JPH05332828A - Infrared ray sensor - Google Patents

Infrared ray sensor

Info

Publication number
JPH05332828A
JPH05332828A JP4157388A JP15738892A JPH05332828A JP H05332828 A JPH05332828 A JP H05332828A JP 4157388 A JP4157388 A JP 4157388A JP 15738892 A JP15738892 A JP 15738892A JP H05332828 A JPH05332828 A JP H05332828A
Authority
JP
Japan
Prior art keywords
quartz glass
glass substrate
substrate
insulating substrate
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4157388A
Other languages
Japanese (ja)
Inventor
Atsuyuki Kato
淳之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP4157388A priority Critical patent/JPH05332828A/en
Publication of JPH05332828A publication Critical patent/JPH05332828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To achieve a reliable infrared ray sensor which can be manufactured in a mass, inexpensively with a simple process without damaging an infrared ray detection element and with less thermal loss to a substrate and can perform high-sensitivity infrared ray detection. CONSTITUTION:A lower crystal glass substrate 11 in that the upper surface is mirror-surface finished and a groove 12 is formed at the center and an upper crystal glass substrate 13 where the rear surface is mirror-surface finished are adhered and joined while the mirror surfaces oppose each other via a gap G of the groove 12 and then an infrared ray detection element 14 consisting of a sandwich structure of a lower electrode 15, a pyroelectric film 16, and an upper electrode 17 is formed and laid out on the surface of the upper crystal glass substrate 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線センサに係わ
り、特に赤外線検出素子を搭載する基板構造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor, and more particularly to a substrate structure on which an infrared detecting element is mounted.

【0002】[0002]

【従来の技術】図5は、従来の赤外線センサの構成を示
す要部断面図である。同図において、1はMgO基板、
2はこのMgO基板1上に形成されたPt電極、3はこ
のPt電極2上に形成されかつ赤外線を検知する焦電薄
膜からなる光電変換膜、4はこの光電変換膜3上に形成
されたNiCr電極、5は保護膜としてのポリイミド膜
である。なお、前述したMgO基板1に代えてシリコン
基板が用いられる場合もある。
2. Description of the Related Art FIG. 5 is a cross-sectional view of an essential part showing the structure of a conventional infrared sensor. In the figure, 1 is a MgO substrate,
Reference numeral 2 is a Pt electrode formed on the MgO substrate 1, 3 is a photoelectric conversion film formed on the Pt electrode 2 and formed of a pyroelectric thin film for detecting infrared rays, and 4 is formed on the photoelectric conversion film 3. NiCr electrodes 5 are polyimide films as protective films. A silicon substrate may be used instead of the MgO substrate 1 described above.

【0003】このように構成される熱型の赤外線センサ
は、吸収した赤外線が効率良く光電変換膜3の温度変化
に寄与するのが理想的である。しかし、光電変換膜3か
らMgO基板1への熱損失が大きいと、センサとしての
感度が著しく低下してしまう。そこで前述したようにM
gO基板1をエッチングしてセンサ下部側を取り除き、
空洞部1aを設けてMgO基板1への熱損失を抑えてい
た。
In the thermal type infrared sensor thus constructed, it is ideal that the absorbed infrared rays contribute to the temperature change of the photoelectric conversion film 3 efficiently. However, if the heat loss from the photoelectric conversion film 3 to the MgO substrate 1 is large, the sensitivity of the sensor will be significantly reduced. Therefore, as mentioned above, M
etching the gO substrate 1 to remove the lower side of the sensor,
The cavity 1a was provided to suppress heat loss to the MgO substrate 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うに構成される赤外線センサにおいて、MgO基板1の
センサ下部を取り除き、空洞部1aを形成するプロセス
は、フォトリソグラフィ工程や強酸および強アルカリ液
によるエッチング工程などの極めて高度な技術および複
雑なプロセスを必要とするので、製作コストが高価とな
るなどの問題があった。また、前述したようにエッチン
グ液として化学作用の強い薬品を使用するので、センサ
材料が損傷を受け、信頼性を低下させるなどの問題があ
った。
However, in the infrared sensor thus constructed, the process of removing the lower part of the MgO substrate 1 to form the cavity 1a is performed by a photolithography process or etching with a strong acid or strong alkaline solution. Since extremely high technology such as steps and complicated process are required, there is a problem that the manufacturing cost becomes high. Further, as described above, since a chemical having a strong chemical action is used as the etching liquid, there is a problem that the sensor material is damaged and the reliability is lowered.

【0005】したがって本発明は、前述した従来の課題
を解決するためになされたものである、その目的は、赤
外線検出素子に損傷を与えることなく、簡単なプロセス
で製作でき、量産性に優れ、低コストを可能とし、かつ
基板への熱損失が少なく、高感度の赤外線検出を可能と
し、さらには信頼性の高い赤外線検出を可能にした赤外
線センサを提供することにある。
Therefore, the present invention has been made in order to solve the above-mentioned conventional problems. The purpose of the present invention is to produce the infrared detecting element by a simple process without damaging it, and to excel in mass productivity. An object of the present invention is to provide an infrared sensor that enables low cost, low heat loss to a substrate, high sensitivity infrared detection, and highly reliable infrared detection.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために本発明による赤外線センサは、少なくとも一方
の面が鏡面仕上げされた第1の絶縁性基板と、この第1
の絶縁性基板と同一材料からなりかつ少なくとも一方の
面が鏡面仕上げされた第2の絶縁性基板と、この第1の
絶縁性基板または第2の絶縁性基板の他方の面に積層形
成された第1の電極と焦電体膜と第2の電極とのサンド
ウィッチ構造からなる赤外線検出素子と、を備え、第1
の絶縁性基板および第2の絶縁性基板の少なくとも一方
の鏡面仕上げされた面に溝部が設けられ、かつ第1の絶
縁性基板と第2の絶縁性基板とが溝部のギャップを介し
て鏡面同志を対向させて配置され、第1の絶縁性基板と
第2の絶縁性基板とが密着接合された構造を有してい
る。
In order to achieve such an object, an infrared sensor according to the present invention comprises a first insulating substrate having at least one surface mirror-finished and a first insulating substrate.
A second insulating substrate made of the same material as that of the first insulating substrate and having at least one surface mirror-finished, and laminated on the other surface of the first insulating substrate or the second insulating substrate. An infrared detecting element having a sandwich structure of a first electrode, a pyroelectric film, and a second electrode;
Groove is provided on at least one mirror-finished surface of the insulative substrate and the second insulative substrate, and the first insulative substrate and the second insulative substrate are mirror-finished via the gap of the groove. Are arranged so as to face each other, and the first insulating substrate and the second insulating substrate are in close contact with each other.

【0007】[0007]

【作用】本発明においては、第1の絶縁性基板と第2の
絶縁性基板とがシール材を不要として溝部のギャップを
介して直接的に密着接合されて基板構造を構成する。
In the present invention, the first insulating substrate and the second insulating substrate are directly adhered to each other through the gap of the groove without using a sealing material to form a substrate structure.

【0008】[0008]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。図1は本発明による赤外線センサの一実施例
による構成を示す断面図である。同図において、第1の
絶縁性基板を構成する下側石英ガラス基板11は、その
表面側中央部に全体がほぼ正方形状で断面が凹状となる
深さの浅い溝12が形成されており、この溝12が形成
された石英ガラス基板11の表面側は、表面荒さRa=
100Å程度以下の平坦な鏡面仕上げ処理が施されてい
る。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing the configuration of an embodiment of an infrared sensor according to the present invention. In the figure, the lower quartz glass substrate 11 constituting the first insulating substrate is provided with a shallow groove 12 having a substantially square shape and a concave cross section in the central portion on the surface side. The surface roughness Ra of the quartz glass substrate 11 on which the groove 12 is formed is Ra =
A flat mirror finish of 100 Å or less is applied.

【0009】また、第2の絶縁性基板を構成する上側石
英ガラス基板13は、上述した石英ガラス基板11より
も板厚を約1/3程度薄くして形成され、また、この石
英ガラス基板13の背面側は、表面荒さRa=100Å
程度以下の平坦な鏡面仕上げ処理が施されている。
The upper quartz glass substrate 13 constituting the second insulating substrate is formed to have a plate thickness thinner than that of the above-mentioned quartz glass substrate 11 by about 1/3, and the quartz glass substrate 13 is also formed. Roughness is Ra = 100Å
A flat mirror-like finish of less than or equal to is applied.

【0010】このようにして構成された石英ガラス基板
11および石英ガラス基板13は、表面が鏡面仕上げさ
れかつ溝12が形成され下側石英ガラス基板11の表面
側と、背面が鏡面仕上げされた上側石英ガラス基板13
の背面側とを室温でそれぞれその鏡面側を対向させて重
ねて張り合わせ、200〜1100℃程度まで加熱する
ことにより、下側石英ガラス基板11の周辺部分が石英
ガラス同志の物理化学的な結合力によって密着され、直
接接合により強固に固定されて石英ガラス基板11と石
英ガラス基板13との間に溝12のギャップGを介した
基板構造が構成されている。
The quartz glass substrate 11 and the quartz glass substrate 13 thus constructed are mirror-finished on the surface and formed with the grooves 12, and the front side of the lower quartz glass substrate 11 and the upper side which is mirror-finished on the back side. Quartz glass substrate 13
The back surface of the lower quartz glass substrate 11 and the rear surface of the lower quartz glass substrate 11 are laminated at room temperature so that their mirror surfaces face each other, and are heated to about 200 to 1100 ° C. The substrate structure is constituted by the gap G of the groove 12 between the quartz glass substrate 11 and the quartz glass substrate 13, which are tightly adhered to each other and firmly fixed by direct bonding.

【0011】また、石英ガラス基板11と接合固定され
た石英ガラス基板13の表面側中央部には、全体がほぼ
正方形状に形成された赤外線検出素子14が形成配置さ
れており、この赤外線検出素子14は、石英ガラス基板
13の表面に形成された下部電極15上に焦電体膜16
が形成され、さらにこの焦電体膜16上に上部電極17
が形成される積層構造で構成されている。
Further, an infrared detecting element 14 having a substantially square shape as a whole is formed and arranged in the central portion on the front surface side of the quartz glass substrate 13 bonded and fixed to the quartz glass substrate 11. 14 is a pyroelectric film 16 on the lower electrode 15 formed on the surface of the quartz glass substrate 13.
Is formed, and the upper electrode 17 is formed on the pyroelectric film 16.
Are formed in a laminated structure.

【0012】この場合、この赤外線検出素子14は、下
側石英ガラス基板11の溝12により形成されるギャッ
プGの位置と対応する上側石英ガラス基板13上にほぼ
一致するように配置される構成となっている。なお、図
示されないが、この上部電極17上には必要に応じて例
えば白金黒などからなる熱吸収膜が形成配置される場合
もある。
In this case, the infrared detecting element 14 is arranged so as to be substantially aligned with the position of the gap G formed by the groove 12 of the lower quartz glass substrate 11 and corresponding to the upper quartz glass substrate 13. Is becoming Although not shown, a heat absorption film made of, for example, platinum black may be formed and arranged on the upper electrode 17 as needed.

【0013】このような構成によると、下側石英ガラス
基板11に形成された溝12によるギャップを介して上
側の石英ガラス基板13上に赤外線検出素子14が搭載
される構造となるので、赤外線検出素子14からの熱が
下側石英ガラス基板11に吸収され難くなり、つまり赤
外線検出素子14の熱損失が少なくなり、高感度の赤外
線検出が可能となる。
According to this structure, since the infrared detecting element 14 is mounted on the upper quartz glass substrate 13 through the gap formed by the groove 12 formed in the lower quartz glass substrate 11, the infrared detecting element 14 is mounted. The heat from the element 14 is less likely to be absorbed by the lower quartz glass substrate 11, that is, the heat loss of the infrared detection element 14 is reduced, and high-sensitivity infrared detection is possible.

【0014】また、このような構成によると、下側石英
ガラス基板11および上側石英ガラス基板13とが同種
材料であるため、使用する環境温度変化があっても赤外
線検出素子14の温度特性に悪影響を与えることがなく
なり、高精度の赤外線検出が可能となる。
Further, according to this structure, since the lower quartz glass substrate 11 and the upper quartz glass substrate 13 are made of the same material, the temperature characteristic of the infrared detecting element 14 is adversely affected even if the ambient temperature used changes. Therefore, infrared rays can be detected with high accuracy.

【0015】次に図1で説明した赤外線センサの製造方
法について説明する。図2は、赤外線センサの製造方法
の一実施例を説明する工程の断面図である。同図におい
て、まず、図2(a)に示すように少なくとも対向配置
されて接合される周辺部分の表面が鏡面研磨された石英
ガラス基板11を準備する。
Next, a method of manufacturing the infrared sensor described with reference to FIG. 1 will be described. 2A to 2D are cross-sectional views of steps for explaining an embodiment of a method for manufacturing an infrared sensor. In the figure, first, as shown in FIG. 2A, at least a quartz glass substrate 11 having mirror-polished surfaces of peripheral portions which are opposed to each other and are bonded is prepared.

【0016】次に図2(b)に示すようにこの石英ガラ
ス基板11の表面中央部分にHFエッチング液などによ
るウエットエッチング法またはドライエッチング法によ
り、溝12を形成する。
Next, as shown in FIG. 2B, a groove 12 is formed in the central portion of the surface of the quartz glass substrate 11 by a wet etching method or a dry etching method using an HF etching solution or the like.

【0017】次に図2(c)に示すように少なくとも対
向配置されて接合される表面が鏡面研磨された石英ガラ
ス基板13を準備する。
Next, as shown in FIG. 2 (c), a quartz glass substrate 13 having mirror-polished surfaces which are opposed to each other and are bonded is prepared.

【0018】次に図2(d)に示すように表面が鏡面研
磨され溝12が形成された石英ガラス基板11と表面が
鏡面研磨された石英ガラス基板13とを接合剤を用いず
にクリーンな雰囲気中において室温付近でそれぞれ鏡面
側を重ねて張り合わせ、200〜1100℃程度の高温
雰囲気中で熱処理を行って接合を強固にする。これによ
って石英ガラス基板11と石英ガラス基板13との間に
溝12によるギャップGを介在させた基板構造が形成さ
れる。
Next, as shown in FIG. 2D, a quartz glass substrate 11 having a mirror-polished surface and a groove 12 formed therein and a quartz glass substrate 13 having a mirror-polished surface 13 are clean without using a bonding agent. In the atmosphere, the mirror-finished sides are overlapped and bonded at around room temperature, and heat treatment is performed in a high temperature atmosphere of about 200 to 1100 ° C. to strengthen the bond. As a result, a substrate structure is formed in which the gap G formed by the groove 12 is interposed between the quartz glass substrate 11 and the quartz glass substrate 13.

【0019】次に図2(e)に示すように石英ガラス基
板13の接合されていない表面側を研磨し、この石英ガ
ラス基板13を赤外線検出レベルに応じた所定の板厚に
加工する。なお、この研磨は、機械研磨の他にドライエ
ッチングまたはウエットエッチングで行ってもよい。ま
た、この石英ガラス基板13に接合される石英ガラス基
板11の背面側も同時に研磨を行って所定の板厚に加工
しても良い。
Next, as shown in FIG. 2 (e), the unbonded surface side of the quartz glass substrate 13 is polished, and the quartz glass substrate 13 is processed into a predetermined plate thickness according to the infrared detection level. The polishing may be performed by dry etching or wet etching in addition to mechanical polishing. Further, the back side of the quartz glass substrate 11 joined to the quartz glass substrate 13 may be simultaneously polished to be processed into a predetermined plate thickness.

【0020】次に図2(f)に示すようにこの石英ガラ
ス基板13の表面に下部電極15,焦電体膜16および
上部電極17を順次積層して赤外線検出素子14を形成
して完成する。
Next, as shown in FIG. 2 (f), a lower electrode 15, a pyroelectric film 16 and an upper electrode 17 are sequentially laminated on the surface of the quartz glass substrate 13 to form an infrared detecting element 14 for completion. ..

【0021】図3は、前述した石英ガラス基板同志を接
合させる熱処理温度に対する接合強度の関係を実験によ
り求めた結果を示したものである。同図において、曲線
は石英ガラス基板11,13同志の接合強度を示し、石
英ガラス基板同志の接合強度は各温度での平均値を示し
たものである。同図から明かなように本実施例の石英ガ
ラス基板11,13同志における接合部の接合強度は、
赤外線センサを製作する上で十分なほど優れていること
が判った。
FIG. 3 shows the result of an experimental determination of the relationship between the bonding strength and the heat treatment temperature for bonding the quartz glass substrates to each other. In the figure, the curve shows the bonding strength of the quartz glass substrates 11 and 13, and the bonding strength of the quartz glass substrates is an average value at each temperature. As is clear from the figure, the bonding strength of the bonding portion between the quartz glass substrates 11 and 13 of this embodiment is
It was found to be good enough to fabricate an infrared sensor.

【0022】次に石英ガラス基板11と石英ガラス基板
13とが直接接合されるメカニズムについて説明する。
図4は、石英ガラス基板11と石英ガラス基板13との
接合形態の過程の変化を説明する図である。同図におい
て、まず、図4(a)に示すように石英ガラス基板11
と石英ガラス基板13とを室温で重ねて張り合わせた状
態では、両者の接合面において、その間隙dが主にファ
ン・デル・ワールス力による物理的な結合力により密着
されると考えられる。
Next, a mechanism of directly bonding the quartz glass substrate 11 and the quartz glass substrate 13 will be described.
FIG. 4 is a diagram illustrating changes in the process of joining the quartz glass substrate 11 and the quartz glass substrate 13. In the figure, first, as shown in FIG.
It is considered that in the state in which the quartz glass substrate 13 and the quartz glass substrate 13 are laminated and laminated at room temperature, the gap d is closely adhered to each other by the physical bonding force mainly due to the Van der Waals force.

【0023】また、石英ガラス基板11と石英ガラス基
板13とを室温で重ねて張り合わせた状態から熱処理を
経ることによって図4(b)に示すように石英ガラスの
分子構造がSi−O−Si結合「イ」などの化学的な結
合となり、さらに強固な化学的な結合力により密着され
ると考えられる。
Further, when the quartz glass substrate 11 and the quartz glass substrate 13 are laminated and bonded at room temperature and then heat-treated, the molecular structure of the quartz glass is Si--O--Si bond as shown in FIG. 4 (b). It is considered that a chemical bond such as "a" is formed, and the chemical bond is further strengthened, resulting in close contact.

【0024】以上、説明したように石英ガラス基板11
と石英ガラス基板13とは、重ねて張り合わせた状態お
よび熱処理工程における物理化学的な結合力による総合
的な結合形態により、石英ガラス基板11と石英ガラス
基板13とが密着されて強固に接合されることになる。
As described above, the quartz glass substrate 11 is used.
The quartz glass substrate 13 and the quartz glass substrate 13 are adhered and firmly bonded to each other by a state of being laminated and laminated and by a comprehensive bonding form by a physicochemical bonding force in the heat treatment process. It will be.

【0025】このような方法によると、石英ガラス基板
11と石英ガラス基板13とを溝12のギャップGを介
して直接接合することにより、赤外線検出素子14を搭
載する基板構造が形成できるので、赤外線検出素子14
の熱損失が少ない基板構造が簡単なプロセスにより形成
することができる。
According to such a method, since the quartz glass substrate 11 and the quartz glass substrate 13 are directly bonded to each other via the gap G of the groove 12, a substrate structure for mounting the infrared detecting element 14 can be formed. Detection element 14
A substrate structure with less heat loss can be formed by a simple process.

【0026】また、このような方法によると、石英ガラ
ス基板11,13のエッチングプロセス後に赤外線検出
素子14が形成されるので、センサ材料のエッチングお
よび熱処理などによる損傷を与えることが全くなくな
り、赤外線検出素子14の信頼性を大幅に向上させるこ
とができる。
Further, according to such a method, since the infrared detecting element 14 is formed after the etching process of the quartz glass substrates 11 and 13, damage due to etching and heat treatment of the sensor material is completely eliminated, and infrared detecting is performed. The reliability of the element 14 can be significantly improved.

【0027】また、このような方法によると、石英ガラ
ス基板11と石英ガラス基板13とを重ねて張り合わせ
て接合した後、さらに200〜1100℃の温度範囲で
熱処理を行うことによって接合強度が大幅に増大するの
で、例えばウエハ上に赤外線センサを多数個形成し、ダ
イシングなどにより個々のチップに分割切断する際、そ
の衝撃にも耐え得る機械的強度が得られ、大量生産が容
易となる。
Further, according to such a method, after the quartz glass substrate 11 and the quartz glass substrate 13 are laminated and bonded to each other, heat treatment is further performed in a temperature range of 200 to 1100.degree. Therefore, for example, when a large number of infrared sensors are formed on a wafer and divided into individual chips by dicing or the like, mechanical strength that can withstand the impact is obtained, and mass production is facilitated.

【0028】なお、前述した実施例においては、下部石
英ガラス基板11に溝12を設けてギャップGを形成し
た場合について説明したが、本発明はこれに限定される
ものではなく、この溝12を上部石英ガラス基板13に
設けても良く、さらには両石英ガラス基板11,13側
に設けても前述した実施例と同様の効果が得られる。
In the above-mentioned embodiment, the case where the groove 12 is provided in the lower quartz glass substrate 11 to form the gap G has been described, but the present invention is not limited to this, and the groove 12 is formed. It may be provided on the upper quartz glass substrate 13 or further on both quartz glass substrates 11 and 13 side, and the same effect as in the above-mentioned embodiment can be obtained.

【0029】また、前述した実施例においては、溝12
および赤外線検出素子14の形状を正方形とした場合に
ついて説明したが、本発明はこれに限定されるものでは
なく、長方形,多角形,円形あるいは 楕円形状でも良
いことは言うまでもない。
Further, in the above-mentioned embodiment, the groove 12
The case where the infrared detecting element 14 has a square shape has been described, but the present invention is not limited to this, and needless to say, it may have a rectangular shape, a polygonal shape, a circular shape, or an elliptical shape.

【0030】また、前述した実施例においては、石英ガ
ラス基板11と石英ガラス基板13との間に設けた溝1
2内は真空あるいはその他の封入物でも良い。
Further, in the above-mentioned embodiment, the groove 1 provided between the quartz glass substrate 11 and the quartz glass substrate 13 is used.
The inside of 2 may be a vacuum or other enclosure.

【0031】また、前述した実施例においては、第1の
絶縁性基板および第2の絶縁性基板としてそれぞれ石英
ガラス基板11および石英ガラス基板13を用いた場合
について説明したが、本発明はこれに限定されるもので
はなく、可視光に対して透明絶縁体であるガラス基板,
サファイア基板あるいはシリコン基板を用いても物理化
学的な作用により直接接合が可能なり、前述した実施例
と同様な効果が得られる。
Further, in the above-mentioned embodiment, the case where the quartz glass substrate 11 and the quartz glass substrate 13 are used as the first insulating substrate and the second insulating substrate, respectively, has been described, but the present invention is not limited to this. The glass substrate is a transparent insulator that is not limited to visible light,
Even if a sapphire substrate or a silicon substrate is used, direct bonding can be performed by a physicochemical action, and the same effect as that of the above-described embodiment can be obtained.

【0032】[0032]

【発明の効果】以上、説明したように本発明によれば、
第1の絶縁性基板と第2の絶縁性基板とがシール材を不
要として溝部のギャップを介して直接的に密着接合され
て基板構造が構成されるので、赤外線検出素子の熱損失
が少なくなり、高感度の赤外線検出が可能となる。ま
た、この基板構造が従来のように高度で複雑なフォトリ
ソグラフィ工程やエッチング工程などのプロセスが簡略
化されて形成できるので、プロセスが簡単となり、量産
性に優れ、製作コストが安価となる。さらにこの基板作
製後に赤外線検出素子を形成できるので、化学作用の強
いエッチング液による赤外線検出素子の損傷がなくな
り、信頼性の高い赤外線検出を可能となるなどの極めて
優れた効果が得られる。
As described above, according to the present invention,
Since the first insulating substrate and the second insulating substrate do not need a sealing material and are directly adhered to each other through the gap of the groove to form a substrate structure, heat loss of the infrared detecting element is reduced. , It becomes possible to detect infrared rays with high sensitivity. In addition, since this substrate structure can be formed by simplifying processes such as a photolithography process and an etching process which are highly sophisticated and complicated as in the conventional case, the process is simplified, mass productivity is excellent, and manufacturing cost is low. Further, since the infrared detecting element can be formed after the production of this substrate, the infrared detecting element is not damaged by the etching liquid having a strong chemical action, and extremely excellent effects such as highly reliable infrared detection can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による赤外線センサの構成を示す断面図
である。
FIG. 1 is a sectional view showing a configuration of an infrared sensor according to the present invention.

【図2】本発明による赤外線センサの製造方法を説明す
る工程の断面図である。
FIG. 2 is a sectional view of a step illustrating a method for manufacturing an infrared sensor according to the present invention.

【図3】石英ガラス基板同志の接合形態の熱処理温度に
対する接合強度の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the bonding strength and the heat treatment temperature in the bonding mode of quartz glass substrates.

【図4】石英ガラス基板同志の接合形態を説明する図で
ある。
FIG. 4 is a diagram for explaining a bonding mode between quartz glass substrates.

【図5】従来の赤外線センサの構成を示す断面図であ
る。
FIG. 5 is a sectional view showing a configuration of a conventional infrared sensor.

【符号の説明】[Explanation of symbols]

11 石英ガラス基板 12 溝 13 石英ガラス基板 14 赤外線検出素子 15 下部電極 16 焦電体膜 17 上部電極 G ギャップ 11 Quartz Glass Substrate 12 Groove 13 Quartz Glass Substrate 14 Infrared Detector 15 Lower Electrode 16 Pyroelectric Film 17 Upper Electrode G Gap

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の面が鏡面仕上げされた
第1の絶縁性基板と、 前記第1の絶縁性基板と同一材料からなりかつ少なくと
も一方の面が鏡面仕上げされた第2の絶縁性基板と、 前記第1の絶縁性基板または第2の絶縁性基板の他方の
面に積層形成された第1の電極と焦電体膜と第2の電極
とのサンドウィッチ構造からなる赤外線検出素子と、を
備え、前記第1の絶縁性基板および第2の絶縁性基板の
少なくとも一方の鏡面仕上げされた面に溝部が設けら
れ、かつ前記第1の絶縁性基板と第2の絶縁性基板とが
溝部のギャップを介して鏡面同志を対向させて配置さ
れ、第1の絶縁性基板と第2の絶縁性基板とが密着接合
されたことを特徴とする赤外線センサ。
1. A first insulating substrate having at least one surface mirror-finished, and a second insulating substrate made of the same material as the first insulating substrate and having at least one surface mirror-finished. And an infrared detection element having a sandwich structure of a first electrode, a pyroelectric film, and a second electrode laminated on the other surface of the first insulating substrate or the second insulating substrate, A groove portion is provided on at least one mirror-finished surface of the first insulating substrate and the second insulating substrate, and the first insulating substrate and the second insulating substrate have a groove portion. An infrared sensor, characterized in that the mirror surfaces are arranged so as to face each other through the gap (1), and the first insulating substrate and the second insulating substrate are closely bonded to each other.
【請求項2】 請求項1において、前記第1の絶縁性基
板および第2の絶縁性基板を石英ガラスとしたことを特
徴とする赤外線センサ。
2. The infrared sensor according to claim 1, wherein the first insulating substrate and the second insulating substrate are made of quartz glass.
【請求項3】 請求項1において、前記第1の絶縁性基
板および第2の絶縁性基板の少なくとも一方をシリコン
としたことを特徴とする赤外線センサ。
3. The infrared sensor according to claim 1, wherein at least one of the first insulating substrate and the second insulating substrate is made of silicon.
JP4157388A 1992-05-26 1992-05-26 Infrared ray sensor Pending JPH05332828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157388A JPH05332828A (en) 1992-05-26 1992-05-26 Infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157388A JPH05332828A (en) 1992-05-26 1992-05-26 Infrared ray sensor

Publications (1)

Publication Number Publication Date
JPH05332828A true JPH05332828A (en) 1993-12-17

Family

ID=15648552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157388A Pending JPH05332828A (en) 1992-05-26 1992-05-26 Infrared ray sensor

Country Status (1)

Country Link
JP (1) JPH05332828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288372A (en) * 2011-09-08 2011-12-21 洛阳兰迪玻璃机器有限公司 Vacuum glass sealing performance on-line detection method and device thereof
WO2021196760A1 (en) * 2020-03-31 2021-10-07 上海集成电路研发中心有限公司 Infrared mems structure based on vertically distributed electrodes and manufacturing method for the structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288372A (en) * 2011-09-08 2011-12-21 洛阳兰迪玻璃机器有限公司 Vacuum glass sealing performance on-line detection method and device thereof
WO2021196760A1 (en) * 2020-03-31 2021-10-07 上海集成电路研发中心有限公司 Infrared mems structure based on vertically distributed electrodes and manufacturing method for the structure

Similar Documents

Publication Publication Date Title
JP2896725B2 (en) Capacitive pressure sensor
KR0133481B1 (en) Production method for infrared array sensor using processing
WO2005083374A1 (en) Infrared sensor and method of producing the same
GB2278496A (en) Infrared detecting element
JPH10274561A (en) Thermal infrared detecting element
JPH10163539A (en) Thermal infrared detector and manufacture thereof
JP2004531877A (en) Back-illuminated image forming device with enhanced sensitivity from ultraviolet region to near infrared region
JPH11326037A (en) Vacuum package for infrared detector and its manufacture
JPH11337403A (en) Infrared detecting element and its manufacture
JP2002122497A (en) Semiconductor device with thin-film sensing part, and its manufacturing method
JPH05332828A (en) Infrared ray sensor
JPH06268183A (en) Manufacture of semiconductor device
JP2748079B2 (en) Capacitive pressure sensor
JPH09113352A (en) Infrared sensor with micro lens and its manufacture
JP3194822B2 (en) Manufacturing method of composite substrate material
JP2725965B2 (en) Infrared sensor
JPH08261832A (en) Infrared sensor and its manufacture
KR100339395B1 (en) pile bolometer sensor and fabrication methode of the same
JPH0795002B2 (en) Sensor element
JPH06103287B2 (en) Sensor element
JP2000346704A (en) Bolometer type infrared detection element
CN211954451U (en) Wireless temperature sensor based on thermopile
JPH09243449A (en) Infrared ray detector
JP3269200B2 (en) Pyroelectric infrared detecting element and method of manufacturing the same
JPH06137935A (en) Infrared sensor