JPH05332986A - Method and device for estimating silicon concentration in blast furnace molten iron - Google Patents

Method and device for estimating silicon concentration in blast furnace molten iron

Info

Publication number
JPH05332986A
JPH05332986A JP4142295A JP14229592A JPH05332986A JP H05332986 A JPH05332986 A JP H05332986A JP 4142295 A JP4142295 A JP 4142295A JP 14229592 A JP14229592 A JP 14229592A JP H05332986 A JPH05332986 A JP H05332986A
Authority
JP
Japan
Prior art keywords
concentration
blast furnace
activity
hot metal
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4142295A
Other languages
Japanese (ja)
Inventor
Taichi Aoki
太一 青木
Mamoru Inaba
護 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4142295A priority Critical patent/JPH05332986A/en
Publication of JPH05332986A publication Critical patent/JPH05332986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To measure Si concentration in blast furnace molten iron with a high speed and high accuracy for controlling removal of Si so as to dose an appropriate agent for removing Si. CONSTITUTION:An Si activity in blast furnace molten iron 5 that is measured by means of a probe 1 operated with an oxygen concentration battery using solid electrolyte is corrected by using the other solute concentration to improve its accuracy. For example, corrective computation is performed by a process computer 2 to obtain an Si concentration quickly and accurately. Therefore, the dosage of an agent for removing Si can be calculated quickly and accurately, thus improving the accuracy of continuous Si removal control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉熔銑中の溶質元
素のうち、シリコン(以下、Siと略す)の濃度を精度
よく推定するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately estimating the concentration of silicon (hereinafter abbreviated as Si) among solute elements in blast furnace hot metal.

【0002】[0002]

【従来の技術】近年、鋼材の高級化及び精錬コストの低
廉化の要請から、製鉄所における精練工程において転炉
精錬に先立つ溶銑予備処理、特に脱P処理、が重要視さ
れている。脱P処理においては溶銑中のSiが反応阻害
要因となるので、脱P前にSiを除去しておくことが望
ましい。しかし、Siは予備処理中の溶銑温度を維持す
るための熱源としての役割をも果たしていることから、
高炉溶銑中のSiはその濃度が一定の範囲内にあること
が要求される。Siは原料中に含まれるもので、一般に
は所定の範囲を超えて過剰に存在する。この場合、脱S
i剤による脱Siが必要となるが、脱Si剤の投入量は
その時のSi濃度に基づいて算出される。
2. Description of the Related Art In recent years, hot metal pretreatment, particularly deP treatment, prior to converter refining in a refining process at an iron mill has been emphasized due to demands for higher quality steel and lower refining costs. In the deP treatment, Si in the hot metal becomes a reaction inhibiting factor, so it is desirable to remove Si before the deP treatment. However, since Si also plays a role as a heat source for maintaining the hot metal temperature during the pretreatment,
The concentration of Si in the hot metal of the blast furnace is required to be within a certain range. Si is contained in the raw material, and is generally present in excess over a predetermined range. In this case, de-S
Si removal with the i agent is required, and the amount of the Si removal agent added is calculated based on the Si concentration at that time.

【0003】このSi濃度は、機器分析によって知るこ
とができる。しかし、機器分析では溶銑試料を採取した
後これを固化し更に分析用に試料調製を行うので、分析
結果が得られるまでに数十分を要してしまう。この欠点
のため、脱Si処理の自動制御にはその結果を用いるこ
とが出来ない。
This Si concentration can be known by instrumental analysis. However, in instrumental analysis, a hot metal sample is collected, then solidified, and a sample is prepared for analysis. Therefore, it takes several tens of minutes to obtain an analysis result. Due to this drawback, the result cannot be used for automatic control of the Si removal treatment.

【0004】そこで、従来迅速に測定する方法として、
プローブを用いて溶銑中のシリコンのような溶質元素を
電気化学的に即時に測定する技術が提案されている。例
えば、特開昭61−142455号公報には、酸素イオ
ン導電性を有する固体電解質の外側を測定対象とする溶
質元素の酸化物の活量を一定とする物質で被覆し、内部
に基準物質と基準極を配した標準電極が開示されてい
る。この標準電極と測定電極とを溶融金属中例えば溶銑
中に挿入し、両極間の電位差と溶銑温度とから溶質元素
の活量を求めるものである。
Therefore, as a conventional method for quick measurement,
There has been proposed a technique for electrochemically immediately measuring a solute element such as silicon in hot metal using a probe. For example, in Japanese Unexamined Patent Publication No. 61-142455, the outside of a solid electrolyte having oxygen ion conductivity is coated with a substance having a constant activity of oxide of a solute element to be measured, and the inside is used as a reference substance. A standard electrode having a reference electrode is disclosed. The standard electrode and the measurement electrode are inserted into molten metal, for example, hot metal, and the activity of the solute element is determined from the potential difference between the two electrodes and the hot metal temperature.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな方法で測定されるのは活量であって、溶質元素の濃
度そのものではない。活量は測定対象溶質元素自身の濃
度のみならず、他の溶質元素の濃度の関数でもある。こ
のため、他の溶質元素の影響が濃度値に対しては誤差と
なって現れるという問題があった。
However, what is measured by such a method is the activity, not the concentration of the solute element itself. The activity is a function of not only the concentration of the solute element to be measured itself but also the concentration of other solute elements. Therefore, there is a problem that the influence of other solute elements appears as an error with respect to the concentration value.

【0006】この発明は、このような問題を解決するた
めになされたもので、即時に測定される溶質元素の活量
に他の溶質元素の濃度に基づく補正を施すことによっ
て、高炉溶銑中のSi濃度の測定精度を向上させようと
するものである。
The present invention has been made in order to solve such a problem, and the activity of a solute element that is immediately measured is corrected based on the concentration of another solute element, so that the hot metal in the blast furnace hot metal is corrected. It is intended to improve the measurement accuracy of the Si concentration.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
の手段は、測定されるSiの活量を補正して濃度を求め
る推定方法とこれを実行するための装置とであって、酸
素イオン導電性を有する固体電解質を用いた酸素濃淡電
池によるプローブを溶融銑鉄中に投入して高炉溶銑中の
溶質元素シリコンの濃度を推定するにあたり、前記プロ
ーブによって測定されるシリコンの活量を他の溶質元素
の濃度に基づいて補正する高炉熔銑中のシリコン濃度推
定方法、及び、酸素イオン導電性を有する固体電解質を
用いた酸素濃淡電池によるシリコン活量を測定するプロ
ーブと、測定された活量に基づいて演算を行う演算手段
と機器分析結果を記憶する記憶手段とを有し且つ機器分
析器と連結されたプロセスコンピュータとを備えた高炉
熔銑中のシリコン濃度推定装置である。
Means for achieving this object are an estimation method for correcting the measured Si activity and obtaining a concentration, and an apparatus for executing the estimation method. In estimating the concentration of solute element silicon in blast furnace hot metal by inserting a probe by an oxygen concentration battery using a conductive solid electrolyte into the molten pig iron, the activity of silicon measured by the probe was compared with other solutes. A method for estimating the silicon concentration in blast furnace hot metal that is corrected based on the concentration of elements, and a probe for measuring the silicon activity by an oxygen concentration battery using a solid electrolyte having oxygen ion conductivity, and the measured activity Silicon in Blast Furnace Hot Metal Having Computation Means Performing Computation Based On Means And Storage Means To Store Instrument Analysis Results And Equipped With Process Computer Connected With Instrument Analyzer It is a degree estimation device.

【0008】[0008]

【作用】先ず、酸素イオン導電性を有する固体電解質を
用いた酸素濃淡電池によるプローブについて、図4を用
いて説明する。図中のプローブは一例であって、11は
基準極、12は基準物質、13は固体電解質でO2 イオ
ン導電性を有し、14は酸化物被覆でSiO2 の活量が
一定になるように作られており、16は測定極、5は溶
銑である。プローブが溶銑5に挿入されると、溶銑5中
のSi及びO2 と酸化物被覆14のSiO2 とはやがて
化学平衡に達する。この化学平衡は式1で表され、平衡
定数K’は式2で表される。
First, a probe of an oxygen concentration battery using a solid electrolyte having oxygen ion conductivity will be described with reference to FIG. The probe in the figure is an example, 11 is a reference electrode, 12 is a reference substance, 13 is a solid electrolyte having O 2 ion conductivity, and 14 is an oxide coating so that the activity of SiO 2 is constant. , 16 is a measuring electrode, and 5 is hot metal. When the probe is inserted into the hot metal 5, Si and O 2 in the hot metal 5 and the SiO 2 of the oxide coating 14 reach a chemical equilibrium. This chemical equilibrium is represented by Equation 1, and the equilibrium constant K ′ is represented by Equation 2.

【0009】[0009]

【化1】 [Chemical 1]

【0010】[0010]

【数1】 [Equation 1]

【0011】ここで、 aSiO2 :SiO2 の活量(ラウール基準) hSi :Si活量(ヘンリー基準) PO2 :O2 分圧 である。Here, aSiO 2 : SiO 2 activity (Rawl standard) hSi: Si activity (Henry standard) P O2 : O 2 partial pressure.

【0012】平衡定数K’は、SiO2 の活量が一定に
なるように作ってあるので、温度が変わらなければO2
分圧のみの関数とみなすことが出来、Si活量は新たな
定数K”を用いて(3)式で求められる。
Since the equilibrium constant K'is made so that the activity of SiO 2 is constant, O 2 is maintained unless the temperature changes.
It can be regarded as a function of only partial pressure, and the Si activity is obtained by the equation (3) using a new constant K ″.

【0013】[0013]

【数2】 [Equation 2]

【0014】固体電解質13の内側に基準物質12が入
っているので、溶銑5と基準物質12とのO2 分圧の差
に応じて、酸化物被覆固体電解質の内外には電位差が現
れ、起電力が発生する。即ち、酸素濃淡電池が形成され
るので、基準物質12に基準極11を挿入し又溶銑5に
測定極16を挿入して、両極間の電位差を測定してやれ
ば、酸化物被覆14の外面のO2 分圧が求まり、これと
平衡する溶銑5中のSi活量が求まる。この起電力は
(4)式で表される。
Since the reference substance 12 is contained inside the solid electrolyte 13, a potential difference appears inside and outside the oxide-coated solid electrolyte depending on the difference in O 2 partial pressure between the hot metal 5 and the reference substance 12. Electricity is generated. That is, since an oxygen concentration cell is formed, if the reference electrode 11 is inserted into the reference substance 12 and the measurement electrode 16 is inserted into the hot metal 5, and the potential difference between the two electrodes is measured, the O 2 on the outer surface of the oxide coating 14 is measured. The 2 partial pressure is obtained, and the Si activity in the hot metal 5 that is in equilibrium with this is obtained. This electromotive force is expressed by equation (4).

【0015】[0015]

【数3】 [Equation 3]

【0016】ここで、 E :起電力 T :温度 F :ファラデー定数 PO2 :溶銑中のO2 分圧 Pref :基準物質のO2 分圧 R :ガス定数 である。Here, E: electromotive force T: temperature F: Faraday constant P O2 : partial pressure of O 2 in the hot metal Pref : partial pressure of O 2 of the reference substance R: gas constant

【0017】(3)式と(4)式とから、Si活量は、
(5)式で示されるように、起電力の関数として表され
る。
From the equations (3) and (4), the Si activity is
It is expressed as a function of the electromotive force as shown in the equation (5).

【0018】[0018]

【数4】 [Equation 4]

【0019】以上が、固体電解質を用いた酸素濃淡電池
を用いてSi活量を測定する原理である。しかしなが
ら、Si活量はSi濃度に最も深く関連する測定値では
あるが、同時に、他の溶質元素の濃度にも関連する。そ
して、これらの関係は式(6)で表されるものである。
The above is the principle of measuring the Si activity using an oxygen concentration battery using a solid electrolyte. However, Si activity is the measurement most closely related to Si concentration, but at the same time it is related to the concentration of other solute elements. Then, these relationships are expressed by the equation (6).

【0020】[0020]

【数5】 [Equation 5]

【0021】ここで、 hSi :Si活量 %Si :Si濃度(%) %i :溶質元素iの濃度(%) i :Si以外の熔銑中溶質元素 e(Si,Si):Siの自己作用助係数 e(i,Si) :溶質元素iからSiへの相互作用助係数 である。即ち、従来のSiの活量を測定してその濃度の
推定値とする方法においては、(6)式のうち溶質元素
iの濃度を含む項が測定誤差に含まれていた。
Here, hSi: Si activity% Si: Si concentration (%)% i: Concentration of solute element i (%) i: Solute element in hot metal other than Si e (Si, Si): Self of Si Action factor e (i, Si): It is the interaction factor from solute element i to Si. That is, in the conventional method of measuring the activity of Si and using it as the estimated value of the concentration, the term including the concentration of the solute element i in the equation (6) was included in the measurement error.

【0022】溶銑の場合、測定誤差をもたらす溶質元素
として、C、P、Mn、Ti、Cr等があり、これらの
濃度による測定誤差を補正することによって、Siの濃
度測定精度は向上する。
In the case of hot metal, there are C, P, Mn, Ti, Cr, etc. as solute elements that cause a measurement error, and by correcting the measurement error due to their concentration, the Si concentration measurement accuracy is improved.

【0023】補正を行うには、上記の溶質元素の濃度を
知る必要がある。知るための望ましい方法は、これらの
溶質元素の活量を測定するプローブをそれぞれに設け
て、Siと同時に測定し、近似計算を繰り返して濃度値
に回帰することである。これによって、他の溶質元素の
濃度も同時に即時に求まる。しかし、この方法は何種類
ものプローブを必要とし現状ではコストや作業性の面で
も困難を伴うこともある。
To make the correction, it is necessary to know the concentration of the solute element. A desirable method for knowing is to provide a probe for measuring the activity of these solute elements for each, measure simultaneously with Si, and repeat approximate calculation to regress to the concentration value. As a result, the concentrations of other solute elements can be immediately obtained at the same time. However, this method requires many kinds of probes, and currently, it may be difficult in terms of cost and workability.

【0024】最も現実的な方法として、最も重要なSi
を対象としたプローブのみを設け、他の溶質の濃度につ
いては機器分析に頼る方法がある。これは、溶銑の性質
を利用した方法で、Siと他の溶質とでは変動の様子に
相違があることに注目したものである。
As the most realistic method, the most important Si
There is a method in which only the probe for the target is provided and the instrumental analysis is used for the concentration of other solutes. This is a method utilizing the properties of hot metal, and it is noted that there is a difference in the state of fluctuation between Si and other solutes.

【0025】図3は、溶質の一日の濃度推移を示したも
ので、各々(a)図はSi、(b)図はC、(c)図は
P、(d)図はMnについてのものである。図中、縦軸
は濃度、横軸は時間、破線は当該期間中の濃度の平均値
である。点線は平均値に標準偏差σの2倍を加減算した
ものであり、大雑把な変動範囲を示すものである。標準
偏差と平均値との比を見ると、Si:0.269に対し
て、C:0.056、P:0.061、Mn:0.07
9である。
FIG. 3 shows the changes in the concentration of solutes per day, in which (a) is Si, (b) is C, (c) is P, and (d) is Mn. It is a thing. In the figure, the vertical axis is the concentration, the horizontal axis is the time, and the broken line is the average value of the concentration during the period. The dotted line is obtained by adding and subtracting twice the standard deviation σ to the average value, and shows a rough variation range. Looking at the ratio between the standard deviation and the average value, with respect to Si: 0.269, C: 0.056, P: 0.061, Mn: 0.07.
It is 9.

【0026】これから判るのは、溶質元素のうち、Si
濃度の時間的変動は大きいが、これに比べ他の溶質元素
のそれは小さいことである。その理由は、Si以外の溶
質元素の濃度は高炉操業の物質収支でほぼ定まり原料性
状に依存するのに対して、Si濃度を決定するのは高炉
炉下部でのSiの溶銑とスラグへの化学的分配であるこ
とによる。即ち、分配は、SiOガス、溶銑、溶滓の三
者相互の化学的反応によって決まるものであるが、これ
が、高炉炉内の熱的状態の影響を大きく受け、この熱的
状態変化が原燃料の性状変化よりも短時間で起こること
による。
From this, it can be seen that Si is one of the solute elements.
Although the concentration has a large temporal variation, the concentration of other solute elements is smaller than that of the other solute elements. The reason is that the concentration of solute elements other than Si is almost determined by the mass balance of the blast furnace operation and depends on the raw material properties, whereas the Si concentration is determined by the chemical content of Si in the lower part of the blast furnace and slag. Because it is a physical distribution. That is, the distribution is determined by the chemical reaction among the SiO gas, the hot metal, and the slag, which is greatly affected by the thermal state in the blast furnace, and this thermal state change causes the raw fuel. Because it occurs in a shorter time than the property change of.

【0027】以上のような高炉溶銑の性質から、試料採
取から結果の判明までに20乃至40分を要する機器分
析値であっても、Si以外の溶質元素の濃度値は充分な
精度で使用することが出来る。
Due to the properties of blast furnace hot metal as described above, the concentration values of solute elements other than Si should be used with sufficient accuracy even for instrumental analysis values that require 20 to 40 minutes from the sampling to the determination of the results. You can

【0028】これらの機器分析値で、Si活量を補正し
て真のSi濃度を即時に得るには、次のような装置が適
している。即ち、演算手段と記憶手段を持つプロセスコ
ンピュータと機器分析器とをデータハイウエイで結び、
且つこのプロセスコンピュータに前述したSi活量を測
定するプローブとを接続した装置である。このプロセス
コンピュータは送られる機器分析による最新の分析結果
を常に記憶し、プローブからの測定値即ちSi活量が送
られて来ると即座に、(6)式に基づいて補正演算を行
う。
The following apparatus is suitable for immediately obtaining the true Si concentration by correcting the Si activity based on these instrumental analysis values. That is, a process computer having a calculation means and a storage means and an instrument analyzer are connected by a data highway,
Moreover, it is an apparatus in which this process computer is connected to the above-mentioned probe for measuring the Si activity. This process computer always stores the latest analysis result by the instrumental analysis sent, and immediately upon receipt of the measured value from the probe, that is, the Si activity, performs the correction calculation based on the equation (6).

【0029】[0029]

【実施例】図1に示す装置を用いて、高炉溶銑中のSi
濃度を推定した。図1は装置の概要を示すもので、Si
活量を測定するプローブ1をプロセスコンピュータ2に
接続し、プロセスコンピュータ2には汎用のデータハイ
ウエイ4を通して、機器分析器3から分析結果が送られ
ている。C、Si、P、Mn、S、Ti、Cr、Cu、
V等の分析値が、プローブによるSi測定とは無関係
に、発光分光分析、蛍光X線分析、赤外線吸収分析等の
分析機器から定常的に送られている。機器分析のための
試料採取は30分毎である。
EXAMPLE Using the apparatus shown in FIG. 1, Si in blast furnace hot metal
The concentration was estimated. Fig. 1 shows the outline of the device.
The probe 1 for measuring the activity is connected to the process computer 2, and the analysis result is sent from the instrument analyzer 3 to the process computer 2 through the general-purpose data highway 4. C, Si, P, Mn, S, Ti, Cr, Cu,
Analytical values such as V are constantly sent from analytical instruments such as emission spectroscopy analysis, fluorescent X-ray analysis, and infrared absorption analysis, regardless of Si measurement by a probe. Sampling for instrumental analysis is every 30 minutes.

【0030】プロセスコンピュータ2は記憶手段を有し
分析値を記憶しておき、プローブ1から溶銑5中の測定
されたSi活量信号が入ると、直ちに演算手段により、
(6)式に基づく補正計算を行い、Si濃度を推定し
た。この例では、Si濃度の変動グラフをCRTディス
プレイ6に、又、推定値を専用ディジタル表示器7に表
示し記録させたが、操業上はプロセスコンピュータ2か
らの推定値は判断回路を経て、脱Si剤投入制御器への
信号に使われる。
The process computer 2 has a storage means for storing analysis values. When the measured Si activity signal in the hot metal 5 is input from the probe 1, the calculation means immediately causes
A correction calculation based on the equation (6) was performed to estimate the Si concentration. In this example, the Si concentration fluctuation graph is displayed on the CRT display 6 and the estimated value is displayed and recorded on the dedicated digital display 7. However, in operation, the estimated value from the process computer 2 passes through the judgment circuit and is released. Used as a signal to the Si agent injection controller.

【0031】図5は図1に示したプローブ1の詳細で、
基準極11にはMoワイヤを使用し、基準物質12には
CrとCr2 3 の混合物を、固体電解質13にはZr
2を含むMgOを、酸化物皮膜14にはSiO2 を、
又測定極にはMo棒をそれぞれ用い、温度測定にはPt
−Pt 13%Rh熱電対を組み込んだ。なお、(6)式を
用いての演算に際して、溶質元素iからSiへの相互作
用助係数e(i,Si) については、出発時は文献による推奨
値を用いたが、実績に基づく回帰処理により随時求めら
れる更新値を用いた。
FIG. 5 shows details of the probe 1 shown in FIG.
A Mo wire is used for the reference electrode 11, a mixture of Cr and Cr 2 O 3 is used for the reference substance 12, and Zr is used for the solid electrolyte 13.
MgO containing O 2 , SiO 2 for the oxide film 14,
Also, Mo rods are used for the measuring electrodes, and Pt is used for temperature measurement.
-Pt 13% Rh thermocouple was incorporated. In the calculation using equation (6), the solute element i to Si interaction assist coefficient e (i, Si) used the recommended value from the literature at the time of departure. The updated value obtained from time to time was used.

【0032】このようにしてこの発明を実施した結果、
プロセスコンピュータ2へSi活量信号が入力される
と、即時に専用ディジタル表示器7で推定値が表示さ
れ、推定値の精度は次のようであった。
As a result of carrying out the present invention in this way,
When the Si activity signal was input to the process computer 2, the estimated value was immediately displayed on the dedicated digital display 7, and the accuracy of the estimated value was as follows.

【0033】推定したSi濃度を、同時に採取した機器
分析用試料の分析結果と対比し図2に示す。(a)図
は、この発明の補正を行った場合、(b)図は補正を行
わない従来例で、何れも横軸は機器分析によるSi分析
値であり、縦軸はそれぞれ補正したSi推定値及び補正
しないSi推定値である。
The estimated Si concentration is shown in FIG. 2 in comparison with the analysis result of the instrumental analysis sample collected at the same time. (A) is a conventional example in which the correction of the present invention is performed, and (b) is a conventional example in which no correction is performed. In each case, the horizontal axis is the Si analysis value by instrumental analysis and the vertical axis is the corrected Si estimation The value and the Si estimated value without correction.

【0034】(a)図では、推定値が45°直線に極め
て近く分布し、これに比し(b)図では直線から隔たっ
た分布が見られる。標準偏差では、従来例が0.022
%であったのに対し、この発明の実施例では0.014
%に改善され推定精度の向上が明瞭に認められた。
In the figure (a), the estimated values are distributed very close to the 45 ° straight line, while in contrast, in the figure (b), there is a distribution apart from the straight line. The standard deviation is 0.022 in the standard deviation.
%, While 0.014 in the embodiment of the present invention.
%, And the estimation accuracy was clearly improved.

【0035】[0035]

【発明の効果】この発明によれば、迅速ではあったが精
度に問題を残していた従来技術の欠点を、Si以外の溶
質元素の濃度でSi活量を補正するという手法を用いて
解決しているので、迅速性を損なわず溶銑中のSi濃度
を高い精度で推定することが出来る。これは高炉鋳床に
おける連続脱Si制御の精度を高め脱Si剤をはじめ工
程の合理化を可能とするもので、その効果は大きい。
According to the present invention, the shortcoming of the prior art, which is quick but has a problem in accuracy, is solved by using a method of correcting the Si activity by the concentration of a solute element other than Si. Therefore, the Si concentration in the hot metal can be estimated with high accuracy without impairing the speed. This enhances the accuracy of continuous Si removal control in the blast furnace casting floor and makes it possible to rationalize the process including the Si removal agent, and its effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に用いた高炉熔銑中のシリコ
ン濃度推定装置の概要を示す図である。
FIG. 1 is a diagram showing an outline of an apparatus for estimating a silicon concentration in blast furnace hot metal used in an embodiment of the present invention.

【図2】この発明と従来技術の推定精度を比較した推定
値と分析値の相関図である。
FIG. 2 is a correlation diagram of an estimated value and an analytical value comparing the estimation accuracy of the present invention with that of the conventional technique.

【図3】高炉溶銑の性質を説明するための各溶質濃度の
時間的変動を示す図である。
FIG. 3 is a diagram showing a temporal variation of each solute concentration for explaining the properties of blast furnace hot metal.

【図4】プローブによりSi活量を測定する原理を示す
電極配置図である。
FIG. 4 is an electrode arrangement diagram showing the principle of measuring Si activity by a probe.

【図5】実施例に用いたプローブの概要を示す図であ
る。
FIG. 5 is a diagram showing an outline of a probe used in Examples.

【符号の説明】[Explanation of symbols]

1 プローブ 2 プロセスコンピュータ 3 分析機器 4 データハイウェイ 5 溶銑 11 基準極 12 基準物質 13 固体電解質 14 酸化物被覆 16 測定極 17 熱電対 1 Probe 2 Process Computer 3 Analytical Instrument 4 Data Highway 5 Hot Metal 11 Reference Electrode 12 Reference Material 13 Solid Electrolyte 14 Oxide Coating 16 Measuring Electrode 17 Thermocouple

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン導電性を有する固体電解質を用
いた酸素濃淡電池によるプローブを溶融銑鉄中に投入し
て高炉溶銑中の溶質元素シリコンの濃度を推定するにあ
たり、前記プローブによって測定されるシリコンの活量
を他の溶質元素の濃度に基づいて補正することを特徴と
する高炉熔銑中のシリコン濃度推定方法。
1. A silicon measured by a probe for charging a probe of an oxygen concentration battery using a solid electrolyte having oxygen ion conductivity into molten pig iron to estimate the concentration of solute element silicon in the blast furnace molten pig iron. Method for estimating silicon concentration in blast furnace hot metal, characterized in that the activity of iron is corrected based on the concentrations of other solute elements.
【請求項2】酸素イオン導電性を有する固体電解質を用
いた酸素濃淡電池によるシリコン活量を測定するプロー
ブと、測定された活量に基づいて演算を行う演算手段と
機器分析結果を記憶する記憶手段とを有し且つ機器分析
器と連結されたプロセスコンピュータとを備えたことを
特徴とする高炉熔銑中のシリコン濃度推定装置。
2. A probe for measuring silicon activity in an oxygen concentration battery using a solid electrolyte having oxygen ion conductivity, a calculation means for performing calculation based on the measured activity, and a memory for storing instrumental analysis results. An apparatus for estimating silicon concentration in blast furnace hot metal, comprising: a process computer having means and connected to an instrument analyzer.
JP4142295A 1992-06-03 1992-06-03 Method and device for estimating silicon concentration in blast furnace molten iron Pending JPH05332986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142295A JPH05332986A (en) 1992-06-03 1992-06-03 Method and device for estimating silicon concentration in blast furnace molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142295A JPH05332986A (en) 1992-06-03 1992-06-03 Method and device for estimating silicon concentration in blast furnace molten iron

Publications (1)

Publication Number Publication Date
JPH05332986A true JPH05332986A (en) 1993-12-17

Family

ID=15312059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142295A Pending JPH05332986A (en) 1992-06-03 1992-06-03 Method and device for estimating silicon concentration in blast furnace molten iron

Country Status (1)

Country Link
JP (1) JPH05332986A (en)

Similar Documents

Publication Publication Date Title
JP3398221B2 (en) Reference electrode for electrochemical measurement of oxygen partial pressure in ionic melts
JPH05332986A (en) Method and device for estimating silicon concentration in blast furnace molten iron
US3359188A (en) Methods and apparatus for determining the oxygen activity of molten metals, metal oxides and slags
US3661725A (en) Method for determining the carbon concentration in a metal melt
US4800747A (en) Method of measuring oxygen in silicon
US3681972A (en) Process and device for determining the oxygen concentration in metal melts
JPH05232029A (en) Method and apparatus for ph-value measurement by fluorescent photometry
Sigworth et al. The conditions for nucleation of oxides during the silicon deoxidation of steel
JPH09297117A (en) Corrosion measuring device for metallic material
KR100943649B1 (en) Oxygen sensor for low oxygen contents
JP3139818B2 (en) Verification method of accuracy in moisture determination of solids
US8976350B2 (en) Method for determining carbon in cast iron
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
JP2636260B2 (en) Copper purification method in refinery furnace
JP3284783B2 (en) Moisture measurement method
US3645720A (en) Method of deoxidizing steel
Li et al. Distribution of oxygen potential in ZrO2-based solid electrolyte and selection of reference electrode of oxygen sensor
US5256272A (en) Electrochemical sensor for determining the level of a certain metal in metals and alloys
KR910008652B1 (en) Method apparatus and prove for measuring the activity of a solute element in molton met
JP2001099825A (en) Method for analyzing oxygen in analysis sample
JP2002131272A (en) Probe and method for measuring activity of oxygen in slag
Nicholson et al. Voltammetry at Constant Current
JP3058748B2 (en) Sulfur moisture determination method
JPH1019824A (en) System for assisting corrosion control of metallic material
Kashiwaya et al. Interaction Parameter e O C for Carbon-saturated Liquid Iron between 1623 and 1723 K.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20131211

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350