JPH05332908A - Tester of super fine material - Google Patents

Tester of super fine material

Info

Publication number
JPH05332908A
JPH05332908A JP13518392A JP13518392A JPH05332908A JP H05332908 A JPH05332908 A JP H05332908A JP 13518392 A JP13518392 A JP 13518392A JP 13518392 A JP13518392 A JP 13518392A JP H05332908 A JPH05332908 A JP H05332908A
Authority
JP
Japan
Prior art keywords
indenter
load
sample
displacement amount
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13518392A
Other languages
Japanese (ja)
Other versions
JP3278899B2 (en
Inventor
Yasunori Yamamoto
靖則 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13518392A priority Critical patent/JP3278899B2/en
Publication of JPH05332908A publication Critical patent/JPH05332908A/en
Application granted granted Critical
Publication of JP3278899B2 publication Critical patent/JP3278899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To perform correct measurements without errors due to the temperature drift even when the environmental temperature is changed by measuring and correcting the shifting amount of an indenter for a predetermined time while a driving means is not operating and the load to a sample by the indenter is approximately zero. CONSTITUTION:When a control device 30 supplies a predetermined load current to an electromagnetic coil 13, a load transmitting lever is rotated and an indenter 16 is gradually shifted. The load current of the coil 13 is stopped before the indenter 16 comes in touch with a test piece TP. The shifting amount of the indenter 16 by the temperature drift for a predetermined time while the load by the indenter 16 to the test piece TP is zero is detected from the output of a displacement sensor 17, which is set as an error correcting factor. Then, a load current corresponding to the ordered load is fed to the coil 13 to start the indenter 16 to shift. The indenter 16 bites tone test piece after being in touch with the test piece TP. The shifting amount of the indenter 16 for a predetermined time is detected by the displacement sensor 17, and the measured value is corrected with the error correcting factor. Accordingly, the correct shifting amount is obtained at real time and stored in a memory of the control device 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧子を所定荷重で試料
に押圧したときの圧子の変位量を検出して試料の特性を
測定する超微小材料試験機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine material testing machine for measuring the characteristics of a sample by detecting the displacement of the indenter when the indenter is pressed against a sample with a predetermined load.

【0002】[0002]

【従来の技術】例えば半導体基板上にコーティングされ
た薄膜などの硬さを測定する超微小材料試験機として、
特開平3−89136号公報に開示されているものが知
られている。この種の超微小材料試験機では、電磁コイ
ルに負荷電流を供給することにより発生する電磁力で天
秤式負荷伝達レバーを回動させ、これによりレバーの一
端に連結された圧子を試料に所定の押圧荷重で押圧し、
この押圧時の荷重と圧子の変位量とから例えば試料の硬
さを測定する。また、圧子を試料に押圧した後にその押
圧荷重を除去し、除荷時の圧子の変位量を測定する試験
方法もある。
2. Description of the Related Art For example, as an ultrafine material tester for measuring the hardness of a thin film coated on a semiconductor substrate,
The one disclosed in Japanese Patent Laid-Open No. 3-89136 is known. In this type of ultra-small material testing machine, the balance-type load transmission lever is rotated by the electromagnetic force generated by supplying the load current to the electromagnetic coil, and the indenter connected to one end of the lever is moved to the sample. Press with the pressing load of
For example, the hardness of the sample is measured from the load at the time of pressing and the displacement amount of the indenter. There is also a test method in which the pressing load is removed after pressing the indenter against the sample, and the displacement amount of the indenter during unloading is measured.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
超微小材料試験機にて測定される圧子の変位量は、一般
に1nm〜10μmと非常に小さいため、周囲の温度変
化によって圧子などが伸び縮みする、いわゆる温度ドリ
フトが発生した場合、この温度ドリフトによる誤差が測
定精度に大きく影響する。このため従来は、周囲の温度
変化を最小限に抑えるために恒温室内で試験を行った
り、あるいは周囲温度が一定値に落ち着くまで待ってか
ら試験を行うようにしていた。しかしながら、恒温室を
用いる場合にはその分コストと手間がかかり、また周囲
温度が落ち着くまで待つ方法では試験までに時間がかか
るという不都合がある。
By the way, since the displacement amount of the indenter measured by such an ultrafine material testing machine is generally as small as 1 nm to 10 μm, the indenter or the like expands due to ambient temperature change. When a so-called temperature drift that contracts occurs, an error due to this temperature drift greatly affects the measurement accuracy. Therefore, conventionally, in order to minimize the ambient temperature change, the test is carried out in a temperature-controlled room, or the test is carried out after the ambient temperature has settled down to a constant value. However, when a temperature-controlled room is used, the cost and labor are correspondingly increased, and the method of waiting until the ambient temperature settles down has a disadvantage that it takes time before the test.

【0004】本発明の目的は、周囲温度が変化しても温
度ドリフトによる誤差のない正確な測定結果が得られる
超微小材料試験機を提供することにある。
An object of the present invention is to provide an ultra-small material testing machine which can obtain accurate measurement results without error due to temperature drift even if ambient temperature changes.

【0005】[0005]

【課題を解決するための手段】本発明は、圧子を変位さ
せ、指令された荷重で圧子を試料に押圧させる駆動手段
と、圧子の変位量を検出する変位計と、試料押圧時に検
出された圧子の変位量を測定値として得る測定手段とを
備えた超微小材料試験機に適用される。そして、駆動手
段が非作動でかつ圧子による試料への負荷が略ゼロの状
態で、予め定められた所定時間における圧子の変位量を
変位計の出力から得、その変位量を温度ドリフト情報と
して出力する出力手段を備え、これにより上記問題点を
解決する。
According to the present invention, a driving means for displacing an indenter to press the indenter against a sample with a commanded load, a displacement meter for detecting the displacement amount of the indenter, and a displacement meter for detecting the sample are detected. It is applied to an ultrafine material testing machine provided with a measuring means for obtaining the displacement amount of the indenter as a measured value. Then, when the driving means is inactive and the load of the indenter on the sample is substantially zero, the displacement amount of the indenter at a predetermined time is obtained from the output of the displacement meter, and the displacement amount is output as temperature drift information. The above-mentioned problem is solved by providing an output means for doing so.

【0006】[0006]

【作用】圧子を変位させるための駆動手段が作動してお
らず、かつ圧子による試料への負荷が略ゼロの状態で、
予め定められた所定時間における圧子の変位量が得ら
れ、これが温度ドリフト情報として出力される。この温
度ドリフト情報に基づいて、試料押圧時に変位計で測定
された圧子の変位量(測定値)を補正することにより、
温度ドリフトによる誤差のない正確な変位量が得られ
る。
[Operation] When the driving means for displacing the indenter is not operated and the load on the sample by the indenter is substantially zero,
The displacement amount of the indenter in a predetermined time that is determined in advance is obtained, and this is output as temperature drift information. Based on this temperature drift information, by correcting the displacement amount (measurement value) of the indenter measured by the displacement meter when pressing the sample,
An accurate amount of displacement can be obtained without error due to temperature drift.

【0007】[0007]

【実施例】【Example】

−第1の実施例− 図1〜図4により本発明の第1の実施例を説明する。図
1は本発明に係る超微小材料試験機の全体構成図であ
る。2は枠体1の下部に昇降可能に支持された試料台、
3は試料台2上にX−Y方向に移動可能に載置されたス
テージであり、このステージ3上に試料TPが保持され
る。10は、枠体1内に設けられた自動平衡型電子天秤
タイプの荷重装置であり、図2にその構造を模式的に示
す。
-First Embodiment- A first embodiment of the present invention will be described with reference to Figs. FIG. 1 is an overall configuration diagram of an ultrafine material testing machine according to the present invention. 2 is a sample table which is supported on the lower part of the frame 1 so as to be able to move up and down,
A stage 3 is mounted on the sample table 2 so as to be movable in the XY directions, and the sample TP is held on the stage 3. Reference numeral 10 denotes an automatic balance type electronic balance type load device provided in the frame body 1, and its structure is schematically shown in FIG.

【0008】図2において、11は、支点12を中心に
回動可能に支持された天秤式負荷伝達レバーであり、こ
のレバー11の一端部上方には、レバー駆動用の電磁コ
イル13が設けられている。制御装置30(図1)から
電磁コイル13に直流負荷電流が供給されると、レバー
11を上方に引き上げる電磁力が発生し、これにより支
点12を中心にレバー11が反時計回り方向に回動す
る。レバー11の他端部は、板ばね14を介して連結棒
15に連結され、連結棒15の下端部に試料TPを押圧
する圧子16が設けられている。圧子16は、レバー1
1の反時計回り方向の回動に伴って下方に変位し、上記
ステージ3上の試料TPに押圧される。その際の押圧荷
重は上記電磁コイル13の電磁力、すなわち電磁コイル
13への負荷電流に依存する。
In FIG. 2, reference numeral 11 denotes a balance-type load transmission lever which is rotatably supported around a fulcrum 12, and an electromagnetic coil 13 for driving the lever is provided above one end of the lever 11. ing. When a DC load current is supplied from the control device 30 (FIG. 1) to the electromagnetic coil 13, an electromagnetic force that pulls the lever 11 upward is generated, which causes the lever 11 to rotate counterclockwise about the fulcrum 12. To do. The other end of the lever 11 is connected to a connecting rod 15 via a leaf spring 14, and an indenter 16 for pressing the sample TP is provided at the lower end of the connecting rod 15. The indenter 16 is the lever 1
It is displaced downward with the counterclockwise rotation of 1 and is pressed by the sample TP on the stage 3. The pressing load at that time depends on the electromagnetic force of the electromagnetic coil 13, that is, the load current to the electromagnetic coil 13.

【0009】また図1の符号17は、連結棒15、すな
わち圧子16の変位量を検出する差動トランス式の変位
計であり、その検出値である圧子16の変位量が制御装
置30に入力される。41は、制御装置30から出力さ
れる圧子16の変位量をリアルタイムで記録する記録計
である。なお図1において、20は、対物レンズ21,
接眼レンズ22などを有する光学モニタ装置であり、試
料TPの表面で試験を行う位置を測定したり、圧子16
によって付けられた試料TPのくぼみの状態を作業者が
観察するために用いられる。
Reference numeral 17 in FIG. 1 is a differential transformer type displacement gauge for detecting the displacement amount of the connecting rod 15, that is, the indenter 16. The displacement amount of the indenter 16 which is the detected value is input to the control device 30. To be done. Reference numeral 41 is a recorder for recording the displacement amount of the indenter 16 output from the control device 30 in real time. In FIG. 1, 20 is an objective lens 21,
An optical monitor device having an eyepiece lens 22 and the like, which is used to measure a position to be tested on the surface of the sample TP and to press the indenter 16
It is used by the operator to observe the state of the depression of the sample TP attached by.

【0010】次に、図3のフローチャートおよび図4の
タイムチャートも参照して実施例の動作を説明する。試
料TPの硬さ試験を行うにあたり、図1の如く試料TP
をステージ3上に載置し、ステージ3をX−Y方向に移
動させて試料TPが圧子16の真下に位置するよう位置
決めするとともに、圧子16が試料TPと無負荷状態で
接触するように試料台2の高さを調節する。ここで、圧
子16を完全な無負荷状態で試料TPと接触させるのは
困難であるから、実際には圧子16と試料TPとの間に
は若干の隙間があいた状態となる。図4の時点T0で不
図示の操作部材により押圧荷重を指令すると、制御装置
30内で図3に示すプログラムが起動される。制御装置
30はまずステップS1で所定の負荷電流を電磁コイル
13に供給する。これにより、負荷伝達レバー11を上
方に引き上げる電磁力が発生してレバー11が支点12
を中心に反時計回り方向に回動し、板ばね14および連
結棒15を介して圧子16が図4(b)に示すように徐
々に変位する。
Next, the operation of the embodiment will be described with reference to the flowchart of FIG. 3 and the time chart of FIG. When performing the hardness test of the sample TP, as shown in FIG.
Is placed on the stage 3, the stage 3 is moved in the X-Y direction to position the sample TP so that it is located directly below the indenter 16, and the indenter 16 contacts the sample TP in an unloaded state. Adjust the height of the stand 2. Here, since it is difficult to bring the indenter 16 into contact with the sample TP in a completely unloaded state, there is actually a slight gap between the indenter 16 and the sample TP. When a pressing load is commanded by an operating member (not shown) at time T0 in FIG. 4, the program shown in FIG. The control device 30 first supplies a predetermined load current to the electromagnetic coil 13 in step S1. As a result, an electromagnetic force that pulls the load transmission lever 11 upward is generated, and the lever 11 moves the fulcrum 12
By rotating in the counterclockwise direction about the center, the indenter 16 is gradually displaced via the leaf spring 14 and the connecting rod 15 as shown in FIG.

【0011】一定時間経過後、圧子16が試料TPとま
だ非接触の状態で、ステップS2において電磁コイル1
3への負荷電流の供給を停止し(時点T1)、ステップ
S3でタイマをスタートさせ、ステップS4で所定時間
t1だけ待ってからステップS5でタイマをストップす
る(時点T2)。ここで、周囲の温度変化があった場合
には、電磁コイル13へ負荷電流の供給を断っても温度
ドリフトによって圧子16は図示の如く変位する。ステ
ップS6では、上記時間t1における圧子16の変位量
を読み取り、これを温度ドリフトによる誤差補正因子
(温度ドリフト情報)として変数Dd(t1)に格納す
る。
After a certain period of time, the indenter 16 is still in non-contact with the sample TP, and in step S2, the electromagnetic coil 1
3 is stopped (time T1), the timer is started in step S3, a predetermined time t1 is waited in step S4, and then the timer is stopped in step S5 (time T2). Here, when there is a change in ambient temperature, the indenter 16 is displaced as shown by the temperature drift even if the supply of the load current to the electromagnetic coil 13 is stopped. In step S6, the displacement amount of the indenter 16 at the time t1 is read and stored in the variable Dd (t1) as an error correction factor (temperature drift information) due to temperature drift.

【0012】次にステップS7では、指令された荷重に
応じた負荷電流を電磁コイル13に供給し、再び圧子1
6の変位を開始させるとともに、ステップS8でタイマ
をスタートさせる。圧子16は、時点T3で試料TPに
接触し、図4(b)に示すように変位しつつ試料TPに
食い込んでゆく。ステップS9では、タイマスタートか
らの経過時間tを計測するとともに、この時間tにおけ
る圧子16の変位量を変位計17の出力から検出し、そ
の値を測定値として変数Dm(t)に格納する。この測
定値Dm(t)は、温度ドリフトによる誤差を含んでい
るので、この誤差を除去すべくステップS10におい
て、上記誤差補正因子(時間t1における温度ドリフト
による圧子の変位量)Dd(t1)を用いて次式により
補正を行い、真の変位量Dr(t)を演算する。 Dr(t)=Dm(t)−(Dd(t1)/t1)・t ここで、{(Dd(t1)/t1)・t}は、時間tに
おける温度ドリフトによる誤差に相当する。演算された
変位量Dr(t)は制御装置30内のメモリに記憶され
る。
Next, in step S7, a load current corresponding to the instructed load is supplied to the electromagnetic coil 13, and the indenter 1 is again activated.
6 is started and the timer is started in step S8. The indenter 16 comes into contact with the sample TP at time T3 and moves into the sample TP while being displaced as shown in FIG. 4B. In step S9, the elapsed time t from the timer start is measured, the displacement amount of the indenter 16 at this time t is detected from the output of the displacement gauge 17, and the value is stored in the variable Dm (t) as a measured value. Since this measured value Dm (t) includes an error due to temperature drift, the error correction factor (displacement amount of the indenter due to temperature drift at time t1) Dd (t1) is removed in step S10 in order to remove this error. The true displacement amount Dr (t) is calculated by using the following equation for correction. Dr (t) = Dm (t)-(Dd (t1) / t1) · t where {(Dd (t1) / t1) · t} corresponds to an error due to temperature drift at time t. The calculated displacement amount Dr (t) is stored in the memory in the control device 30.

【0013】上記ステップS9,S10の処理は、ステ
ップS11でタイマスタートから所定時間が経過したと
判定されまで繰返し行われ、所定時間が経過するとステ
ップS12でタイマをストップさせて処理を終了させ
る。ここで、所定時間が経過する前の時点T4で試料T
Pへの押圧荷重が指令値に達し、これにより圧子16は
自動的に停止する。上式により演算され記憶された変位
量Dr(t)は、例えば荷重−変位曲線として記録計4
1で記録され、その記録結果から試料TPの硬さが判定
される。
The processes of steps S9 and S10 are repeated until it is determined in step S11 that a predetermined time has elapsed from the start of the timer, and when the predetermined time has elapsed, the timer is stopped and the process ends in step S12. Here, at the time point T4 before the predetermined time elapses, the sample T
The pressing load on P reaches the command value, whereby the indenter 16 automatically stops. The displacement amount Dr (t) calculated and stored by the above equation is, for example, as a load-displacement curve, the recorder 4
1 is recorded, and the hardness of the sample TP is determined from the recording result.

【0014】以上の手順によれば、圧子16が試料TP
に当接する前に電磁コイル13への負荷電流が断たれ、
この状態、つまり圧子16による試料への負荷がゼロの
状態で所定時間t1における圧子の変位量(温度ドリフ
トによる変位量)Dd(t1)が誤差補正因子として検
出されるとともに、試料押圧時にリアルタイムで検出さ
れる圧子の変位量Dm(t)がその都度{(Dd(t
1)/t1)・t}にて補正されるので、周囲の温度変
化があっても温度ドリフトによる誤差のない正確な変位
量Dr(t)を得ることができる。
According to the above procedure, the indenter 16 is the sample TP.
The load current to the electromagnetic coil 13 is cut off before contacting the
In this state, that is, when the load on the sample by the indenter 16 is zero, the displacement amount (displacement amount due to temperature drift) Dd (t1) of the indenter at the predetermined time t1 is detected as an error correction factor, and the sample is pressed in real time. The detected displacement Dm (t) of the indenter is {(Dd (t
Since it is corrected by 1) / t1) · t}, it is possible to obtain an accurate displacement amount Dr (t) without error due to temperature drift even if the ambient temperature changes.

【0015】以上の実施例の構成において、負荷伝達レ
バー12,電磁コイル13,連結棒15が駆動手段を、
制御装置30が測定手段および補正値出力手段をそれぞ
れ構成する。
In the configuration of the above embodiment, the load transmission lever 12, the electromagnetic coil 13, and the connecting rod 15 serve as driving means.
The control device 30 constitutes a measuring means and a correction value outputting means, respectively.

【0016】−第2の実施例− 次に、図5および図6により第2の実施例を説明する。
第1の実施例では、試料負荷時の圧子16の変位量を検
出して試料TPの硬さを判断する試験方法について説明
したが、本実施例では、試料TPを負荷した後にその負
荷荷重を除去し、この除荷時の圧子変位量をも検出して
試料TPの特性を判断するようにしたものである。また
本実施例では、温度ドリフトによる誤差補正因子を除荷
後に求め、この補正因子に基づいて測定値を補正する。
-Second Embodiment- Next, a second embodiment will be described with reference to FIGS.
In the first embodiment, the test method for determining the hardness of the sample TP by detecting the displacement amount of the indenter 16 when the sample is loaded has been described, but in the present embodiment, the load applied after the sample TP is loaded is changed. The characteristics of the sample TP are judged by removing the indenter and detecting the displacement of the indenter at the time of unloading. Further, in this embodiment, the error correction factor due to the temperature drift is obtained after unloading, and the measured value is corrected based on this correction factor.

【0017】図5は本実施例における手順を示し、ステ
ップS21で電磁コイル13に負荷電流を供給して圧子
16の変位を開始させるとともに、ステップS22でタ
イマをスタートさせる。ステップS23ではタイマスタ
ート後の経過時間tにおける圧子の変位量Dm1(t)
を検出し、これを記憶する。圧子16は、例えば図6の
時点T11で試料TPに当接し、以降は図6(b)に示
すように圧子16が変位して試料TPに食い込んでゆ
く。ステップS24で負荷荷重が指令値に達するまでス
テップS23の処理を繰返し行い、負荷荷重が指令値に
達するとステップS25にて電磁コイル13への負荷電
流を徐々に減少させて除荷を行う(時点T12)。この
除荷に伴って試料TPが元の状態に復元しようとするか
ら、圧子16は上述とは逆方向に変位する。
FIG. 5 shows the procedure in this embodiment. In step S21, a load current is supplied to the electromagnetic coil 13 to start displacement of the indenter 16, and in step S22 a timer is started. In step S23, the displacement amount Dm1 (t) of the indenter at the elapsed time t after the timer is started.
Is detected and stored. The indenter 16 comes into contact with the sample TP at, for example, time T11 in FIG. 6, and thereafter, the indenter 16 is displaced and bites into the sample TP as shown in FIG. 6B. In step S24, the process of step S23 is repeated until the load reaches the command value, and when the load reaches the command value, the load current to the electromagnetic coil 13 is gradually decreased in step S25 to perform unloading (time point). T12). Since the sample TP tries to restore to the original state with this unloading, the indenter 16 is displaced in the direction opposite to the above.

【0018】ステップS26では、圧子の変位量Dm2
(t)を検出し、これを記憶する。ステップS27で負
荷荷重が略ゼロと判定されるまでステップS26を繰返
し、負荷荷重が略ゼロと判定されると、圧子16が略無
負荷状態で試料TPに当接していると判断してステップ
S28に進み、タイマをリセットして再度スタートさせ
る。ステップS29では所定時間t1が経過するまで待
ち、所定時間t1が経過するとステップS30でタイマ
をストップするとともに、ステップS31で上記時間t
1における圧子16の変位量Dd(t1)を変位計17
から読み込んでステップS32に進む。ステップS32
では、記憶されている各時点における変位量Dm1
(t),Dm2(t)を順に読み出し、Dd(t1)を
用いて次式により真の変位量Dr1,Dr2を演算し、
記憶する。 Dr1(t)=Dm1(t)−(Dd(t1)/t1)・t Dr2(t)=Dm2(t)−(Dd(t1)/t1)・t 演算され記憶された変位量Dr1(t),Dr2(t)
は、例えば荷重−変位曲線として記録計41で記録さ
れ、その記録結果から試料TPの特性が判定される。
In step S26, the indenter displacement amount Dm2
(T) is detected and stored. Step S26 is repeated until the applied load is determined to be substantially zero in step S27. When the applied load is determined to be substantially zero, it is determined that the indenter 16 is in contact with the sample TP in a substantially unloaded state, and step S28. Go to and reset the timer and restart. In step S29, the process waits until the predetermined time t1 elapses. When the predetermined time t1 elapses, the timer is stopped in step S30, and the time t is determined in step S31.
The displacement amount Dd (t1) of the indenter 16 at
Read in and proceed to step S32. Step S32
Then, the stored displacement amount Dm1 at each time point
(T) and Dm2 (t) are sequentially read, and the true displacement amounts Dr1 and Dr2 are calculated by the following equation using Dd (t1),
Remember. Dr1 (t) = Dm1 (t)-(Dd (t1) / t1) .t Dr2 (t) = Dm2 (t)-(Dd (t1) / t1) .t Calculated and stored displacement amount Dr1 (t ), Dr2 (t)
Is recorded, for example, as a load-displacement curve by the recorder 41, and the characteristics of the sample TP are determined from the recording result.

【0019】以上の手順によれば、圧子16により試料
TPに荷重が負荷された後、その負荷が除去され、負荷
時および除荷時に圧子16の変位量Dm1(t),Dm
2(t)がリアルタイムで測定され記憶される。また、
除荷後、圧子16が試料TPに略無負荷状態で接触した
状態で、所定時間t1における圧子の変位量(温度ドリ
フトによる変位量)Dd(t1)が誤差補正因子として
検出され、(Dd(t1)/t1)・tにより上記記憶
された変位量Dm1(t),Dm2が補正される。した
がって、周囲の温度変化があっても温度ドリフトによる
誤差のない正確な変位量Dr1(t),Dr2(t)を
得ることができる。
According to the above procedure, after the load is applied to the sample TP by the indenter 16, the load is removed, and the displacement amounts Dm1 (t), Dm of the indenter 16 at the time of loading and unloading.
2 (t) is measured and stored in real time. Also,
After unloading, with the indenter 16 in contact with the sample TP in a substantially unloaded state, the displacement amount (displacement amount due to temperature drift) Dd (t1) of the indenter at the predetermined time t1 is detected as an error correction factor, and (Dd ( The stored displacement amounts Dm1 (t) and Dm2 are corrected by t1) / t1) · t. Therefore, even if the ambient temperature changes, it is possible to obtain accurate displacement amounts Dr1 (t) and Dr2 (t) without an error due to temperature drift.

【0020】ここで、特に試料TPを加熱して上述した
試験を行う場合には、試験機を構成する各部分の温度差
が大きくなるから、試料押圧時に圧子16と試料ステー
ジ3との間の温度差に応じた温度ドリフトが発生する。
したがって、この温度ドリフトによる誤差を除去するに
は、圧子16が試料TPに無負荷で接触した状態で温度
ドリフトによる変位量Dd(t1)を誤差補正因子とし
て検出することが精度的に望ましい。本実施例では、負
荷荷重を除荷した後の圧子16が試料TPに無負荷で接
触している状態で上記Dd(t1)を検出し、このDd
(t1)に基づいて補正を行っているので、例えば加熱
試験時のように圧子16とステージ3との間の温度差に
応じた温度ドリフトが発生した場合でも、正確な変位量
Dr1(t),Dr2(t)を得ることができる。
Here, particularly when the sample TP is heated to perform the above-described test, the temperature difference between the respective parts constituting the tester becomes large, so that the pressure between the indenter 16 and the sample stage 3 is increased when the sample is pressed. A temperature drift occurs according to the temperature difference.
Therefore, in order to remove the error due to the temperature drift, it is desirable in terms of accuracy to detect the displacement amount Dd (t1) due to the temperature drift as the error correction factor while the indenter 16 is in contact with the sample TP with no load. In the present embodiment, the above-mentioned Dd (t1) is detected in a state where the indenter 16 after removing the applied load is in contact with the sample TP without any load, and this Dd
Since the correction is performed based on (t1), even if a temperature drift corresponding to the temperature difference between the indenter 16 and the stage 3 occurs, for example, during a heating test, the accurate displacement amount Dr1 (t) , Dr2 (t) can be obtained.

【0021】なお、第2の実施例において、さほど厳密
な精度を必要としないときには、第1の実施例と同様に
圧子16が試料TPに当接する前に誤差補正因子Dd
(t1)を検出し、これに基づいて補正を行うようにし
てもよい。また、第1の実施例のように除荷時の変位量
を検出しない試験においても、除荷することにより圧子
16が試料TPに無負荷で接触する状態を得、このとき
の温度ドリフトによる変位量Dd(t1)を検出して補
正を行うようにしてもよい。さらに以上では、試験機を
構成する制御装置30内で誤差補正因子Dd(t1)の
検出と、試料押圧時の圧子16の変位量Dm(t)の測
定と、上記Dd(t1)に基づくDm(t)の補正とを
行う例を示したが、試験機側では誤差補正因子Dd(t
1)と変位量Dm(t)の測定のみを行い、補正は、他
の装置で行ったり、あるいは人手によって行うようにし
てもよい。
In the second embodiment, when the precision is not so strict, the error correction factor Dd before the indenter 16 abuts on the sample TP as in the first embodiment.
(T1) may be detected and the correction may be performed based on this. Further, even in the test in which the amount of displacement at the time of unloading is not detected as in the first embodiment, a state in which the indenter 16 contacts the sample TP with no load by unloading is obtained, and displacement due to temperature drift at this time is obtained. The amount Dd (t1) may be detected and corrected. Further, in the above, the error correction factor Dd (t1) is detected in the control device 30 constituting the tester, the displacement amount Dm (t) of the indenter 16 at the time of pressing the sample is measured, and the Dm based on the above Dd (t1) is measured. Although the example of performing the correction of (t) is shown, the error correction factor Dd (t
1) and the displacement amount Dm (t) may be measured, and the correction may be performed by another device or manually.

【0022】[0022]

【発明の効果】本発明によれば、圧子を変位させるため
の駆動手段が非作動でかつ圧子による試料への負荷が略
ゼロの状態で、予め定められた所定時間における圧子の
変位量を温度ドリフト情報として得るようにしたので、
その補正因子に基づいて試料押圧時の圧子の変位量(測
定値)を補正することにより、周囲温度が変化しても温
度ドリフトによる誤差のない正確な圧子変位量が得られ
る。したがって、従来のように恒温室を用いたり、周囲
温度が落ち着くまで待つ必要がなくなり、コストダウン
が図れるとともに、試験を迅速に行うことが可能とな
る。
According to the present invention, when the driving means for displacing the indenter is inoperative and the load on the sample by the indenter is substantially zero, the displacement amount of the indenter at a predetermined time is set to the temperature. Since I got it as drift information,
By correcting the displacement amount (measured value) of the indenter when the sample is pressed based on the correction factor, an accurate indenter displacement amount without error due to temperature drift can be obtained even if the ambient temperature changes. Therefore, it is not necessary to use a temperature-controlled room or wait until the ambient temperature has settled down as in the conventional case, so that the cost can be reduced and the test can be performed quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超微小材料試験機の一実施例の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of an ultrafine material testing machine according to the present invention.

【図2】圧子変位機構の構成を示す図である。FIG. 2 is a diagram showing a configuration of an indenter displacement mechanism.

【図3】第1の実施例の動作を説明するフローチャート
である。
FIG. 3 is a flowchart illustrating the operation of the first embodiment.

【図4】第1の実施例の動作を説明するタイムチャート
である。
FIG. 4 is a time chart explaining the operation of the first embodiment.

【図5】第2の実施例の動作を説明するフローチャート
である。
FIG. 5 is a flowchart illustrating the operation of the second embodiment.

【図6】第2の実施例の動作を説明するタイムチャート
である。
FIG. 6 is a time chart explaining the operation of the second embodiment.

【符号の説明】[Explanation of symbols]

1 枠体 2 試料台 3 ステージ 10 荷重装置 11 負荷伝達レバー 12 支点 13 電磁コイル 14 板ばね 15 連結棒 16 圧子 17 変位計 30 制御装置 41 記録計 TP 試料 1 frame 2 sample stage 3 stage 10 load device 11 load transmission lever 12 fulcrum 13 electromagnetic coil 14 leaf spring 15 connecting rod 16 indenter 17 displacement meter 30 controller 41 recorder TP sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧子を変位させ、指令された荷重で圧子
を試料に押圧させる駆動手段と、前記圧子の変位量を検
出する変位計と、前記試料押圧時に検出された圧子の変
位量を測定値として得る測定手段とを備えた超微小材料
試験機において、前記駆動手段が非作動でかつ圧子によ
る前記試料への負荷が略ゼロの状態で、予め定められた
所定時間における圧子の変位量を前記変位計の出力から
得、その変位量を温度ドリフト情報として出力する出力
手段を備えたことを特徴とする超微小材料試験機。
1. A displacement means for displacing an indenter to press the indenter against a sample with a commanded load, a displacement meter for detecting the displacement amount of the indenter, and a displacement amount of the indenter detected when the sample is pressed. In an ultra-fine material testing machine equipped with a measuring means for obtaining a value, the displacement amount of the indenter in a predetermined time period when the driving means is inactive and the load on the sample by the indenter is substantially zero. Is obtained from the output of the displacement meter, and the output means outputs the displacement amount as temperature drift information.
JP13518392A 1992-05-27 1992-05-27 Ultra small material testing machine Expired - Fee Related JP3278899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13518392A JP3278899B2 (en) 1992-05-27 1992-05-27 Ultra small material testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13518392A JP3278899B2 (en) 1992-05-27 1992-05-27 Ultra small material testing machine

Publications (2)

Publication Number Publication Date
JPH05332908A true JPH05332908A (en) 1993-12-17
JP3278899B2 JP3278899B2 (en) 2002-04-30

Family

ID=15145779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13518392A Expired - Fee Related JP3278899B2 (en) 1992-05-27 1992-05-27 Ultra small material testing machine

Country Status (1)

Country Link
JP (1) JP3278899B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096224A (en) * 2006-10-10 2008-04-24 Shimadzu Corp Material testing machine
CN110987690A (en) * 2018-10-03 2020-04-10 株式会社三丰 Hardness tester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096224A (en) * 2006-10-10 2008-04-24 Shimadzu Corp Material testing machine
JP4671045B2 (en) * 2006-10-10 2011-04-13 株式会社島津製作所 Material testing machine
CN110987690A (en) * 2018-10-03 2020-04-10 株式会社三丰 Hardness tester

Also Published As

Publication number Publication date
JP3278899B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
EP0596494B1 (en) Scanning probe microscope and method of control error correction
KR100657105B1 (en) Probing method and probing apparatus
JP4793445B2 (en) Indentation type material testing machine, test method, and test program product
US9341554B2 (en) Hardness tester
JP2009047427A (en) Test management method in indentation tester and indentation tester
US7021155B2 (en) Universal material testing method and device therefor
JP6877025B2 (en) Circuit board inspection methods, inspection equipment, and programs
JP2006071632A (en) Indentation test method and indentation test machine
JP3278899B2 (en) Ultra small material testing machine
JPH0587544A (en) Inspecting apparatus for defect
JP2008151753A (en) Friction tester, frictional load applying method and frictional load inspecting method
JP3740943B2 (en) Material testing machine
JP2526592B2 (en) Micro material testing device
JP3624607B2 (en) Surface hardness measuring device
JP4671045B2 (en) Material testing machine
JP4500156B2 (en) Material property evaluation system
JPH07248285A (en) Device for evaluating surface physical properties
JP3245596B2 (en) Ultrasonic hardness measuring device
JP2013238441A (en) Hardness tester
JP4098921B2 (en) Setting method of probe pressing force of scanning probe microscope
JP7289772B2 (en) Hardness tester, hardness test method and program
JPH10300563A (en) Electronic balance
JPH10170525A (en) Scanning probe microscope, and measuring method for adsorption force using the scanning probe microscope
JPH05332905A (en) Manipulating method of extensometer
JPS62231136A (en) Extremely small material testing instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees