電子線は、走査コイル14によって試料3のうちの数十nm径の電子線照射領域(注目領域)2に走査しながら照射される。   In the real image mode shown in FIG. 5A, the electron beam 1 emitted from the electron gun 4 is converged by the irradiation lens 6 and then cut by the condenser aperture 5 only into a portion having a small irradiation angle, and further the objective. A lens (front magnetic field) 7 converges to an electron beam 1 having a sub-nm diameter. The electron beam is irradiated while scanning the electron beam irradiation region (attention region) 2 having a diameter of several tens of nm of the sample 3 by the scanning coil 14.

図6(a)に、実像モードにおける電子線の走査形状の一例を示す。この場合には、テレビと同様にXおよびY方向に2次元走査しているが、X方向の走査幅をY方向で変化するように制御しており、集束電子線の走査領域の形状は円形である。サブnm径の細い電子線1はpA(ピコアンペア)オーダーの電流であるが、それを試料上で走査するので走査領域全体では従来技術よりも明るい電子線照射が達成できる。また、電子線照射領域2内のどの場所においても同一強度を有する電子線を照射するので、均一な電子線照射も達成できる。   FIG. 6A shows an example of the scanning shape of the electron beam in the real image mode. In this case, two-dimensional scanning is performed in the X and Y directions as in the television, but the scanning width in the X direction is controlled to change in the Y direction, and the shape of the focused electron beam scanning region is circular. It is. The electron beam 1 with a small sub-nm diameter has a current on the order of pA (picoampere), but since it is scanned over the sample, it is possible to achieve brighter electron beam irradiation over the entire scanning region than in the prior art. Moreover, since the electron beam having the same intensity is irradiated at any location in the electron beam irradiation region 2, uniform electron beam irradiation can also be achieved.

図5(a)に示す電子線照射領域2で散乱され透過した電子線は、対物レンズ(後磁場)8を介して撮像素子11で検出される。撮像素子11の上方に配置された検出角度制限絞り16は、撮像素子11で検出される散乱電子の検出角度範囲を設定する。通常、数mradに設定すると明視野の実像が得られる。撮像素子11で検出された電子線の強度を走査コイル14の走査と同期してモニター17に表示して画像化する。像倍率は、電子線照射領域2とモニター17の表示面積との比で決まる。測定した実像は、デジタルデータとしてコンピューターに記録する。   The electron beam scattered and transmitted in the electron beam irradiation region 2 shown in FIG. 5A is detected by the image sensor 11 through the objective lens (rear magnetic field) 8. A detection angle limit stop 16 disposed above the image sensor 11 sets a detection angle range of scattered electrons detected by the image sensor 11. Normally, a bright field real image can be obtained by setting a few mrad. The intensity of the electron beam detected by the image sensor 11 is displayed on the monitor 17 in synchronization with the scanning of the scanning coil 14 and imaged. The image magnification is determined by the ratio between the electron beam irradiation region 2 and the display area of the monitor 17. The measured real image is recorded on a computer as digital data.

図5(b)に示す電子回折像モードの場合、電子銃4から放出された電子線1は、照射レンズ6によって広げられた後に、コンデンサー絞り5によって均一な明るさを有する部分のみにカットされる。前記従来技術の電子光学経路では、電子線径を小さくするために、10μm程度の小さな孔径のコンデンサー絞り5を用いていたので、電子線は必然的に暗かった。しかし、本発明では、電子線自身を細くする必要は無いのでコンデンサー絞り5の孔径は数十μm以上が使え、電子線を明るくできる。コンデンサー絞り5を通過した電子線は、対物レンズ(前磁場)7によって平行にされる。電子線を走査コイル14によって走査することはしない。   In the case of the electron diffraction image mode shown in FIG. 5 (b), the electron beam 1 emitted from the electron gun 4 is spread by the irradiation lens 6, and then cut by the condenser aperture 5 only into a portion having uniform brightness. The In the conventional electron optical path, the condenser aperture 5 having a small hole diameter of about 10 μm is used to reduce the electron beam diameter, so that the electron beam is inevitably dark. However, in the present invention, since it is not necessary to make the electron beam itself thin, the hole diameter of the condenser aperture 5 can be several tens of μm or more, and the electron beam can be brightened. The electron beam that has passed through the condenser aperture 5 is collimated by an objective lens (front magnetic field) 7. The electron beam is not scanned by the scanning coil 14.

試料3の直上には、微小制限視野絞り15を、試料3に接触することなく配置する。この絞りは、外部から駆動機構を用いて出し入れ可能である。絞りの材料としては、結晶粒などの組織が小さな、例えばタンタル材を用い、厚さは使用する電子線が透過しない厚さとして、例えば数μmにする。絞りには、収束イオンビームや機械研磨や化学研磨のうち少なくとも何れか一つの加工方法によって加工した孔が設けられている。数十nm以下の直径の孔を加工する際にはnmオーダーに細く出来る収束イオンビームが有効である。孔の加工面は、凹凸によって電子線が散乱されないように滑らかに仕上げる。孔の形状は、電子線走査領域の形状、すなわち、上記の電子線照射領域と一致している。従って、図6(b)に示すように、微小制限視野絞り15でカットされた後の平行で静止した明るく均一な電子線は、図6(a)と同一の電子線照射領域2に照射される。   A minute limited field stop 15 is arranged directly above the sample 3 without contacting the sample 3. This diaphragm can be taken in and out from the outside using a drive mechanism. As the material of the diaphragm, for example, a tantalum material having a small structure such as crystal grains is used. The aperture is provided with holes processed by at least one of a focused ion beam, mechanical polishing, and chemical polishing. When processing holes having a diameter of several tens of nm or less, a focused ion beam that can be reduced to the order of nm is effective. The processed surface of the hole is finished smoothly so that the electron beam is not scattered by the unevenness. The shape of the hole coincides with the shape of the electron beam scanning region, that is, the electron beam irradiation region. Therefore, as shown in FIG. 6B, the parallel, stationary, bright and uniform electron beam after being cut by the minute limited field stop 15 is irradiated to the same electron beam irradiation region 2 as in FIG. 6A. The

電子線照射領域2で散乱、回折した後に透過した電子線は、撮像素子11上に電子回折像を結像する。電子回折像は電子線の波長に対して無限遠の距離に結像されるが、例えば電子線の波長が0.0025nm(加速電圧が200kVの場合)である時、試料3から撮像素子11までの実効的な距離が数十cmあれば、十分な無限遠にあると言える。この距離(カメラ長)は、撮像素子11の位置が駆動機構によって可変なので自由に設定できる。   The electron beam that is transmitted after being scattered and diffracted in the electron beam irradiation region 2 forms an electron diffraction image on the image sensor 11. The electron diffraction image is formed at a distance infinite with respect to the wavelength of the electron beam. For example, when the wavelength of the electron beam is 0.0025 nm (when the acceleration voltage is 200 kV), from the sample 3 to the imaging device 11. If the effective distance is several tens of centimeters, it can be said that the distance is sufficiently infinite. This distance (camera length) can be freely set because the position of the image sensor 11 is variable by the drive mechanism.

(実施例2)
図7は、本発明の第2の実施例になる透過電子顕微鏡を用いて観察する場合の電子光学系と検出系を示す。本実施例は、図4に示した透過電子顕微鏡の光学系とは基本的な構成が同じであるが、微小径制限視野絞り15を対物レンズ(後磁場)8下方の実像面に設置している点が異なる。
(Example 2)
FIG. 7 shows an electron optical system and a detection system for observation using a transmission electron microscope according to the second embodiment of the present invention. This embodiment has the same basic configuration as that of the optical system of the transmission electron microscope shown in FIG. 4, but a small diameter limited field stop 15 is installed on the real image plane below the objective lens (rear magnetic field) 8. Is different.

図7(a)に示す実像モードおよび図7(b)に示す電子回折モードの両方の場合において、電子銃4から放出された電子線1は、コンデンサー絞り5によって均一な明るさを有する部分のみにカットされる。前述した従来技術の電子光学経路では、電子線径を小さくするために、10μm程度の小さな孔径のコンデンサー絞り5を用いていたので、電子線は必然的に暗かった。しかし、本発明では、電子線自身を細くする必要は無いので、コンデンサー絞り5の孔径は数十μm以上が使え、電子線を明るくできる。コンデンサー絞り5を通過した電子線は、照射レンズ6によって広げられ、対物レンズ(前磁場)7によって平行された後に試料3に照射される。試料3により散乱、回折した後に透過した電子線は、対物レンズ(後磁場)8によって実像面における試料の実像21および後焦点面における電子回折像として結像される。   In both the real image mode shown in FIG. 7A and the electron diffraction mode shown in FIG. 7B, the electron beam 1 emitted from the electron gun 4 is only a portion having uniform brightness by the condenser aperture 5. Is cut. In the above-described conventional electron optical path, the condenser aperture 5 having a small hole diameter of about 10 μm was used to reduce the electron beam diameter, so that the electron beam was inevitably dark. However, in the present invention, since it is not necessary to make the electron beam itself thin, the hole diameter of the condenser aperture 5 can be several tens μm or more, and the electron beam can be brightened. The electron beam that has passed through the condenser aperture 5 is spread by the irradiation lens 6, collimated by the objective lens (front magnetic field) 7, and then irradiated on the sample 3. The electron beam transmitted after being scattered and diffracted by the sample 3 is imaged by the objective lens (rear magnetic field) 8 as a real image 21 of the sample on the real image plane and an electron diffraction image on the rear focal plane.

ここで、実像面に微小径制限視野絞り15を設置すると、実像モードでは試料の実像21のうち絞りの孔に対応する視野(試料中注目領域の実像20)のみが、微小径制限視野絞り15以降の結像レンズで拡大される。すなわち、絞りの孔を通過する電子線を逆に辿った時に試料3と交差する領域(試料中注目領域18)が得られ、その領域のみに電子線が照射された時と等価な電子線経路になる。同様に電子回折像モードでは、試料中注目領域18に電子線が照射された時と等価な電子線経路により試料中注目領域の電子回折像19が結像される。従って、電子線を細く平行にして照射領域を設定した従来技術の場合や、収束電子線の走査や試料直上の絞りにより照射領域を設定した実施例1の場合と同様な照射領域設定が微小径制限視野絞り15の孔径を選択することによって可能である。これによって、前述した平行かつ明るくて均一な電子線を微小領域に照射するのと同等のことが可能である。   Here, when the minute diameter limited field stop 15 is installed on the real image plane, in the real image mode, only the field corresponding to the aperture of the diaphragm (real image 20 of the region of interest in the sample) of the sample real image 21 is the minute diameter limited field stop 15. It is magnified by the subsequent imaging lens. That is, when an electron beam passing through the aperture of the aperture is traced in the reverse direction, a region that intersects the sample 3 (region of interest 18 in the sample) is obtained, and an electron beam path equivalent to when only the region is irradiated with the electron beam. become. Similarly, in the electron diffraction image mode, an electron diffraction image 19 of the region of interest in the sample is formed by an electron beam path equivalent to that when the region of interest 18 in the sample is irradiated with an electron beam. Therefore, the irradiation area setting is the same as in the case of the prior art in which the irradiation area is set by making the electron beam thin and parallel, or in the case of the embodiment 1 in which the irradiation area is set by the scanning of the convergent electron beam or the diaphragm just above the sample. This is possible by selecting the hole diameter of the limited field stop 15. This can be equivalent to irradiating a minute region with the parallel, bright and uniform electron beam described above.

この観察方法は、通常の制限視野観察による実像と電子回折像の観察法と同様であるが、本実施例では、微小径制限視野絞り15の孔径を以下のように規定する。   This observation method is the same as the observation method of the real image and the electron diffraction image by the normal limited visual field observation, but in this embodiment, the hole diameter of the minute diameter limited visual field stop 15 is defined as follows.

通常の制限視野絞りは、孔径が小さくても50μm程度である。本実施例では、微小径制限視野絞り15の孔径を対物レンズの実像面における倍率と電子線の波長とカメラ長の積を撮像素子の1画素のサイズで割算した値よりも小さい径にする。対物レンズの倍率が50倍、電子線の波長が0.0025nm(加速電圧200kV)、カメラ長が1m、撮像素子の1画素のサイズが25×25μm(市販の画素数3200×4000個のイメージングプレート)である場合には、微小径制限視野絞り15の最大孔径は5μmとなる。この時、試料上の電子線照射領域は100nm径に相当する。孔径が5μm以下では通常の制限視野観察に用いるには小さ過ぎるので、微小径制限視野絞り15の孔の配列は、図8に示すように、5μm以下の位相回復観察用孔22と50μm程度の汎用孔23を並べたものにする。   A normal limited field stop has a small hole diameter of about 50 μm. In this embodiment, the hole diameter of the minute diameter limited field stop 15 is set to a diameter smaller than a value obtained by dividing the product of the magnification on the real image plane of the objective lens, the wavelength of the electron beam, and the camera length by the size of one pixel of the image sensor. . The magnification of the objective lens is 50 times, the wavelength of the electron beam is 0.0025 nm (acceleration voltage 200 kV), the camera length is 1 m, and the size of one pixel of the image sensor is 25 × 25 μm (commercially available imaging plate with 3200 × 4000 pixels) ), The maximum hole diameter of the minute diameter limited field stop 15 is 5 μm. At this time, the electron beam irradiation region on the sample corresponds to a diameter of 100 nm. If the hole diameter is 5 μm or less, it is too small to be used for normal limited visual field observation. Therefore, as shown in FIG. 8, the holes of the small diameter limited field stop 15 are arranged to have a phase recovery observation hole 22 of 5 μm or less and about 50 μm. The general-purpose holes 23 are arranged.

また、上述の制限視野絞りは、実施例1における制限視野絞りと同様に、観察に用いる電子線が透過しない厚さの金属板に、収束イオンビームや機械研磨や化学研磨のうち少なくとも何れか一つの加工方法によって孔を加工し、孔の加工面は電子回折像の強度分布にノイズを与えない滑らかさを有するように仕上げる。   In addition, the limited field stop described above is provided with at least one of a focused ion beam, mechanical polishing, and chemical polishing on a metal plate having a thickness that does not transmit an electron beam used for observation, like the limited field stop in the first embodiment. The hole is processed by two processing methods, and the processed surface of the hole is finished to have a smoothness that does not give noise to the intensity distribution of the electron diffraction image.

以上詳述したように、本発明によれば、実像と電子回折像を測定する際の微小径かつ平行な電子線を明るくかつ均一な強度分布にすることができ、試料への電子線露光時間の短縮や観察視野探索の操作性向上が達成できた。また、実像の明るさむらを低減できた。さらに、この方法で測定した実像と電子回折像のデジタルデータを、位相回復アルゴリズムを用いて演算処理することにより、測定した実像よりも高分解能かつ高精度な実像を再生することができた。   As described above in detail, according to the present invention, a minute diameter and parallel electron beam can be made bright and uniform intensity distribution when measuring a real image and an electron diffraction image, and an electron beam exposure time to a sample can be obtained. Shortening and improving the operability of the observation visual field search. Moreover, the uneven brightness of the real image could be reduced. Furthermore, by processing digital data of the real image and electron diffraction image measured by this method using a phase recovery algorithm, it was possible to reproduce a real image with higher resolution and higher accuracy than the measured real image.

試料の電子回折像と試料外側のポテンシャル分布から位相回復により高分解能実像を得るフローを説明する図。The figure explaining the flow which acquires a high-resolution real image by phase recovery from the electron diffraction image of a sample, and the potential distribution outside a sample. 実空間と逆空間における位相回復アルゴリズムのフローを説明する図。The figure explaining the flow of the phase recovery algorithm in real space and reverse space. 位相回復処理に用いる電子顕微鏡像を測定する際の電子線と試料上の電子線照射領域を説明する図。The figure explaining the electron beam at the time of measuring the electron microscope image used for a phase recovery process, and the electron beam irradiation area | region on a sample. 従来技術による位相回復処理用電子顕微鏡像を測定するための電子光学経路を示す図。The figure which shows the electron optical path | route for measuring the electron microscope image for phase recovery processes by a prior art. 本発明の第1の実施例になる走査透過電子顕微鏡を用いた場合の電子光学経路を示す図。The figure which shows the electron optical path at the time of using the scanning transmission electron microscope which becomes the 1st Example of this invention. 図5に示した第1の実施例による試料への電子線照射方法を説明する図。The figure explaining the electron beam irradiation method to the sample by the 1st Example shown in FIG. 本発明の第2の実施例になる透過電子顕微鏡を用いた場合の電子光学経路を示す図。The figure which shows the electron optical path at the time of using the transmission electron microscope which becomes the 2nd Example of this invention. 図7に示した第2の実施例における微小径制限視野絞りの構成例を説明する図。The figure explaining the structural example of the micro diameter limited field stop in the 2nd Example shown in FIG.

符号の説明Explanation of symbols

1…電子線、2…電子線照射領域、3…試料、4…電子銃、5…コンデンサー絞り、6…照射レンズ、7…対物レンズ(前磁場)、8…対物レンズ(後磁場)、9…中間レンズ、10…投射レンズ、11…撮像素子、12…電子線照射領域の電子回折像、13…電子線照射領域の実像、14…走査コイル、15…微小径制限視野絞り、16…検出角度制限絞り、17…モニター、18…試料中注目領域、19…試料中注目領域の電子回折像、20…試料中注目領域の実像、21…試料の実像、22…位相回復観察用孔、23…汎用孔。   DESCRIPTION OF SYMBOLS 1 ... Electron beam, 2 ... Electron beam irradiation area | region, 3 ... Sample, 4 ... Electron gun, 5 ... Condenser aperture, 6 ... Irradiation lens, 7 ... Objective lens (front magnetic field), 8 ... Objective lens (back magnetic field), 9 DESCRIPTION OF SYMBOLS ... Intermediate lens, 10 ... Projection lens, 11 ... Imaging device, 12 ... Electron diffraction image of electron beam irradiation area, 13 ... Real image of electron beam irradiation area, 14 ... Scanning coil, 15 ... Fine diameter limited field stop, 16 ... Detection Angle limiting diaphragm, 17 ... monitor, 18 ... region of interest in sample, 19 ... electron diffraction image of region of interest in sample, 20 ... real image of region of interest in sample, 21 ... real image of sample, 22 ... hole for phase recovery observation, 23 ... general purpose holes.

Claims (6)

加速した電子線を収束あるいは平行にして試料へ照射する電子線照射系と、前記試料を透過した電子線を撮像素子により検出して実像と電子回折像の強度分布を得る結像系とを備えた位相回復方式の電子顕微鏡にあって、前記実像を観察する際には、前記収束電子線を前記試料の注目領域に走査しながら照射し、前記撮像素子で検出した透過電子線の強度を前記収束電子線の走査と同期させてモニターに表示することによって前記注目領域を画像化し、前記電子回折像を観察する際には、前記注目領域の形状と面積に一致する孔を有する制限視野絞りを前記試料の直上に挿入し、静止した平行電子線を前記制限視野絞りを通して前記試料の注目領域に照射し、前記試料を透過した電子線が作る電子回折像を前記撮像素子により検出することを特徴とする位相回復方式の電子顕微鏡による観察方法。   An electron beam irradiation system that irradiates a sample with an accelerated electron beam converged or parallel, and an imaging system that detects an electron beam transmitted through the sample with an imaging device and obtains an intensity distribution of a real image and an electron diffraction image When observing the real image, the focused electron beam is irradiated while scanning the region of interest of the sample, and the intensity of the transmission electron beam detected by the imaging device is measured. When the region of interest is imaged by displaying it on a monitor in synchronization with the scanning of the convergent electron beam and the electron diffraction image is observed, a limited field stop having a hole that matches the shape and area of the region of interest is provided. Inserting the stationary parallel electron beam directly above the sample, irradiating the region of interest of the sample through the limited field stop, and detecting an electron diffraction image formed by the electron beam transmitted through the sample by the imaging device; Observation method using an electron microscope of the phase retrieval method to symptoms. 請求項1に記載の位相回復方式電子顕微鏡による観察方法において、前記実像を観察する際に、前記撮像素子で検出される散乱電子の検出角度範囲を、前記撮像素子の上方に挿入した検出角度制限絞りを用いて設定するようにしたことを特徴とする位相回復方式の電子顕微鏡による観察方法。   2. The observation method using the phase recovery electron microscope according to claim 1, wherein when observing the real image, a detection angle range of scattered electrons detected by the image sensor is inserted above the image sensor. An observation method using an electron microscope of a phase recovery system, characterized in that the setting is made using a diaphragm. 加速した電子線を対物レンズを介して試料へ照射する電子線照射系と、前記試料を透過した電子を撮像素子により検出して実像と電子回折像の強度分布を得る結像系とを備えた位相回復方式の電子顕微鏡にあって、前記実像と電子回折像を観察する際に、前記対物レンズの実像面に、前記対物レンズの実像面における倍率と電子線の波長とカメラ長との積を前記撮像素子の1画素のサイズで割算した値よりも小さい孔径を有する制限視野絞り挿入して、前記実像と電子回折像の強度分布を得るようにしたことを特徴とする位相回復方式の電子顕微鏡による観察方法。   An electron beam irradiation system that irradiates a sample with an accelerated electron beam through an objective lens, and an imaging system that detects an electron transmitted through the sample with an imaging device and obtains an intensity distribution of a real image and an electron diffraction image In the phase recovery type electron microscope, when observing the real image and the electron diffraction image, a product of the magnification of the real image surface of the objective lens, the wavelength of the electron beam, and the camera length is obtained on the real image surface of the objective lens. A phase-recovery type electron beam, wherein an intensity distribution of the real image and the electron diffraction image is obtained by inserting a limited field stop having a hole diameter smaller than a value divided by the size of one pixel of the image sensor. Observation method using a microscope. 請求項1又は3に記載の位相回復方式の電子顕微鏡による観察方法において、前記実像と電子回折像の強度分布を、前記撮像素子や検出系によりデジタル記録したデータを、位相回復アルゴリズムを用いて演算処理することにより、デジタル記録した実像よりも高分解能な実像を再生するようにしたことを特徴とする位相回復方式の電子顕微鏡による観察方法。   The observation method using an electron microscope of the phase recovery method according to claim 1 or 3, wherein the data obtained by digitally recording the intensity distribution of the real image and the electron diffraction image by the imaging device or the detection system is calculated using a phase recovery algorithm. An observation method using an electron microscope of a phase recovery method, wherein a real image having a higher resolution than a digitally recorded real image is reproduced by processing. 請求項1又は3に記載の位相回復方式の電子顕微鏡による観察方法において、前記制限視野絞りは、観察に用いる電子線が透過しない厚さの金属板に、収束イオンビームや機械研磨や化学研磨のうち少なくとも何れか一つの加工方法によって加工した孔を有し、かつ、前記孔の加工面は電子回折像の強度分布にノイズを与えない滑らかさを有していることを特徴とする位相回復方式の電子顕微鏡による観察方法。   The observation method using an electron microscope of the phase recovery method according to claim 1 or 3, wherein the limited field stop is formed on a metal plate having a thickness that does not transmit an electron beam used for observation, by focused ion beam, mechanical polishing, or chemical polishing. A phase recovery system characterized in that it has holes processed by at least one of the processing methods, and the processed surface of the holes has smoothness that does not give noise to the intensity distribution of the electron diffraction image Observation method using an electron microscope. 請求項4に記載の位相回復方式の電子顕微鏡による観察方法において、前記制限視野絞りは、前記位相回復アルゴリズムを用いて演算処理するための実像や電子回折像の観察に用いる第1の孔および通常の制限視野観察に用いる第2の孔の両方、または前記第1の孔のみを有することを特徴とする位相回復方式の電子顕微鏡による観察方法。   5. The observation method using an electron microscope of the phase recovery method according to claim 4, wherein the limited field stop includes a first hole used for observation of a real image or an electron diffraction image for calculation processing using the phase recovery algorithm, and a normal aperture. An observation method using an electron microscope of a phase recovery method, characterized by having both of the second holes used in the limited visual field observation or only the first hole.
JP2005155069A 2005-05-27 2005-05-27 Observation method using phase recovery electron microscope Expired - Fee Related JP4726048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155069A JP4726048B2 (en) 2005-05-27 2005-05-27 Observation method using phase recovery electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155069A JP4726048B2 (en) 2005-05-27 2005-05-27 Observation method using phase recovery electron microscope

Publications (2)

Publication Number Publication Date
JP2006331901A JP2006331901A (en) 2006-12-07
JP4726048B2 true JP4726048B2 (en) 2011-07-20

Family

ID=37553375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155069A Expired - Fee Related JP4726048B2 (en) 2005-05-27 2005-05-27 Observation method using phase recovery electron microscope

Country Status (1)

Country Link
JP (1) JP4726048B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462434B2 (en) * 2007-07-13 2014-04-02 株式会社日立製作所 Charged particle beam apparatus and charged particle beam microscope
EP2899744A1 (en) * 2014-01-24 2015-07-29 Carl Zeiss Microscopy GmbH Method for preparing and analyzing an object as well as particle beam device for performing the method
CN108550108B (en) * 2017-09-28 2020-11-03 武汉大学 Fourier laminated imaging image reconstruction method based on phase iteration minimization
JP6937392B2 (en) 2018-02-01 2021-09-22 株式会社日立ハイテク Spatial phase modulated electron wave generator
US10935506B2 (en) * 2019-06-24 2021-03-02 Fei Company Method and system for determining molecular structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299076A (en) * 1999-02-08 2000-10-24 Daiwa Techno Systems:Kk Throttle plate and its processing method
JP2002343294A (en) * 2001-03-12 2002-11-29 Jeol Ltd Complex electron microscope
JP2004199884A (en) * 2002-12-16 2004-07-15 Sony Corp Electron beam diffracting device
JP2005032732A (en) * 2004-09-15 2005-02-03 Hitachi Ltd Scanning electron microscope
WO2005114693A1 (en) * 2004-05-20 2005-12-01 National University Corporation Hokkaido University Electron microscopic method and electron microscope using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110953A (en) * 1984-11-06 1986-05-29 Hitachi Ltd Electron microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299076A (en) * 1999-02-08 2000-10-24 Daiwa Techno Systems:Kk Throttle plate and its processing method
JP2002343294A (en) * 2001-03-12 2002-11-29 Jeol Ltd Complex electron microscope
JP2004199884A (en) * 2002-12-16 2004-07-15 Sony Corp Electron beam diffracting device
WO2005114693A1 (en) * 2004-05-20 2005-12-01 National University Corporation Hokkaido University Electron microscopic method and electron microscope using the same
JP2005032732A (en) * 2004-09-15 2005-02-03 Hitachi Ltd Scanning electron microscope

Also Published As

Publication number Publication date
JP2006331901A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP3776887B2 (en) Electron beam equipment
JP3951590B2 (en) Charged particle beam equipment
JP3867524B2 (en) Observation apparatus and observation method using electron beam
JP5712074B2 (en) Scanning transmission electron microscope
US8993961B2 (en) Electric charged particle beam microscope and electric charged particle beam microscopy
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
JP2000331637A (en) Electron microscopy, and electron microscope, biological sample inspecting method and biological inspecting device using the same
JP2008014850A (en) Charged particle beam microscopic method, and charged particle beam device
CN111279183B (en) Crystal orientation map generation device, charged particle beam device, crystal orientation map generation method, and program
JP2000123768A (en) Charged particle beam device, adjustment method of charged particle beam device and manufacture of semiconductor device
JP4726048B2 (en) Observation method using phase recovery electron microscope
JP4337832B2 (en) Observation apparatus and observation method using electron beam
JP6403196B2 (en) Image evaluation method and charged particle beam apparatus
JP2008084643A (en) Electron microscope and solid observation method
JP5380366B2 (en) Transmission interference microscope
US9460891B2 (en) Inspection equipment
JP2005235665A (en) Dark field scanning transmission electron microscope and observation method
US11810751B2 (en) Method of imaging a specimen using a transmission charged particle microscope
JP4600239B2 (en) Magnetic electron microscope
JP4895525B2 (en) Scanning transmission electron microscope
KR102129369B1 (en) Electron beam apparatus
JP2007141866A (en) Electronic microscopic method and electronic microscope using the same, and biological material inspection method and biological inspection device
JP4069785B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
US11430632B2 (en) Method and system for generating reciprocal space map
EP3379557A1 (en) Scanning transmission electron microscope and method for high throughput acquisition of electron scattering angle distribution images

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees