JPH05332956A - X-ray analizer - Google Patents

X-ray analizer

Info

Publication number
JPH05332956A
JPH05332956A JP4142280A JP14228092A JPH05332956A JP H05332956 A JPH05332956 A JP H05332956A JP 4142280 A JP4142280 A JP 4142280A JP 14228092 A JP14228092 A JP 14228092A JP H05332956 A JPH05332956 A JP H05332956A
Authority
JP
Japan
Prior art keywords
ray
incident
slit
sample
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4142280A
Other languages
Japanese (ja)
Inventor
Toshiharu Goto
俊治 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4142280A priority Critical patent/JPH05332956A/en
Publication of JPH05332956A publication Critical patent/JPH05332956A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To accurately control the tilt angle of a sample, referring to an X-ray analizer in which X-rays are incident at a small angle on a sample surface. CONSTITUTION:An analizer for emitting two incident X-ray beams 3 of slit- shaped sections on a surface 1a to be measured comprises the following parts and means: a slit 8 having an opening 8a for demarcating an incident X-ray beam 3; a very shall X-ray source 10 removably provided before the slit 8 on the center line thereof: a beam splitter 9 having two slit-shaped openings 9a and for splitting diverging X-rays from the source 10 into two X-ray beams 14a, 14b used for adjustment in two directions; a sample base 2 having a means for moving a sample 1 vertically to the surface 1a, a means for rotating the surface 1a around the theta-rotation shaft 2b perpendicular to the normal of the surface 1a and to the incident X-ray beam 3, and a means for rotating the surface 1a around the tilt rotation shaft 2b perpendicular to the normal of the surface 1a and the shaft 2a; and a means for detecting the X-ray beams 14a, 14b reflected or diffracted by the surface 1a, and for adjusting the tilt rotation so that the dependency of the intensities thereof on the theta-rotation agree with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料表面に小角度で入射
するX線に対して試料の角度及び位置を正確に設定でき
るX線分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analyzer capable of accurately setting the angle and position of a sample with respect to an X-ray incident on the sample surface at a small angle.

【0002】試料表面へのX線の入射角が小さい場合,
とくに全反射条件を満たす程入射角が小さい場合には,
入射X線は試料表面のみを照射し内部には殆ど侵入しな
い。このため,小入射角の条件では,試料表面から放射
される散乱X線,蛍光X線又は光電子を観測する表面観
測の際に,雑音となる試料内部からのX線及び光電子の
発生が極めて少なく,高いS/N比をもって表面観測を
することができる。
When the incident angle of X-rays on the sample surface is small,
Especially when the incident angle is small enough to satisfy the condition of total internal reflection,
The incident X-ray irradiates only the sample surface and hardly penetrates inside. Therefore, under the condition of a small incident angle, when scattered X-rays, fluorescent X-rays or photoelectrons radiated from the sample surface are observed, the generation of X-rays and photoelectrons from the inside of the sample which become noise is extremely small. The surface can be observed with a high S / N ratio.

【0003】この様に,X線を小さな入射角で試料表面
に入射させるX線分析装置は,基板表面の構造又は組成
を鋭敏に分析できるため,X線回折,X線散乱,蛍光X
線分析及び光電子分光を用いる表面分析に広く利用され
ている。
As described above, the X-ray analyzer for making the X-ray incident on the surface of the sample at a small incident angle can sensitively analyze the structure or composition of the surface of the substrate. Therefore, X-ray diffraction, X-ray scattering, and fluorescent X
Widely used for surface analysis using line analysis and photoelectron spectroscopy.

【0004】しかし,試料表面へのX線入射角が小さい
ために,試料の角度又は位置の僅かな変動によりX線照
射領域が大きく移動する。このため,分析すべき領域を
正確にX線照射するために,試料を正確な角度,位置に
精密に設定する必要がある。
However, since the X-ray incidence angle on the sample surface is small, the X-ray irradiation region is largely moved by a slight variation in the sample angle or position. Therefore, it is necessary to precisely set the sample at an accurate angle and position in order to accurately irradiate the region to be analyzed with X-rays.

【0005】[0005]

【従来の技術】従来のX線分析装置では,入射X線ビー
ムに対して以下のようにして試料の位置合わせがなされ
る。
2. Description of the Related Art In a conventional X-ray analyzer, a sample is aligned with an incident X-ray beam as follows.

【0006】図4は,従来の装置の透視説明図であり,
X線分析装置における試料の位置合せ時の試料と光学系
との関係を表している。モノクロメータを通して単色化
されたシンクロトロン軌道放射光13a(以下SOR光
という。)を,スリット状の開口8aを有するコリメー
タ8により幅広の薄いビーム,例えば断面が幅20mm,
高さ0.2mmの矩形の入射X線ビーム3とする。
FIG. 4 is a perspective explanatory view of a conventional device,
The relationship between the sample and the optical system when the sample is aligned in the X-ray analyzer is shown. The synchrotron orbit radiated light 13a (hereinafter referred to as SOR light) monochromated through the monochromator is widened by a collimator 8 having a slit-shaped opening 8a, for example, a thin beam having a width of 20 mm,
The incident X-ray beam 3 has a rectangular shape with a height of 0.2 mm.

【0007】試料1のシリコンウェーハは,被測定面1
aがこの入射X線ビーム3にほぽ平行になるように,図
示されていない試料台上に載置される。この試料台は,
その上に載置された試料を,その被測定面1aに垂直な
方向(以下z軸方向という。)に精密移動させる手段
と,z軸及び入射X線ビーム3の入射方向と直交する方
向,即ち入射ビーム3の幅方向(以下x軸方向とい
う。)を軸とする回転(以下θ回転という。)手段と,
z軸及びx軸に直交する方向(以下y軸という。)を軸
とする回転(以下アオリ回転という。)手段とを備え
る。
The silicon wafer of sample 1 is the surface to be measured 1
It is placed on a sample stage (not shown) so that a is almost parallel to the incident X-ray beam 3. This sample stand
Means for precisely moving the sample placed thereon in a direction perpendicular to the surface 1a to be measured (hereinafter referred to as z-axis direction), a direction orthogonal to the z-axis and the incident direction of the incident X-ray beam 3, That is, rotation (hereinafter referred to as θ rotation) means about the width direction of the incident beam 3 (hereinafter referred to as x-axis direction) as an axis,
Rotation (hereinafter referred to as tilt rotation) means having a direction orthogonal to the z-axis and the x-axis (hereinafter referred to as y-axis) as an axis.

【0008】なお,x,y,z軸の方向は右手系を構成
するように選定され,z軸は被測定面からウェーハの外
部へ向かう方向を正とし,y軸は入射X線ビーム3の入
射方向ベクトルが正のy成分を有する方向を正とする。
The directions of the x, y, and z axes are selected so as to form a right-handed system, the z axis is positive in the direction from the surface to be measured to the outside of the wafer, and the y axis is of the incident X-ray beam 3. The direction in which the incident direction vector has a positive y component is positive.

【0009】従来の装置における試料1の位置合せの手
順は,先ず,コリメータ8をSOR光13aの中心位置
に設置し,入射X線ビーム3を画定する。次に,試料1
をz軸に沿い移動して,入射X線ビーム3の半分が試料
1に遮蔽され,残り半分が試料の被測定面1a上を通過
する通過X線ビーム3aとなる位置に試料1を設定す
る。次いで,試料1のθ回転,及びアオリ回転を透過X
線ビーム3a強度が最大になるように設定する。
In the procedure of aligning the sample 1 in the conventional apparatus, first, the collimator 8 is installed at the center position of the SOR light 13a to define the incident X-ray beam 3. Next, sample 1
Is moved along the z-axis, half of the incident X-ray beam 3 is shielded by the sample 1, and the other half is set at a position where it becomes the passing X-ray beam 3a passing on the measured surface 1a of the sample. .. Then, the θ rotation and tilt rotation of sample 1 are transmitted through X
The intensity of the line beam 3a is set to be maximum.

【0010】さらに,上記のz軸の移動,θ回転及びア
オリ回転を繰り返し調整して試料の位置,角度の調整を
完了する。かかるX線分析装置の調整において,アオリ
回転の調整が不完全な場合には,以下に述べる如く測定
すべき被測定領域とX線照射領域とがずれるという不都
合を生ずる。
Further, the above-mentioned movement of the z-axis, θ rotation and tilt rotation are repeatedly adjusted to complete the adjustment of the position and angle of the sample. In such adjustment of the X-ray analyzer, if the adjustment of the tilt rotation is incomplete, there arises a disadvantage that the measured region to be measured and the X-ray irradiation region are displaced as described below.

【0011】図5は従来の実施例説明図であり,X線分
析装置のアオリ回転調整が不完全なときのX線照射領域
を表している。ここで,図5(a)は平面図,図5
(b)はその断面図であり,イロ断面を実線で,ハニ断
面を破線で表している。
FIG. 5 is an explanatory view of a conventional embodiment, and shows an X-ray irradiation region when the tilt rotation adjustment of the X-ray analyzer is incomplete. Here, FIG. 5A is a plan view and FIG.
(B) is a cross-sectional view thereof, in which the cross section of Iro is shown by a solid line and the cross section of Hani is shown by a broken line.

【0012】アオリ角が完全に調整されているとき,入
射X線ビーム3が照射する照射領域1cは,図5(a)
を参照して,本来測定されるべき領域である矩形の被測
定領域1bと一致する。
When the tilt angle is completely adjusted, the irradiation area 1c irradiated by the incident X-ray beam 3 is as shown in FIG.
, And the rectangular measured area 1b, which is the area to be originally measured, coincides.

【0013】しかし,アオリ角がずれているとき,入射
X線ビーム3の端部に位置するハニ断面での試料表面
は,図5(b)中の破線で示すように,入射X線ビーム
3の中心に位置するイロ断面での試料表面より,例えば
z軸の正方向にずれる。
However, when the tilt angle is deviated, the sample surface at the Hani cross section located at the end of the incident X-ray beam 3 has an incident X-ray beam 3 as shown by a broken line in FIG. 5B. The sample surface in the cross section located at the center of is shifted in the positive direction of the z axis, for example.

【0014】このため,入射X線ビーム3の端部では照
射領域1cは,例えば入射ビーム側にずれるのである。
その結果,図5(a)のごとく,X線照射領域1cは2
辺が斜交する平行四辺形状となり矩形の被測定領域1b
と一致しないため,測定精度が劣化する。
Therefore, at the end of the incident X-ray beam 3, the irradiation area 1c is displaced to the incident beam side, for example.
As a result, as shown in FIG. 5A, the X-ray irradiation area 1c is 2
A rectangular parallelepiped measurement area 1b having parallelograms with diagonal sides
Since it does not match, the measurement accuracy deteriorates.

【0015】例えば,入射角θが0.3度,ビーム幅4
0mmのとき,0.3度のアオリ角の誤差は,入射X線ビ
ームの端部では20mmのX線照射領域の移動を生ずる。
上記の様に,アオリ角の調整精度は直接に表面分析精度
の優劣に関与するため精密に調整される必要がある。し
かし,従来の装置では,その調整は入射ビームの強度変
化の測定精度に依存していたため,精密な調整は困難で
あった。
For example, the incident angle θ is 0.3 degrees and the beam width is 4
At 0 mm, an error in the tilt angle of 0.3 degrees causes a movement of the X-ray irradiation area of 20 mm at the end of the incident X-ray beam.
As described above, the adjustment accuracy of the tilt angle is directly related to the superiority and inferiority of the surface analysis accuracy, and therefore it needs to be adjusted precisely. However, in the conventional device, the adjustment depends on the measurement accuracy of the change in the intensity of the incident beam, and thus precise adjustment is difficult.

【0016】[0016]

【発明が解決しようとする課題】上述のように,従来の
X線分析装置では,入射ビームに対して試料のアオリ角
を精密に調整することができないため,被測定領域とX
線照射領域とを一致させることが難しく,精密な表面分
析をすることができないという問題がある。
As described above, the conventional X-ray analyzer cannot precisely adjust the tilt angle of the sample with respect to the incident beam.
There is a problem that it is difficult to match the line irradiation area with each other, and precise surface analysis cannot be performed.

【0017】本発明は,一点から発散する2本のX線が
同時に全反射条件または回折条件を満たすようにアオリ
角を設定することにより,入射ビームに対する試料のア
オリ角を精密に調整することができるX線分析装置を提
供することを目的とする。
According to the present invention, the tilt angle of the sample with respect to the incident beam can be precisely adjusted by setting the tilt angle so that the two X-rays diverging from one point simultaneously satisfy the total reflection condition or the diffraction condition. It is an object of the present invention to provide an X-ray analysis device that can be used.

【0018】[0018]

【課題を解決するための手段】図1は本発明の実施例構
成図であり,X線分析装置の主要な構成を表している。
なお,図1(a)は入射X線ビームの中心線を含む垂直
断面を,図1(b)は入射及び反射X線ビームに沿い,
上記垂直断面に垂直な平面の断面を表している。
FIG. 1 is a block diagram of an embodiment of the present invention, showing the main structure of an X-ray analysis apparatus.
1A is a vertical cross section including the center line of the incident X-ray beam, and FIG. 1B is along the incident and reflected X-ray beams.
It shows a cross section of a plane perpendicular to the vertical cross section.

【0019】上記課題を解決するために本願発明の第一
の構成は,図1を参照して,平面の被測定面1aを有す
る試料1の該被測定面1a内の一部領域に,入射方向と
直交し該被測定面1a内に含まれる方位を長辺方向とす
るスリット形状断面を有する入射X線ビーム3を照射し
て,該試料1表面から放出されるX線又は電子5を測定
用検出器4により観測するX線分析装置において,該X
線分析装置の前方から入射するX線13から該入射X線
ビーム3を取り出すための該入射X線ビーム3の断面形
状を画定する開口8aを有するスリット8と,該スリッ
ト8より前方の該入射X線ビーム3の中心線延長上に着
脱自在に設けられ発散X線を発生する微小X線源10
と,該スリット8と平行な平面内にあり,該スリット8
の開口8aの長辺と直交する2つのスリット状開口9a
を有し,該微小X線源10から発生する発散X線を該ス
リット8及び該2つのスリット状開口9aを通すことに
より,該発散X線の一部を該入射X線ビーム3の中心線
を含みかつ該2つのスリット状開口9aと平行な平面を
対称面とする対称な2方向に出射する2本の調整用X線
ビーム14a,14bとして取り出すための着脱自在に
設けられたビームスプリッタ9と,該試料1を保持し,
該試料1を該被測定面1aの垂線方向に移動する手段,
該被測定面1aの垂線と直交しかつ該入射X線ビーム3
の入射方向と直交するθ回転軸2aの廻りに回転する手
段,及び該被測定面1aの垂線と直交しかつ該θ回転軸
2aと直交するアオリ回転軸2bの廻りに回転する手段
とを有する試料台2と,該スリット8及び該微小X線源
10の位置を調整するために該スリット8及び該ビーム
スプリッタ9を通過した該入射X線ビーム3及び該発散
X線を検出するために着脱自在に設けられた第一のX線
検出器6と,該被測定面1aに入射した後,該被測定面
1aから反射又は回折された2本の該調整用X線ビーム
14a,14bをそれぞれ検出する第二及び第三のX線
検出器7a,7bと,該第二及び第三のX線検出器7
a,7bが検出するX線強度の該試料1のθ回転軸2a
廻りの回転角依存性を観測し,該第二及び第三のX線検
出器7a,7bが検出するX線強度の該試料1のθ回転
軸2a廻りの回転角依存性が同一になるように該試料1
をアオリ回転軸2b廻りに回転する手段とを有すること
を特徴として構成し,及び,第二の構成は,第一の構成
のX線分析装置において,装置に固定された該微小X線
源10を該入射X線ビーム3のX線源として用いること
を特徴として構成し,及び,第三の構成は,第一の構成
のX線分析装置において,該X線分析装置の前方から入
射するX線13の一部を通過させる着脱自在に設けられ
た2次線源用コリメータ11と,該2次線源用コリメー
タ11を通過したX線に照射され,照射面の反対側の面
から蛍光X線を発生するターゲット薄膜12とを有し,
該ターゲット薄膜12から発生する該蛍光X線を該微小
X線源10とすることを特徴として構成する。
In order to solve the above-mentioned problems, the first structure of the present invention refers to FIG. 1 in which a sample 1 having a flat surface 1a to be measured is incident on a partial region within the surface 1a to be measured. The X-rays or electrons 5 emitted from the surface of the sample 1 are measured by irradiating an incident X-ray beam 3 having a slit-shaped cross section orthogonal to the direction and having the azimuth included in the measured surface 1a as the long side direction. In the X-ray analysis device for observing with the detector 4 for
A slit 8 having an opening 8a for defining the cross-sectional shape of the incident X-ray beam 3 for extracting the incident X-ray beam 3 from the X-ray 13 incident from the front of the line analyzer, and the incident in front of the slit 8. A micro X-ray source 10 that is detachably provided on the extension of the center line of the X-ray beam 3 and generates divergent X-rays.
And in a plane parallel to the slit 8 and the slit 8
Slit-shaped openings 9a orthogonal to the long sides of the openings 8a
By passing the divergent X-rays generated from the minute X-ray source 10 through the slit 8 and the two slit-shaped openings 9a, a part of the divergent X-rays is transmitted through the center line of the incident X-ray beam 3. And a detachable beam splitter 9 for taking out as two adjusting X-ray beams 14a and 14b which are emitted in two symmetrical directions with respect to a plane parallel to the two slit-shaped openings 9a. And holding the sample 1,
Means for moving the sample 1 in a direction perpendicular to the measured surface 1a,
The incident X-ray beam 3 is orthogonal to the perpendicular of the surface to be measured 1a and
Has a means for rotating about a θ rotation axis 2a orthogonal to the incident direction, and a means for rotating about a tilt rotation axis 2b orthogonal to the perpendicular of the measured surface 1a and orthogonal to the θ rotation axis 2a. Sample stage 2 and attachment / detachment for detecting the incident X-ray beam 3 and the divergent X-ray that have passed through the slit 8 and the beam splitter 9 for adjusting the positions of the slit 8 and the minute X-ray source 10. A freely provided first X-ray detector 6 and two adjusting X-ray beams 14a and 14b reflected or diffracted from the measured surface 1a after being incident on the measured surface 1a, respectively. Second and third X-ray detectors 7a and 7b for detection, and the second and third X-ray detectors 7
a rotation axis 2a of the sample 1 of X-ray intensity detected by a and 7b
Observing the rotation angle dependency around the rotation angle, so that the rotation angle dependency around the θ rotation axis 2a of the sample 1 of the X-ray intensity detected by the second and third X-ray detectors 7a, 7b becomes the same. To the sample 1
Of the micro X-ray source 10 fixed to the X-ray analysis apparatus of the first construction. Is used as the X-ray source of the incident X-ray beam 3, and the third configuration is the X-ray analysis apparatus of the first configuration, in which X is incident from the front of the X-ray analysis apparatus. A detachable secondary source collimator 11 that allows a part of the line 13 to pass therethrough, and X-rays that have passed through the secondary source collimator 11 are irradiated with fluorescence X from the surface opposite to the irradiation surface. A target thin film 12 for generating a line,
The fluorescent X-rays generated from the target thin film 12 are used as the minute X-ray source 10.

【0020】[0020]

【作用】本発明の構成では,図1を参照して,入射X線
ビーム3の中心線延長上に置かれた微小X線源10から
放射されるX線を,入射X線ビーム3を画定するスリッ
ト8を通過させて2本の調整用X線ビーム14a,14
bを取り出す。
In the structure of the present invention, referring to FIG. 1, the incident X-ray beam 3 is defined by the X-rays emitted from the minute X-ray source 10 placed on the center line extension of the incident X-ray beam 3. Two adjusting X-ray beams 14a, 14
Take out b.

【0021】従って,2本の調整用X線ビーム14a,
14bは,スリット8により画定される入射X線ビーム
3と同一平面内にある。さらに,2本の調整用X線ビー
ム14a,14bは,入射X線ビーム3の幅方向に入射
X線ビーム3の中心から等距離に開設されたビームスプ
リッタ9の2つのスリット状開口9a,9bを通過する
ことで分離され,整形される。
Therefore, the two adjusting X-ray beams 14a,
14 b is in the same plane as the incident X-ray beam 3 defined by the slit 8. Further, the two adjusting X-ray beams 14a and 14b are two slit-shaped apertures 9a and 9b of the beam splitter 9 which are opened equidistantly from the center of the incident X-ray beam 3 in the width direction of the incident X-ray beam 3. It is separated and shaped by passing through.

【0022】従って,2本の調整用X線ビーム14a,
14bは,入射X線ビーム3の中心線に対して対称に出
射され,試料1の被測定面1aに入射する。即ち,調整
用X線ビーム14a,14bは,入射X線ビームと同一
平面内を対称に発散し,被測定面1aに入射する2本の
ビームからなる。
Therefore, the two adjusting X-ray beams 14a,
14 b is emitted symmetrically with respect to the center line of the incident X-ray beam 3, and is incident on the measured surface 1 a of the sample 1. That is, the adjustment X-ray beams 14a and 14b are composed of two beams that diverge symmetrically in the same plane as the incident X-ray beam and are incident on the measured surface 1a.

【0023】第一のX線検出器6は,スリット8の位
置,及び微小X線源10の位置を調整するためのもの
で,これらの位置は,通常は入射X線ビーム3又は微小
X線源10からのX線強度が最大となるように調整され
る。なお,調整後は光学系から取り外す。
The first X-ray detector 6 is for adjusting the position of the slit 8 and the position of the minute X-ray source 10, and these positions are usually the incident X-ray beam 3 or the minute X-ray. The X-ray intensity from the source 10 is adjusted to be maximum. After adjustment, remove from the optical system.

【0024】次に,試料1の被測定面1aに入射した2
本の調整用X線ビーム14a,14bは,被測定面1a
で反射又は回折され,X線検出器7a,7b によりそれぞれ
別個に強度が測定されて,記録される。
Next, 2 incident on the measured surface 1a of the sample 1
The adjusting X-ray beams 14a and 14b of the book are the measured surface 1a.
Is reflected or diffracted by the X-ray detector, and the intensities of the X-ray detectors 7a and 7b are separately measured and recorded.

【0025】かかる反射又は回折強度は,被測定面1a
と入射X線とのなす入射角に依存する。とくに入射角が
X線の全反射を起こす臨界角,或いは回折条件を満たす
角度の近傍にある場合,反射又は回折強度の入射角依存
性が著しい。
The reflected or diffracted intensity is measured by the measured surface 1a.
And the incident angle between the incident X-rays. In particular, when the incident angle is in the vicinity of the critical angle causing the total reflection of X-rays or the angle satisfying the diffraction condition, the dependency of the reflection or diffraction intensity on the incident angle is remarkable.

【0026】本発明に係る装置では,試料台2のθ回転
により入射角を変えることにより2本の調整用X線ビー
ム14a,14bの反射,回折強度の入射角依存性を測
定する。その結果から,これら2本の調整用X線ビーム
14a,14bの反射,回折強度が一致するように試料
台2のアオリ回転角を調整する。
In the apparatus according to the present invention, the incident angle dependency of the reflection and diffraction intensities of the two adjusting X-ray beams 14a and 14b is measured by changing the incident angle by rotating the sample table 2 by θ. From the result, the tilt rotation angle of the sample table 2 is adjusted so that the reflection and diffraction intensities of these two adjustment X-ray beams 14a and 14b are matched.

【0027】この反射,回折強度が一致するとき,次に
詳細に説明するように,被測定面1aは入射X線ビーム
3に対して正確なアオリ角を有する。従って,本装置で
は,試料の正確な設定を容易に行うことができる。
When the reflection and diffraction intensities match, the measured surface 1a has an accurate tilt angle with respect to the incident X-ray beam 3, as will be described in detail below. Therefore, with this device, accurate setting of the sample can be easily performed.

【0028】なお,これらの反射,回折強度の入射角依
存性から,入射角の極めて微小な差,例えば数十秒の差
をも容易に検知できるから,上記調整により,試料の被
測定面のアオリ角は極めて精密に調整される。
From the dependency of the reflection and diffraction intensities on the incident angle, an extremely small difference in incident angle, for example, a difference of several tens of seconds can be easily detected. The tilt angle is adjusted very precisely.

【0029】以下,上述した2本の調整用X線ビームの
反射,回折強度の入射角依存性からアオリ角を調整する
方法,及び反射,回折強度が一致するように試料台のア
オリ回転角を調整したとき,被測定面の精密なアオリ角
の調整がなされる原理を説明する。
Hereinafter, a method of adjusting the tilt angle based on the incident angle dependence of the reflection and diffraction intensities of the above two adjustment X-ray beams, and the tilt rotation angle of the sample table so that the reflection and the diffraction intensities are matched. The principle of precise adjustment of the tilt angle of the surface to be measured will be explained.

【0030】図2は本発明の原理説明図であり,図2
(a)は2本の調整用X線ビームと被測定面との角度及
び位置関係を表し,図2(b)は図2(a)の座標軸を
表している。
FIG. 2 is an explanatory view of the principle of the present invention.
2A shows the angle and positional relationship between the two adjustment X-ray beams and the surface to be measured, and FIG. 2B shows the coordinate axes of FIG. 2A.

【0031】図2(b)を参照して,座標軸は原点をO
として前述のごとく設定される。即ち,入射X線ビーム
の入射方向20はyz面内にあり,x軸及びy軸はそれ
ぞれθ回転軸及びアオリ回転軸と一致する。
Referring to FIG. 2 (b), the coordinate axes are at the origin O.
Is set as described above. That is, the incident direction 20 of the incident X-ray beam is in the yz plane, and the x axis and the y axis coincide with the θ rotation axis and the tilt rotation axis, respectively.

【0032】完全に調整された被測定面1a0 は,xy
面内にあり,その単位法線ベクトルn0 はz軸方向にあ
る。調整すべき被測定面1aは,y軸を回転軸として,
即ちアオリ回転軸廻りにα傾いているとする。このと
き,被測定面1aの単位法線ベクトルnは,調整された
被測定面1a0 の単位法線ベクトルn0 からzx面内に
α傾く。
The completely adjusted surface 1a 0 to be measured is xy
Located in the plane, the unit normal vector n 0 is the z-axis direction. The measured surface 1a to be adjusted has a y-axis as a rotation axis,
That is, it is assumed that the inclination is α around the rotation axis. At this time, the unit normal vector n of the surface to be measured 1a is inclined α from the unit normal vector n 0 of the adjusted measured surface 1a 0 in zx plane.

【0033】微小X線源10は,図2(a)を参照し
て,yz面内の第二象限上の点Sにあり,点Sからy軸
に下した垂線とy軸の負軸とは点Lで交わる。調整用X
線ビーム14a,14bは,点Sから放射され,完全に
調整された被測定面とそれぞれx軸上の点A及び点Bと
で交わる。
As shown in FIG. 2A, the minute X-ray source 10 is located at a point S on the second quadrant in the yz plane, and has a perpendicular line from the point S to the y axis and a negative y axis. Intersect at point L. Adjustment X
The line beams 14a and 14b are emitted from the point S and intersect the perfectly adjusted surface to be measured at points A and B respectively on the x-axis.

【0034】被測定面のアオリ角がαだけz軸から傾い
ているとき,調整用X線ビーム14a,14bと被測定
面との交点は,それぞれ点A' 及び点B' に移動する。
従って,被測定面1aに入射する調整用X線ビーム14
a,14bの入射角をそれぞれ, θA , θB とすると
き,
[0034] When the tilt angle of the surface to be measured is inclined only from the z-axis alpha, adjusting the X-ray beam 14a, 14b and the intersection between the surface to be measured is moved to the respective points A 'and point B'.
Therefore, the adjustment X-ray beam 14 incident on the measured surface 1a
a, 14b respectively an incident angle of, when the theta A, theta B,

【0035】[0035]

【数1】sinθA =−ベクトルn・単位ベクトルSA' [Equation 1] sin θ A = −vector n · unit vector SA ,

【0036】[0036]

【数2】sinθB =−ベクトルn・単位ベクトルSB'
である。ここで単位ベクトルSA' ,単位ベクトルSB'
それぞれ点Sから点A'及び点B' に向かうベクトルSA
' ,ベクトルSB' の単位ベクトルである。
[Equation 2] sin θ B = −vector n · unit vector SB ,
Is. Here, the unit vector SA ' and the unit vector SB ' are the vector SA from the point S toward the point A ' and the point B ' , respectively.
It is a unit vector of ' , vector SB ' .

【0037】一方,図2を参照して,On the other hand, referring to FIG.

【0038】[0038]

【数3】ベクトルSA=ベクトルSO+ベクトルOA,[Formula 3] Vector SA = vector SO + vector OA,

【0039】[0039]

【数4】ベクトルSB=ベクトルSO+ベクトルOB, である。ここでベクトルSOは点Sから点Oに向かうベク
トル,ベクトルOA及びベクトルOBはそれぞれ点Oから点
A及び点Bに向かうベクトルである。
## EQU00004 ## Vector SB = vector SO + vector OB. Here, the vector SO is a vector from the point S to the point O, and the vectors OA and OB are vectors from the point O to the points A and B, respectively.

【0040】ベクトルSAとベクトルSA' ,又はベクトル
SBとベクトルSB' とは方向が一致するからそれらの単位
ベクトルは同一である。従って,数3,数4から,
Vector SA and vector SA ' or vector
Since SB and vector SB ' have the same direction, their unit vectors are the same. Therefore, from Equations 3 and 4,

【0041】[0041]

【数5】単位ベクトルSA' =単位ベクトルSA= =(ベクトルSO+ベクトルOA)/|ベクトルSA|= = cosχ・単位ベクトルSO+ sinχ・単位ベクトルOA,[Equation 5] Unit vector SA ' = Unit vector SA = = (Vector SO + Vector OA) / | Vector SA | = = cos χ · unit vector SO + sin χ · unit vector OA,

【0042】[0042]

【数6】単位ベクトルSB' =単位ベクトルSB= =(ベクトルSO+ベクトルOB)/|ベクトルSB|= = cosχ・単位ベクトルSO+ sinχ・単位ベクトルOB, となる。[Formula 6] Unit vector SB = unit vector SB == (vector SO + vector OB) / | vector SB | == cos χ · unit vector SO + sin χ · unit vector OB.

【0043】数5,6を数1,2に代入し,x方向の単
位ベクトルを単位ベクトルxとするとき,ベクトルn=
cosα・ベクトルn0 +sin α・単位ベクトルx,を考
慮して,
Substituting equations (5) and (6) into equations (1) and (2) and setting a unit vector in the x direction as a unit vector x, vector n =
Considering cos α · vector n 0 + sin α · unit vector x,

【0044】[0044]

【数7】 sinθA = cosχ・ cosα・ sinθ0 + sinχ・sin α[Equation 7] sin θ A = cos χ · cos α · sin θ 0 + sin χ · sin α

【0045】[0045]

【数8】 sinθB = cosχ・ cosα・ sinθ0 − sinχ・sin α ここで,ベクトルn0 ・単位ベクトルSO=− sinθ0
ベクトルn0 ・単位ベクトルx=ベクトルn0 ・単位ベ
クトルOA=0,及び,ベクトルn・単位ベクトルOA=−
sin α,ベクトルn・単位ベクトルOB=sin αを用い
た。
[Equation 8] sin θ B = cos χ · cos α · sin θ 0 − sin χ · sin α where, vector n 0 · unit vector SO = − sin θ 0 ,
Vector n 0 , unit vector x = vector n 0 , unit vector OA = 0, and vector n, unit vector OA = −
sin α, vector n and unit vector OB = sin α were used.

【0046】数7,8を比較して,2本の調整用X線ビ
ーム14a,14bの被測定面1aへの入射角θA ,θ
B は,アオリ角α=0のとき一致し,それ以外ではアオ
リ角αの増加とともに2× sinχ・sin αの項に対応し
た入射角のずれを生ずることが明らかである。
Comparing equations (7) and (8), the incident angles θ A and θ of the two adjusting X-ray beams 14a and 14b on the surface 1a to be measured are compared.
It is clear that B agrees when the tilt angle α = 0, and otherwise the deviation of the incident angle corresponding to the term of 2 × sin χ · sin α occurs with the increase of the tilt angle α.

【0047】このため, アオリ角の調整が不完全な場合
, 2本の調整用X線ビーム14a,14bの入射角の
ずれに基づき,試料をθ回転したとき観測される全反射
角及び回折角は, 完全に調整された場合に観測される角
度θ0 の前後に略等角度離れて観測される。
Therefore , when the tilt angle adjustment is incomplete, the total reflection angle and the rotation angle observed when the sample is rotated by θ are based on the deviation of the incident angles of the two adjustment X-ray beams 14a and 14b. precious is observed apart angle substantially equal before and after the angle theta 0 observed when fully adjusted.

【0048】図3は,本発明の実施例説明図であり,調
整用X線ビームの反射強度のθ回転角依存性を示してお
り,アオリ角が0.3度ずれているときの全反射角近く
のθ角度依存性の違いを表す計算例である。
FIG. 3 is an explanatory view of an embodiment of the present invention, showing the θ rotation angle dependence of the reflection intensity of the adjusting X-ray beam, and the total reflection when the tilt angle is deviated by 0.3 degrees. It is a calculation example showing the difference in the θ angle dependence near the angle.

【0049】図3中,14a,14bで示した曲線は,
それぞれ調整用X線ビーム14a,14bの反射強度を
表している。ここで全反射角の臨界角を0.3°,調整
用X線ビームの広がる角度χを5.7°とした。
The curves indicated by 14a and 14b in FIG.
The respective reflection intensities of the adjustment X-ray beams 14a and 14b are shown. Here, the critical angle of the total reflection angle was set to 0.3 °, and the spread angle χ of the adjustment X-ray beam was set to 5.7 °.

【0050】図3から,アオリ角の調整不良による2本
の調整用X線ビームの反射強度の相違が明瞭に観測さ
れ,またアオリ角を1/100度程度の精度で測定でき
ることがわかる。
It can be seen from FIG. 3 that the difference in the reflection intensities of the two adjustment X-ray beams due to the poor tilt angle adjustment is clearly observed, and that the tilt angle can be measured with an accuracy of about 1/100 degree.

【0051】従って, 試料をθ回転して観測される2本
の調整用X線ビーム14a,14bの全反射角, 又は回
折角を測定し, それらと数7,8から調整されるべきア
オリ角の方向と大きさを計算により求めることができ
る。
[0051] Therefore, the two adjusting X-ray beam 14a that is observed the sample is rotated theta, total reflection angle 14b, or the diffraction angle measured, the tilt angle to be adjusted from them and several 7,8 The direction and size of can be calculated.

【0052】例えば,θA =θ0 +ΔθA ,θB =θ0
+ΔθB とおき,数7,8から,ΔθB −ΔθA ≒−2
sinχ・sin αを得る。ΔθB とΔθA は略等しいか
ら,調整すべきアオリ角は,α≒ sin-1((ΔθA −Δθ
B )/2sinχ) と求まる。
For example, θ A = θ 0 + Δθ A , θ B = θ 0
+ Δθ B , and from Equations 7 and 8, Δθ B −Δθ A ≈−2
Get sin χ · sin α. Since Δθ B and Δθ A are almost equal, the tilt angle to be adjusted is α ≈ sin -1 ((Δθ A −Δθ
B ) / 2sin χ)

【0053】この角度分をθ回転してアオリ角を補正す
ることにより,試料のアオリ角の正確な調整がなされ
る。全反射角, 及び回折角は容易に1/100度の程度
で測定することができるから, 調整すべきアオリ角も1
/100度の程度の精度で求めることができる。
By rotating this angle by θ to correct the tilt angle, the tilt angle of the sample is accurately adjusted. Since the total reflection angle and the diffraction angle can be easily measured in the order of 1/100 degree, the tilt angle to be adjusted is also 1
It can be obtained with an accuracy of about / 100 degrees.

【0054】従って, 本発明によりアオリ角を精密に調
整することができる。本発明の第二及び第三の構成は,
微小X線源に関する。第二の構成では,測定用のX線発
生に用いられる微小X線管をそのまま本発明の構成に係
る微小X線源とするもので,微小X線源として特別の装
置を必要とせず,また特別に設定のための調整を要しな
いため,装置を簡易に製作することができるという効果
を奏する。
Therefore, according to the present invention, the tilt angle can be precisely adjusted. The second and third configurations of the present invention are
It relates to a micro X-ray source. In the second configuration, the micro X-ray tube used for generating X-rays for measurement is directly used as the micro X-ray source according to the configuration of the present invention, and no special device is required as the micro X-ray source. Since no special adjustment for setting is required, the device can be easily manufactured.

【0055】第三の構成では,入射X線の一部を絞りタ
ーゲット薄膜に照射することにより蛍光X線を発生さ
せ,これを微小X線源とするものである。ターゲット薄
膜は薄いから裏面から蛍光X線を発生できる。
In the third structure, fluorescent X-rays are generated by irradiating a part of the incident X-rays on the aperture target thin film, and this is used as a minute X-ray source. Since the target thin film is thin, fluorescent X-rays can be generated from the back surface.

【0056】この構成では,微小X線源の形と位置は入
射X線の一部を絞る2次線源用コリメータ11により定
まるから設定が容易にされる。また,ターゲット薄膜を
交換することにより容易に任意の物質の蛍光X線を発生
することができるという効果がある。
In this configuration, the shape and position of the minute X-ray source is determined by the collimator 11 for the secondary radiation source which narrows down a part of the incident X-ray, so that the setting is facilitated. Moreover, there is an effect that fluorescent X-rays of an arbitrary substance can be easily generated by exchanging the target thin film.

【0057】さらに,特別のX線発生装置を必要としな
いから,装置が簡易である。
Furthermore, since no special X-ray generator is required, the device is simple.

【0058】[0058]

【実施例】本発明を,実施例を参照して説明する。図1
を参照して,X線源としてシンクロトロン軌道放射光
(SOR光)をモノクロメータを通して単色化した例え
ば波長0.1nm近傍のX線を,水平な帯状のビームとし
て装置前方から入射するX線13とする。
EXAMPLES The present invention will be described with reference to examples. Figure 1
Referring to, X-rays having a synchrotron orbital radiation (SOR light) monochromated through a monochromator as an X-ray source, for example, X-rays having a wavelength of about 0.1 nm are incident as a horizontal belt-like beam from the front of the apparatus. And

【0059】このX線は,高さを制限するスリット8を
通すことにより入射X線ビーム3とされる。即ち,入射
X線ビームの幅は前方から入射するX線13の幅によ
り,高さはスリット8の開口8aにより画定される。か
かる入射X線ビーム3の断面形状は,例えば幅40mm,
高さ0.1mmである。
This X-ray is made into an incident X-ray beam 3 by passing through a slit 8 which limits the height. That is, the width of the incident X-ray beam is defined by the width of the X-ray 13 incident from the front, and the height is defined by the opening 8a of the slit 8. The cross-sectional shape of such an incident X-ray beam 3 is, for example, 40 mm in width,
The height is 0.1 mm.

【0060】試料1は,垂直方向に微動し,入射ビーム
3と平行な軸をアオリ回転軸2b,入射ビーム3と垂直
な水平軸をθ回転軸2aとする試料台2上に載置され,
前述した従来の試料の調整方法と同様にして試料1の位
置及び方位を調整する。
The sample 1 is finely moved in the vertical direction, and is placed on the sample table 2 whose axis parallel to the incident beam 3 is the tilt rotation axis 2b and whose horizontal axis perpendicular to the incident beam 3 is the θ rotation axis 2a.
The position and azimuth of the sample 1 are adjusted in the same manner as the conventional sample adjustment method described above.

【0061】なお,試料は例えばスリット8の後方10
0mmの位置におかれる。次に,入射X線ビーム3の中心
線状に例えば幅10mm,高さ0.1mmの矩形の開口を有
する2次線源用コリメータ11を挿入し,その後方近く
かつスリット8の前方100mmの位置に例えば鉄の厚さ
0.1mmの薄膜をターゲット薄膜12として挿入する。
従って,ターゲット薄膜12の2次線源用コリメータ1
1を通るX線により励起された部分,例えば幅10mm,
高さ0.1mmの矩形の部分がFeの蛍光X線を放射する
微小X線源10となる。このとき,入射X線ビーム3の
調整に用いたX線検出器2を入射X線ビーム線上に置い
て,2次線源用コリメータ11の垂直位置を調整しても
よい。
The sample is, for example, 10 behind the slit 8.
It is placed at the 0 mm position. Next, a collimator 11 for a secondary radiation source having a rectangular opening with a width of 10 mm and a height of 0.1 mm is inserted in the center line of the incident X-ray beam 3, and the position is located near the rear and 100 mm in front of the slit 8. For example, a thin film of iron having a thickness of 0.1 mm is inserted as the target thin film 12.
Therefore, the collimator 1 for the secondary radiation source of the target thin film 12
The part excited by the X-ray passing through 1, such as a width of 10 mm,
A rectangular portion having a height of 0.1 mm serves as a micro X-ray source 10 that emits fluorescent X-rays of Fe. At this time, the X-ray detector 2 used for adjusting the incident X-ray beam 3 may be placed on the incident X-ray beam line to adjust the vertical position of the secondary source collimator 11.

【0062】次に,X線検出器2を除去し,ビームスプ
リッタ9及び調整用ビーム14a,14bを検出するX
線検出器7a,7bを配置する。このビームスプリッタ
9は,通常はスリット8の近く多くは後方に置かれ,例
えば幅10mm,高さ20mmのスリット状開口9aを,そ
れぞれ入射X線ビーム3の中心から水平方向に10mm離
して設けられている。
Next, the X-ray detector 2 is removed and the beam splitter 9 and the adjustment beams 14a and 14b are detected by X.
The line detectors 7a and 7b are arranged. This beam splitter 9 is usually placed near the slit 8 and mostly behind it, and for example, slit-shaped openings 9a having a width of 10 mm and a height of 20 mm are provided 10 mm apart from the center of the incident X-ray beam 3 in the horizontal direction. ing.

【0063】かかる配置により,ターゲット薄膜12上
の微小X線源10から試料1の被測定面1aを照射する
2本の調整用X線ビーム14a,14bが形成される。
その調整用X線ビーム14a,14bは,上記の場合に
2χ=11.4°の角度で発散している。
With this arrangement, two adjustment X-ray beams 14a and 14b for irradiating the measured surface 1a of the sample 1 from the minute X-ray source 10 on the target thin film 12 are formed.
The adjusting X-ray beams 14a and 14b diverge at an angle of 2χ = 11.4 ° in the above case.

【0064】次に,θ回転して,調整用X線ビーム14
a,14bの反射強度を測定し,その反射強度が入射強
度の半分になるθ角を求め,これから記述の数7,8に
より調整すべきアオリ角αの大きさと方向を計算して,
アオリ角を補正するように調整する。
Then, the X-ray beam 14 for adjustment is rotated by θ.
The reflection intensity of a and 14b is measured, the θ angle at which the reflection intensity becomes half of the incident intensity is obtained, and from this, the magnitude and direction of the tilt angle α to be adjusted are calculated according to the equations 7 and 8, and
Adjust to correct the tilt angle.

【0065】調整後は,2次線源用コリメータ11,タ
ーゲット薄膜12,ビームスプリッタ9,及びX線検出
器7a,7bを入射X線ビーム3上から取り去り,通常
のX線表面分析を行う。
After the adjustment, the collimator 11 for the secondary radiation source, the target thin film 12, the beam splitter 9, and the X-ray detectors 7a and 7b are removed from the incident X-ray beam 3 and a normal X-ray surface analysis is performed.

【0066】[0066]

【発明の効果】本発明によれば,被測定面のアオリ角を
精密に設定することができるので,測定すべき領域に正
確にX線を照射することができ,精密な表面分析をする
ことができるX線分析装置を実現することができるか
ら,表面分析装置の性能向上に寄与するところが大き
い。
According to the present invention, since the tilt angle of the surface to be measured can be precisely set, the region to be measured can be accurately irradiated with X-rays, and precise surface analysis can be performed. Since it is possible to realize an X-ray analyzer capable of performing the above, it greatly contributes to the performance improvement of the surface analyzer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】 本発明の原理説明図FIG. 2 is an explanatory diagram of the principle of the present invention.

【図3】 本発明の実施例説明図FIG. 3 is an explanatory diagram of an embodiment of the present invention.

【図4】 従来の装置の透視説明図FIG. 4 is a perspective explanatory view of a conventional device.

【図5】 従来の実施例説明図FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 試料 1a 被測定面 1b 被測定領域 1c X線照射領域 2 試料台 2a θ回転軸 2b アオリ回転軸 3 入射X線ビーム 3b 反射X線ビーム 4 測定用検出器 5 X線又は電子 6,7a,7b X線検出器 8 スリット 8a 開口 9 ビームスプリッタ 9a スリット状開口 10 微小X線源 11 2次線源用ターゲット 12 ターゲット薄膜 13 前方から入射するX線 13a SOR光 14a,14b 調整用X線ビーム 20 入射X線ビームの入射方向 1 sample 1a measured surface 1b measured area 1c X-ray irradiation area 2 sample stage 2a θ rotation axis 2b tilt rotation axis 3 incident X-ray beam 3b reflected X-ray beam 4 measurement detector 5 X-ray or electron 6,7a, 7b X-ray detector 8 Slit 8a Aperture 9 Beam splitter 9a Slit-like aperture 10 Micro X-ray source 11 Target for secondary radiation source 12 Target thin film 13 X-ray incident from the front 13a SOR light 14a, 14b Adjustment X-ray beam 20 Incident direction of incident X-ray beam

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平面の被測定面(1a)を有する試料
(1)の該被測定面(1a)内の一部領域に,入射方向
と直交し該被測定面(1a)内に含まれる方位を長辺方
向とするスリット形状断面を有する入射X線ビーム
(3)を照射して,該試料(1)表面から放出されるX
線又は電子(5)を測定用検出器(4)により観測する
X線分析装置において,該X線分析装置の前方から入射
するX線(13)から該入射X線ビーム(3)を取り出
すための該入射X線ビーム(3)の断面形状を画定する
開口(8a)を有するスリット(8)と,該スリット
(8)より前方の該入射X線ビーム(3)の中心線延長
上に着脱自在に設けられ発散X線を発生する微小X線源
(10)と,該スリット(8)と平行な平面内にあり,
該スリット(8)の開口(8a)の長辺と直交する2つ
のスリット状開口(9a)を有し,該微小X線源(1
0)から発生する発散X線を該スリット(8)及び該2
つのスリット状開口(9a)を通すことにより,該発散
X線の一部を該入射X線ビーム(3)の中心線を含みか
つ該2つのスリット状開口(9a)と平行な平面を対称
面とする対称な2方向に出射する2本の調整用X線ビー
ム(14a,14b)として取り出すための着脱自在に
設けられたビームスプリッタと(9),該試料(1)を
保持し,該試料(1)を該被測定面(1a)の垂線方向
に移動する手段,該被測定面(1a)の垂線と直交しか
つ該入射X線ビーム(3)の入射方向と直交するθ回転
軸(2a)の廻りに回転する手段,及び該被測定面(1
a)の垂線と直交しかつ該θ回転軸(2a)と直交する
アオリ回転軸(2b)の廻りに回転する手段とを有する
試料台(2)と,該スリット(8)及び該微小X線源
(10)の位置を調整するために該スリット(8)及び
該ビームスプリッタ(9)を通過した該入射X線ビーム
(3)及び該発散X線を検出するために着脱自在に設け
られた第一のX線検出器(6)と,該被測定面(1a)
に入射した後,該被測定面(1a)から反射又は回折さ
れた2本の該調整用X線ビーム(14a,14b)をそ
れぞれ検出する第二及び第三のX線検出器(7a,7
b)と,該第二及び第三のX線検出器(7a,7b)が
検出するX線強度の該試料(1)のθ回転軸(2a)廻
りの回転角依存性を観測し,該第二及び第三のX線検出
器(7a,7b)が検出するX線強度の該試料(1)の
θ回転軸(2a)廻りの回転角依存性が同一になるよう
に該試料(1)をアオリ回転軸(2b)廻りに回転する
手段とを有することを特徴とするX線分析装置。
1. A sample (1) having a flat surface to be measured (1a), which is included in the surface to be measured (1a) orthogonal to the incident direction in a partial region in the surface to be measured (1a). X is emitted from the surface of the sample (1) by irradiating it with an incident X-ray beam (3) having a slit-shaped cross section whose direction is the long side direction.
In order to extract the incident X-ray beam (3) from the X-rays (13) incident from the front of the X-ray analysis device in an X-ray analysis device for observing a ray or an electron (5) by a measuring detector (4) A slit (8) having an opening (8a) defining the cross-sectional shape of the incident X-ray beam (3), and attached to and detached from the slit in front of the slit (8) along the center line extension of the incident X-ray beam (3). A micro X-ray source (10) that is freely provided to generate divergent X-rays and is in a plane parallel to the slit (8),
The slit (8) has two slit-shaped openings (9a) orthogonal to the long side of the opening (8a), and the micro X-ray source (1
0) from the slit (8) and the divergent X-rays
By passing through the two slit-shaped apertures (9a), a plane containing a part of the divergent X-rays including the center line of the incident X-ray beam (3) and parallel to the two slit-shaped apertures (9a) is a symmetry plane. And a beam splitter (9) which is detachably provided for taking out as two adjustment X-ray beams (14a, 14b) emitted in two symmetrical directions and holding the sample (1). A means for moving (1) in the direction perpendicular to the surface to be measured (1a), a θ rotation axis (which is orthogonal to the perpendicular to the surface to be measured (1a) and orthogonal to the incident direction of the incident X-ray beam (3) ( 2a) rotating means, and the surface to be measured (1
a), a sample stage (2) having means for rotating around a tilt rotation axis (2b) orthogonal to the perpendicular of (a) and orthogonal to the θ rotation axis (2a), the slit (8) and the minute X-ray Removably provided to detect the incident X-ray beam (3) and the divergent X-rays that have passed through the slit (8) and the beam splitter (9) to adjust the position of the source (10). First X-ray detector (6) and the surface to be measured (1a)
Second and third X-ray detectors (7a, 7) for respectively detecting the two adjusting X-ray beams (14a, 14b) reflected or diffracted from the measured surface (1a) after being incident on
b) and the dependence of the X-ray intensity detected by the second and third X-ray detectors (7a, 7b) on the rotation angle around the θ rotation axis (2a) of the sample (1), The X-ray intensities detected by the second and third X-ray detectors (7a, 7b) have the same rotation angle dependency around the θ rotation axis (2a) of the sample (1). ) Is rotated around the tilt rotation axis (2b).
【請求項2】 請求項1記載のX線分析装置において,
装置に固定された該微小X線源(10)を該入射X線ビ
ーム(3)のX線源として用いることを特徴とするX線
分析装置。
2. The X-ray analysis apparatus according to claim 1,
An X-ray analysis apparatus, characterized in that the micro X-ray source (10) fixed to the apparatus is used as an X-ray source of the incident X-ray beam (3).
【請求項3】 請求項1記載のX線分析装置において,
該X線分析装置の前方から入射するX線(13)の一部
を通過させる着脱自在に設けられた2次線源用コリメー
タ(11)と,該2次線源用コリメータ(11)を通過
したX線に照射され,照射面の反対側の面から蛍光X線
を発生するターゲット薄膜(12)とを有し,該ターゲ
ット薄膜(12)から発生する該蛍光X線を該微小X線
源(10)とすることを特徴とするX線分析装置。
3. The X-ray analysis apparatus according to claim 1,
A detachable secondary source collimator (11) that allows a part of the X-rays (13) incident from the front of the X-ray analyzer to pass therethrough, and passes through the secondary source collimator (11) And a target thin film (12) that emits fluorescent X-rays from the surface opposite to the irradiation surface, and emits the fluorescent X-rays generated from the target thin film (12) by the micro X-ray source. (10) An X-ray analysis device characterized by the above.
JP4142280A 1992-06-03 1992-06-03 X-ray analizer Withdrawn JPH05332956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142280A JPH05332956A (en) 1992-06-03 1992-06-03 X-ray analizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142280A JPH05332956A (en) 1992-06-03 1992-06-03 X-ray analizer

Publications (1)

Publication Number Publication Date
JPH05332956A true JPH05332956A (en) 1993-12-17

Family

ID=15311694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142280A Withdrawn JPH05332956A (en) 1992-06-03 1992-06-03 X-ray analizer

Country Status (1)

Country Link
JP (1) JPH05332956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024997A3 (en) * 2008-08-29 2010-05-14 Services Petroliers Schlumberger A downhole sanding analysis tool
CN110596162A (en) * 2019-09-19 2019-12-20 西安交通大学 Calibration device based on monochromatic X-ray diffraction
CN111735828A (en) * 2019-03-19 2020-10-02 株式会社理学 X-ray analysis apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024997A3 (en) * 2008-08-29 2010-05-14 Services Petroliers Schlumberger A downhole sanding analysis tool
CN111735828A (en) * 2019-03-19 2020-10-02 株式会社理学 X-ray analysis apparatus
CN110596162A (en) * 2019-09-19 2019-12-20 西安交通大学 Calibration device based on monochromatic X-ray diffraction

Similar Documents

Publication Publication Date Title
TWI414752B (en) Method for analysis of a sample
US7600916B2 (en) Target alignment for X-ray scattering measurements
Bobb et al. Feasibility of diffraction radiation for noninvasive beam diagnostics as characterized in a storage ring
JPH07103919A (en) Calibrating method for apparatus for total reflection fluorescent x-ray analysis
JP2002189004A (en) X-ray analyzer
JPH05332956A (en) X-ray analizer
JPH05113418A (en) Surface analyzing apparatus
JPH08128971A (en) Exafs measuring device
JP3572333B2 (en) X-ray fluorescence analyzer
WO2010097968A1 (en) Method and apparatus of precisely measuring intensity profile of x-ray nanobeam
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
JP3197104B2 (en) X-ray analyzer
JPH04164239A (en) Powder x-ray diffraction meter
JPS61195336A (en) Semiconductor evaluation device and semiconductor evaluation method
JP2001267235A (en) Exposure system and method of aligning photomask in the same
JPH0692946B2 (en) Method and apparatus for inspecting the structure of a diaphragm surface
JP2653084B2 (en) Surface analyzer
JPH01213944A (en) Analyzing device with electron beam irradiation
JPH09257726A (en) X-ray analysis device and fluorescent x-ray analyzing attachment
JP3740530B2 (en) Aligner for total internal reflection X-ray fluorescence analysis
JPS63151843A (en) Sample holder for x-ray analysis
JPS6073445A (en) Fluorescent x-ray analyzing device
JPH05296946A (en) X-ray diffraction device
JPH09318565A (en) X-ray analyzing method and apparatus therefor
KR20020072983A (en) X-ray photoelectron spectroscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803