JPH05332284A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH05332284A
JPH05332284A JP4144397A JP14439792A JPH05332284A JP H05332284 A JPH05332284 A JP H05332284A JP 4144397 A JP4144397 A JP 4144397A JP 14439792 A JP14439792 A JP 14439792A JP H05332284 A JPH05332284 A JP H05332284A
Authority
JP
Japan
Prior art keywords
vacuum pump
rotating
disks
stationary
drive mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4144397A
Other languages
Japanese (ja)
Inventor
Tetsuya Abe
哲也 阿部
Yoshio Murakami
義夫 村上
Hitoshi Yamada
仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Heavy Industries Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP4144397A priority Critical patent/JPH05332284A/en
Publication of JPH05332284A publication Critical patent/JPH05332284A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To achieve compactness and low cost of a vacuum pump, and also increase reliability of it. CONSTITUTION:In a vacuum pump which is provided with a cascade in which multiple rotary disks 1A and static disks 2A are arranged alternately and drive mechanisms 4 and 10, and in which the rotary disks 1A are connected to a rotating shaft 3 with the drive mechanism 4, at least one stage of the rotary disks 1A is formed separately from the other rotary disks 1A, and the static disks 2A of integral construction are arranged on the drive mechanism side near the separately formed rotary disk 1A. Because the static disks 2A are of integral construction, counterflow of gas from the drive mechanism side to the side opposite to the mechanism is eliminated. Therefore, a feed capacity of the vacuum pump [exhaust velocity S: volumetric flow per unit of time (1/s)] is increased to obtain large exhaust velocity, and the necessity to increase the diameter and number of stages of the disks of the vacuum pump is eliminated to achieve compactness and low cost of the vacuum pump.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空ポンプ、例えばジ
グバーン型真空ポンプに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pump, for example, a jig burn type vacuum pump.

【0002】[0002]

【従来の技術】従来のジグバーン型真空ポンプを図8、
図9により説明すると、図8の1が多段の回転円板で、
同各回転円板1が一体に形成されている。3が回転軸
で、同回転軸3と上記各回転円板1とがナツト5により
一体的に締結され、軸受6によりこれらの回転軸3と各
回転円板1とがケーシング8及びハウジング9内に回転
可能に支持されている。
2. Description of the Related Art A conventional jig burn type vacuum pump is shown in FIG.
Explaining with reference to FIG. 9, 1 in FIG. 8 is a multi-stage rotating disk,
The respective rotary disks 1 are integrally formed. 3 is a rotating shaft, and the rotating shaft 3 and each of the rotating discs 1 are integrally fastened together by a nut 5, and a bearing 6 connects the rotating shaft 3 and each of the rotating discs 1 in a casing 8 and a housing 9. It is rotatably supported by.

【0003】2が多段の静止円板、7が同各静止円板2
の間に介装したスペーサで、ケーシング8をハウジング
9に固定することにより、同各静止円板2と同各スペー
サ7とがケーシング8の内周面に固定されて、同各静止
円板2が上記各回転円板1に対して狭い隙間を置いて対
向している。4が上記回転軸3に取付けたモータロー
タ、10が同モータロータ4に対向して上記ハウジング
9内に取付けたモータステータで、これらのモータロー
タ4とモータステータ10とにより、回転軸3の駆動機
構が構成されている。
Reference numeral 2 is a multistage stationary disk, and 7 is each stationary disk 2.
By fixing the casing 8 to the housing 9 with a spacer interposed between the stationary disk 2 and the spacer 7, the stationary disk 2 and the spacer 7 are fixed to the inner peripheral surface of the casing 8. Are opposed to the rotary discs 1 with a narrow gap. Reference numeral 4 denotes a motor rotor mounted on the rotary shaft 3, and 10 denotes a motor stator mounted in the housing 9 so as to face the motor rotor 4. The motor rotor 4 and the motor stator 10 constitute a drive mechanism for the rotary shaft 3. Has been done.

【0004】上記のように互いに対向する回転円板1と
静止円板2の少なくとも一方には、図9に示すように溝
2aと山2bとが交互に設けられている。上記軸受6に
は、鋼製ボールを有する玉軸受を使用し、潤滑材料に
は、潤滑油13を使用している。そして潤滑油13をハ
ウジング9の下部に設けた潤滑油タンク16内に溜めて
おり、この潤滑油13をポンプ14→潤滑油配管15→
ハウジング9に設けた潤滑油通路を経て玉軸受6へ供給
する一方、玉軸受6から排出される潤滑油を矢印方向に
落下させ、潤滑油タンク16内へ戻して、玉軸受6を冷
却するようにしている。
At least one of the rotating disk 1 and the stationary disk 2 facing each other as described above is provided with the grooves 2a and the ridges 2b alternately as shown in FIG. A ball bearing having steel balls is used as the bearing 6, and a lubricating oil 13 is used as a lubricating material. The lubricating oil 13 is stored in a lubricating oil tank 16 provided in the lower part of the housing 9, and the lubricating oil 13 is pump 14 → lubricating oil pipe 15 →
While supplying the lubricating oil to the ball bearing 6 through the lubricating oil passage provided in the housing 9, the lubricating oil discharged from the ball bearing 6 is dropped in the direction of the arrow and returned to the lubricating oil tank 16 to cool the ball bearing 6. I have to.

【0005】上記各回転円板1と静止円板2との間に
は、狭い隙間があり、回転軸3及び各回転円板1を回転
させると、回転円板1と静止円板2との流体力学的作用
により、図10の矢印のようにガスが反駆動機構側から
駆動機構側へ流れ、その結果、図8の吸気口11から排
気口12へガスが移送される。上記吸気口11側に容器
(図示せず)を設け、上記排気口12を大気に開放して
おり、ポンプを運転すると、上記容器内が真空となる。
その圧力は、10-5〜10-6Torrに達する。ここで
多段の回転円板1は、その全体が一体に形成されてい
る。一方、同各回転円板1の間に配置される静止円板2
は、後述するように組立上から図9に示すように中央部
を境に左右2つに分割されている。
There is a narrow gap between each of the rotating discs 1 and the stationary disc 2, and when the rotating shaft 3 and each of the rotating discs 1 are rotated, the rotating disc 1 and the stationary disc 2 are separated from each other. Due to the hydrodynamic action, the gas flows from the side opposite to the driving mechanism to the side of the driving mechanism as shown by the arrow in FIG. 10, and as a result, the gas is transferred from the intake port 11 to the exhaust port 12 in FIG. A container (not shown) is provided on the intake port 11 side, the exhaust port 12 is open to the atmosphere, and when the pump is operated, the inside of the container becomes a vacuum.
The pressure reaches 10 −5 to 10 −6 Torr. Here, the multi-stage rotary disc 1 is integrally formed as a whole. On the other hand, a stationary disc 2 arranged between the rotating discs 1
As will be described later, is divided into two left and right with a central portion as a boundary from the viewpoint of assembly, as shown in FIG.

【0006】上記一体に形成した多段の回転円板1と、
上記分割構造の各静止円板2と、上記各スペーサ7との
組立時には、図11に示すように静止円板2の内径dが
回転円板1の外径Dによりも小さいため、分割構造の静
止円板2を左右から上下の回転円板1の間へ挿入する一
方、スペーサ7を静止円板2の間に介装して、これらの
部分を組立てる。
[0006] A multi-stage rotating disc 1 formed integrally with the above,
At the time of assembling each stationary disk 2 having the above-mentioned divided structure and each spacer 7, since the inner diameter d of the stationary disk 2 is smaller than the outer diameter D of the rotating disk 1 as shown in FIG. The stationary disk 2 is inserted from the left and right between the upper and lower rotating disks 1, while the spacer 7 is interposed between the stationary disks 2 to assemble these parts.

【0007】[0007]

【発明が解決しようとする課題】前記図8、図9に示す
従来のジグバーン型真空ポンプには、次の問題があっ
た。即ち、 (1)多段でしかも互いが一体の回転円板1と、図9に
示すように中央部を境に左右に分割可能な各静止円板2
との間には、図10に示すようにガスが反駆動機構側か
ら駆動機構側へ流れる。このときの駆動機構側の圧力を
PL、反駆動機構側の圧力をPUとすると、PL>PU
のため、一部のガスが図10の破線矢印のように静止円
板2の分割面を介し駆動機構側から反駆動機構側へ逆流
して、真空ポンプの移送能力(排気速度S:単位時間当
たりの体積流量〔l/s〕)が低下する。
The conventional jig-burn type vacuum pump shown in FIGS. 8 and 9 has the following problems. That is, (1) a rotating disc 1 which is multi-staged and integrated with each other, and each stationary disc 2 which can be divided into left and right sides with a central portion as a boundary as shown in FIG.
In between, the gas flows from the counter drive mechanism side to the drive mechanism side as shown in FIG. If the pressure on the drive mechanism side at this time is PL and the pressure on the opposite drive mechanism side is PU, PL> PU
Therefore, a part of the gas flows backward from the drive mechanism side to the counter drive mechanism side through the dividing surface of the stationary disk 2 as indicated by the broken line arrow in FIG. 10, and the transfer capacity of the vacuum pump (exhaust speed S: unit time Per volume flow rate [l / s]) decreases.

【0008】この排気速度の低下を補うため、従来の真
空ポンプでは、排気速度を増加させる必要があり、その
ため、円板径を増大させたり、段数を増やしたりする等
の手段を講じており、ジグバーン型真空ポンプが排気速
度の割りに大型化、高コスト化する。 (2)また前記図8、図9に示す従来のジグバーン型真
空ポンプでは、鋼製ボールを有する玉軸受6を冷却する
ため、潤滑油システムを必要としている。この潤滑油シ
ステムは、潤滑油タンク16、ポンプ14、潤滑油配
管15等により構成されている。しかもこの潤滑油シ
ステムでは、これらの潤滑油機器が故障したとき、真空
ポンプの運転を停止させるためのシーケンス・コントロ
ール回路等を必要としている。そのため、ジグバーン型
真空ポンプの特徴の1つである小型化、低コスト化が上
記の点から妨げられて、大型化、高コスト化する。
In order to compensate for this decrease in exhaust speed, it is necessary to increase the exhaust speed in the conventional vacuum pump, and therefore, measures such as increasing the disc diameter and increasing the number of stages are taken. A jig-burn type vacuum pump becomes large and costly for its pumping speed. (2) Further, the conventional jig burn type vacuum pump shown in FIGS. 8 and 9 requires a lubricating oil system in order to cool the ball bearing 6 having steel balls. This lubricating oil system includes a lubricating oil tank 16, a pump 14, a lubricating oil pipe 15, and the like. In addition, this lubricating oil system requires a sequence control circuit or the like for stopping the operation of the vacuum pump when these lubricating oil devices fail. Therefore, one of the features of the jig burn type vacuum pump, that is, miniaturization and cost reduction is hindered from the above point, and the size and cost are increased.

【0009】また潤滑油13を使用しているため、定期
的な点検保守が面倒になる上に、潤滑油タンク16の配
置等により取付け姿勢が制限される等、用途が著しく制
約されるという問題があった。本発明は前記の問題点に
鑑み提案するものであり、その目的とする処は、小型
化、低コスト化を達成できる、また信頼性を向上でき
る、さらに用途を拡大できる真空ポンプを提供しようと
する点にある。
Further, since the lubricating oil 13 is used, regular inspection and maintenance are troublesome, and the mounting posture is restricted due to the arrangement of the lubricating oil tank 16 and the like, which considerably restricts the application. was there. The present invention is proposed in view of the above problems, and an object thereof is to provide a vacuum pump that can achieve downsizing, cost reduction, reliability improvement, and further expansion of applications. There is a point to do.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、駆動機構を具えた回転軸と、同回転軸
を回転可能に支持する軸受と、複数の回転円板と静止円
板とを交互に配置した翼列とを有し、同各回転円板を上
記回転軸に締結した真空ポンプにおいて、前記各回転円
板の少なくとも1段を他の回転円板に対して別個に形成
するとともに、別個に形成した回転円板の近くの駆動機
構側に一体構造の静止円板を配置している。
In order to achieve the above object, the present invention provides a rotating shaft having a drive mechanism, a bearing for rotatably supporting the rotating shaft, a plurality of rotating disks and a stationary member. In a vacuum pump having blade rows in which discs and discs are alternately arranged, the rotary discs being fastened to the rotary shaft, at least one stage of each of the rotary discs is separated from other rotary discs. In addition to the above, the stationary disk of the integral structure is arranged on the side of the drive mechanism near the separately formed rotating disk.

【0011】また本発明は、前記真空ポンプにおいて、
各回転円板と各静止円板とを互いの間に狭い隙間を置い
て対向、配置するとともに、これら回転円板と静止円板
との一対の組合せのうち、何れか一方または両方の対向
面にスパイラル状溝を設けている。また本発明は、前記
真空ポンプにおいて、軸受にセラミックスボールを有す
る玉軸受を使用している。
The present invention also provides the above vacuum pump,
Each rotating disk and each stationary disk are opposed and arranged with a narrow gap between them, and either one or both of the facing surfaces of the pair of rotating disk and stationary disk combination. A spiral groove is provided on the. Further, according to the present invention, in the vacuum pump, a ball bearing having a ceramic ball is used as a bearing.

【0012】[0012]

【作用】本発明の真空ポンプは前記のように各回転円板
の少なくとも1段を他の回転円板に対して別個に形成す
るとともに、別個に形成した回転円板の近くの駆動機構
側に一体構造の静止円板を配置しており、静止円板が一
体構造なので、駆動機構側から反駆動機構側へのガスの
逆流が無くなる。このため、真空ポンプの移送能力(排
気速度S:単位時間当たりの体積流量〔l/s〕)が向
上して、大排気速度が得られ、真空ポンプの円板径の増
大、段数増の必要が無くなって、真空ポンプの小型化、
低コスト化が達成される。また分割構造の静止円板の逆
流量には、製品個体差があったが、静止円板が一体構造
であり、上記逆流が無くなるので、排気速度の製品間の
バラツキが無くなって、真空ポンプの信頼性が向上す
る。
According to the vacuum pump of the present invention, at least one stage of each rotary disc is formed separately from the other rotary discs as described above, and on the drive mechanism side near the separately formed rotary disc. Since the stationary disk having an integral structure is arranged and the stationary disk is an integral structure, there is no backflow of gas from the drive mechanism side to the counter drive mechanism side. Therefore, the transfer capacity of the vacuum pump (exhaust rate S: volume flow rate per unit time [l / s]) is improved, a large exhaust rate is obtained, and it is necessary to increase the disk diameter of the vacuum pump and increase the number of stages. Is eliminated, the vacuum pump is downsized,
Cost reduction is achieved. In addition, although the back flow rate of the stationary disc of the split structure had individual differences among products, the static disc is an integrated structure, and since the above back flow is eliminated, there is no variation in the exhaust speed between products, and the vacuum pump Improves reliability.

【0013】また本発明の真空ポンプは前記のように軸
受にセラミックスボールを有する玉軸受を使用してお
り、従来の鋼製ボールに比べると、比重が小さくて
(鋼: 約7.8、セラミックス: 約3.2)、回転時に
生じる遠心力が小さくなる。このため、セラミックスボ
ールを有する玉軸受の発熱も小さくなり、グリースによ
る冷却で充分であり、潤滑油による冷却を行う必要がな
くなり、この結果、大掛かりな潤滑油システムが不要に
なって、真空ポンプの小型化、低コスト化が達成され
る。
As described above, the vacuum pump of the present invention uses a ball bearing having a ceramic ball as a bearing, and has a specific gravity smaller than that of a conventional steel ball (steel: about 7.8, ceramics. : About 3.2), the centrifugal force generated during rotation becomes small. For this reason, the heat generation of the ball bearing having the ceramic balls is also small, cooling with grease is sufficient, and cooling with lubricating oil is no longer necessary. As a result, a large-scale lubricating oil system is not required, and the vacuum pump Miniaturization and cost reduction are achieved.

【0014】また潤滑油システムの定期的な点検保守の
必要がなくなる上に、潤滑油タンクの配置等により取付
け姿勢が制限されることがなくて、用途が拡大される。
Further, the need for periodical inspection and maintenance of the lubricating oil system is eliminated, and the mounting posture is not restricted by the arrangement of the lubricating oil tank or the like, and the application is expanded.

【0015】[0015]

【実施例】【Example】

(第1実施例)次に本発明の真空ポンプを図1、図2に
示す第1実施例により説明すると、図1の1Aが一つ一
つを個別に形成した多段の回転円板、3が回転軸で、同
各回転円板1Aと回転軸3とがナツト5により一体的に
締結され、軸受6によりこれらの回転軸3と各回転円板
1とがケーシング8及びハウジング9内に回転可能に支
持されている。
(First Embodiment) Next, a vacuum pump according to the present invention will be described with reference to a first embodiment shown in FIGS. 1 and 2. 1A of FIG. Is a rotary shaft, and the rotary discs 1A and the rotary shaft 3 are integrally fastened by a nut 5, and the rotary shaft 3 and the rotary discs 1 are rotated in a casing 8 and a housing 9 by a bearing 6. Supported as possible.

【0016】図1、図2の2Aが多段の静止円板で、こ
れらの静止円板2Aは、図2に示すように分割されてお
らず、一体構造になっている。7が同各静止円板2Aの
間に介装したスペーサで、ケーシング8をハウジング9
に固定することにより、同各静止円板2Aと同各スペー
サ7とがケーシング8の内周面に固定されて、同各静止
円板2Aが上記回転円板1Aに対して僅かな隙間を置い
て対向している。
2A in FIGS. 1 and 2 are multistage stationary discs, and these stationary discs 2A are not divided as shown in FIG. 2 and have an integral structure. Reference numeral 7 is a spacer interposed between the stationary disks 2A, and the casing 8 is a housing 9
The stationary discs 2A and the spacers 7 are fixed to the inner peripheral surface of the casing 8 by fixing the stationary discs 2A to the rotating discs 1A with a slight gap therebetween. Are facing each other.

【0017】そして各回転円板1Aと各静止円板2Aと
の一対の組合せのうち、何れか一方または両方の対向面
にスパイラル状溝2aと山2bとが交互に設けられてい
る。図1の4が上記回転軸3に取付けたモータロータ、
10が同モータロータ4に対向して上記ハウジング9内
に取付けたモータステータで、これらのモータロータ4
とモータステータ10とにより、回転軸3の駆動機構が
構成されている。
The spiral grooves 2a and the ridges 2b are alternately provided on either or both facing surfaces of the pair of combinations of the rotating disks 1A and the stationary disks 2A. Reference numeral 4 in FIG. 1 denotes a motor rotor mounted on the rotary shaft 3,
Reference numeral 10 denotes a motor stator mounted in the housing 9 so as to face the motor rotor 4, and the motor rotor 4
The motor stator 10 constitutes a drive mechanism for the rotating shaft 3.

【0018】上記のように各回転円板1Aと各静止円板
2Aとの間には、狭い隙間がある。しかも各回転円板1
Aと各静止円板2Aとの一対の組合せのうち、何れか一
方または両方の対向面にスパイラル状溝2aと山2bと
が交互に設けられており、回転軸3及び各回転円板1A
を回転させると、回転円板1Aと静止円板2Aとの流体
力学的作用により、図3の矢印のようにガスが反駆動機
構側から駆動機構側へ流れ、その結果、図1の吸気口1
1から排気口12へガスが移送される。
As described above, there is a narrow gap between each rotating disc 1A and each stationary disc 2A. Moreover, each rotating disk 1
Of the pair of combinations of A and each stationary disk 2A, spiral grooves 2a and peaks 2b are alternately provided on either or both facing surfaces, and the rotary shaft 3 and each rotary disk 1A.
When is rotated, gas flows from the side opposite to the drive mechanism to the drive mechanism as shown by the arrow in FIG. 3 due to the hydrodynamic action of the rotating disc 1A and the stationary disc 2A, and as a result, the intake port of FIG. 1
The gas is transferred from 1 to the exhaust port 12.

【0019】上記吸気口11側に容器(図示せず)を設
け、上記排気口12を大気に開放しており、ポンプを運
転すると、上記容器内が真空となる。その圧力は、10
-5〜10-6Torrに達する。このときの駆動機構側の
圧力をPL、反駆動機構側の圧力をPUとすると、PL
>PUになるが、静止円板2Aが一体構造なので、ガス
の逆流が生じない(図3参照)。従って静止円板2Aが
分割されている場合に比べて同一溝条件であるにもかか
わらず、大排気速度が得られる。
A container (not shown) is provided on the intake port 11 side, the exhaust port 12 is open to the atmosphere, and when the pump is operated, the inside of the container becomes a vacuum. The pressure is 10
Reach -5 to 10 -6 Torr. If the pressure on the drive mechanism side at this time is PL and the pressure on the opposite drive mechanism side is PU, PL
> PU, but since the stationary disk 2A has an integral structure, no backflow of gas occurs (see FIG. 3). Therefore, compared with the case where the stationary disk 2A is divided, a large exhaust speed can be obtained despite the same groove condition.

【0020】次に各回転円板1A及び各静止円板2Aの
組立要領を図4により説明する。組立ては、駆動機構側
から反駆動機構側へ回転円板1Aと静止円板2Aとを交
互に積み重ねてゆくことにより行われる。即ち、図4
(a)は、駆動機構側の回転円板1Aの中央部に設けた
穴を回転軸3に係合して、同回転円板1Aを回転軸3に
組付ける一方、駆動機構側のスペーサ7をハウジング9
の上面に載せた状態を示している。
Next, the procedure for assembling each rotating disc 1A and each stationary disc 2A will be described with reference to FIG. The assembly is performed by alternately stacking the rotating disks 1A and the stationary disks 2A from the drive mechanism side to the counter drive mechanism side. That is, FIG.
(A) shows that the hole provided in the central portion of the rotary disc 1A on the drive mechanism side is engaged with the rotary shaft 3 to assemble the rotary disc 1A to the rotary shaft 3, while the spacer 7 on the drive mechanism side is attached. The housing 9
It shows a state of being placed on the upper surface of.

【0021】この状態から、図4(b)に示すように静
止円板2Aをスペーサ7の上に載せる。このとき、反駆
動機構側の回転円板1Aは、未だ回転軸3に組付けられ
ていないので、一体構造の静止円板2Aは、その内径d
が回転円板1Aの外径Dよりも小さいにもかかわらず、
静止円板2Aをスペーサ7の上に容易に載せることがで
きる。
From this state, the stationary disk 2A is placed on the spacer 7 as shown in FIG. 4 (b). At this time, since the rotary disc 1A on the side opposite to the drive mechanism is not yet assembled to the rotary shaft 3, the stationary disc 2A having the integral structure has an inner diameter d.
Is smaller than the outer diameter D of the rotating disc 1A,
The stationary disc 2A can be easily placed on the spacer 7.

【0022】次いで図4(c)に示すように次の回転円
板1Aの中央部に設けた穴を回転軸3に係合して、同回
転円板1Aを回転軸3に組付ける。次いで図4(d)に
示すように次のスペーサ7を上記スペーサ7の上に載せ
る。以上により、組立ての1サイクルを完了し、それか
らも同じ要領で、回転円板1Aと静止円板2Aとスペー
サ7とを順次積み重ねてゆく。
Next, as shown in FIG. 4 (c), a hole provided at the center of the next rotating disk 1A is engaged with the rotating shaft 3 to assemble the rotating disk 1A to the rotating shaft 3. Next, as shown in FIG. 4D, the next spacer 7 is placed on the spacer 7. As described above, one cycle of assembling is completed, and thereafter, the rotating disk 1A, the stationary disk 2A, and the spacer 7 are sequentially stacked in the same manner.

【0023】なお回転円板1Aの全てを個別に一つ一つ
形成しない場合でも、少なくとも1枚の回転円板1Aを
個別に形成すれば、その近くの駆動機構側の静止円板2
Aについては一体構造にすることができて、本件発明の
目的を達成できる。 (第2実施例)次に本発明の真空ポンプを図5、図6に
示す第2実施例により説明すると、前記第1実施例と同
じ部品については、同一符号を付した。1Cが吸気口1
1の方から数えて第1段、第2段の回転円板で、同第1
段、第2段の回転円板1Cが一体に形成されている。1
Aが第3段〜第5段の回転円板で、これらの回転円板1
Aは、その一つ一つが個別に形成されている。
Even if all of the rotating discs 1A are not individually formed, if at least one rotating disc 1A is formed individually, the stationary disc 2 on the side of the driving mechanism near the rotating disc 1A is formed.
A can be made into an integral structure, and the object of the present invention can be achieved. (Second Embodiment) Next, a vacuum pump of the present invention will be described with reference to a second embodiment shown in FIGS. 5 and 6. The same parts as those in the first embodiment are designated by the same reference numerals. 1C is the intake port 1
The first and second stage rotating discs counting from 1
The stage and the second stage rotating discs 1C are integrally formed. 1
A is a rotating disc of the third stage to the fifth stage, and these rotating discs 1
Each of A is individually formed.

【0024】一方、第2段の静止円板2は、分割構造に
なっているが、その他の静止円板2Aは、全て一体構造
になっており、この部分では、ガスの逆流が生じない。
なお前記各実施例では、溝付き回転円板の例を示してい
るが、この外、遠心式、渦巻式、軸流式等の一般の回転
機械で使用されている回転円板等に変えても差し支えな
い。
On the other hand, the stationary disc 2 of the second stage has a divided structure, but the other stationary discs 2A have an integral structure, and no backflow of gas occurs in this portion.
In each of the above-mentioned embodiments, an example of a grooved rotary disk is shown, but in addition to this, a rotary disk used in general rotary machines such as centrifugal type, spiral type, axial flow type, etc. may be used instead. It doesn't matter.

【0025】(第3実施例)次に本発明の真空ポンプを
図7に示す第3実施例により説明する。6が回転軸3を
回転可能に支持する玉軸受で、同玉軸受6は、アウタレ
ース6Aと、インナレース6Bと、これらアウタレース
6Aとインナレース6Bとの間に介装した複数個のセラ
ミックスボール6Cとにより構成されている。そしてイ
ンナレース6Bが回転軸3に焼嵌め等により嵌合、固定
され、アウタレース6Aがハウジング9に取付けられ
る。
(Third Embodiment) Next, a vacuum pump of the present invention will be described with reference to a third embodiment shown in FIG. 6 is a ball bearing that rotatably supports the rotating shaft 3, and the ball bearing 6 includes an outer race 6A, an inner race 6B, and a plurality of ceramic balls 6C interposed between the outer race 6A and the inner race 6B. It is composed of and. Then, the inner race 6B is fitted and fixed to the rotary shaft 3 by shrink fitting, etc., and the outer race 6A is attached to the housing 9.

【0026】真空ポンプの運転時には、回転軸3の回転
力がインナレース6Bを介してセラミックスボール6C
に伝えられる。このときのセラミックスボール6Cの遠
心力は、重量に比例するため、比重の小さいセラミック
ス(例えばSi3 4 : 3.2)を使用すれば、遠心力
が鋼製ボールを使用した玉軸受6の場合よりも小さくな
る。また遠心力に比例する摩擦力もセラミックスボール
6Cの場合には、小さいので、それに伴う発熱が小さく
なる。発熱が小さい場合には、グリースによる潤滑によ
り冷却すれば充分である。
During the operation of the vacuum pump, the rotational force of the rotary shaft 3 is passed through the inner race 6B and the ceramic balls 6C.
Be transmitted to. Since the centrifugal force of the ceramic balls 6C at this time is proportional to the weight, if a ceramic having a small specific gravity (for example, Si 3 N 4 : 3.2) is used, the centrifugal force of the ball bearing 6 using the steel balls is increased. Smaller than if. Further, the frictional force proportional to the centrifugal force is also small in the case of the ceramic ball 6C, so that the heat generation accompanying it is small. When the heat generation is small, it is sufficient to cool with grease lubrication.

【0027】なお玉軸受としては、図7に示す所謂深み
ぞ型の外に、アンギユラ型、保持器付きのもの等がある
が、セラミックスボール6Cによる遠心力の低下という
作用は、どの形式のものでも達成される。
As the ball bearings, there are a so-called deep groove type shown in FIG. 7, an angular type, a type with a retainer, and the like. What type of action does the ceramic ball 6C reduce in centrifugal force? But it will be achieved.

【0028】[0028]

【発明の効果】本発明は前記のように複数の回転円板と
静止円板とを交互に配置した翼列を有し、同各回転円板
を駆動機構を有する回転軸に締結した真空ポンプにおい
て、前記各回転円板の少なくとも1段を他の回転円板に
対して別個に形成するとともに、別個に形成した回転円
板の近くの駆動機構側に一体に形成した静止円板を配置
しており、静止円板が一体構造なので、駆動機構側から
反駆動機構側へのガスの逆流を無くすことができて、次
の効果を達成できる。即ち、 (1)真空ポンプの移送能力(排気速度S:単位時間当
たりの体積流量〔l/s〕)を向上できて、大排気速度
を得られ、真空ポンプの円板径の増大、段数増の必要を
無くすことができて、真空ポンプの小型化、低コスト化
を達成できる。 (2)分割構造の静止円板の逆流量には、製品個体差が
あったが、静止円板が一体構造で、逆流を無くすことが
できるので、製品間の排気速度のバラツキを無くすこと
ができて、真空ポンプの信頼性を向上できる。
According to the present invention, as described above, the vacuum pump has a blade row in which a plurality of rotating disks and stationary disks are alternately arranged, and each rotating disk is fastened to a rotating shaft having a drive mechanism. In the above, at least one stage of each of the rotating discs is formed separately with respect to the other rotating discs, and the integrally formed stationary disc is arranged near the separately formed rotating discs on the drive mechanism side. Since the stationary disk is an integral structure, it is possible to eliminate the backflow of gas from the drive mechanism side to the counter drive mechanism side, and the following effects can be achieved. That is, (1) the transfer capacity of the vacuum pump (exhaust rate S: volume flow rate per unit time [l / s]) can be improved, a large exhaust rate can be obtained, the disk diameter of the vacuum pump increases, and the number of stages increases. It is possible to eliminate the need for the above, and it is possible to reduce the size and cost of the vacuum pump. (2) There were individual differences in the reverse flow rate of the stationary disc with the split structure, but since the stationary disc is an integrated structure and backflow can be eliminated, it is possible to eliminate variations in the exhaust speed between products. It is possible to improve the reliability of the vacuum pump.

【0029】また本発明の真空ポンプは前記のように軸
受にセラミックスボールを有する玉軸受を使用してお
り、次の効果を達成できる。即ち、 (3)従来の鋼製ボールに比べると、比重が小さくて
(鋼: 約7.8、セラミックス: 約3.2)、回転時に
生じる遠心力が小さくなる。このため、セラミックスボ
ールを有する玉軸受の発熱も小さくなり、グリースによ
る冷却で充分であり、潤滑油による冷却を行う必要がな
くなり、この結果、大掛かりな潤滑油システムを不要に
できて、真空ポンプの小型化、低コスト化を達成でき
る。 (4)潤滑油システムの定期的な点検保守の必要がなく
なる上に、潤滑油タンクの配置等により取付け姿勢が制
限されることもなくて、用途を拡大できる。
The vacuum pump of the present invention uses the ball bearing having the ceramic balls as the bearing as described above, and the following effects can be achieved. (3) Compared with the conventional steel balls, the specific gravity is small (steel: about 7.8, ceramics: about 3.2) and the centrifugal force generated during rotation is small. For this reason, the heat generation of the ball bearing having the ceramic balls is also small, cooling with grease is sufficient, and cooling with lubricating oil is not necessary. As a result, a large-scale lubricating oil system can be eliminated, and the vacuum pump Miniaturization and cost reduction can be achieved. (4) The need for periodical inspection and maintenance of the lubricating oil system is eliminated, and the mounting posture is not restricted by the arrangement of the lubricating oil tank or the like, and the application can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空ポンプの第1実施例を示す縦断側
面図である。
FIG. 1 is a vertical sectional side view showing a first embodiment of a vacuum pump of the present invention.

【図2】同真空ポンプの静止円板を示す平面図である。FIG. 2 is a plan view showing a stationary disc of the vacuum pump.

【図3】同真空ポンプの作用説明図である。FIG. 3 is an operation explanatory view of the vacuum pump.

【図4】(a)〜(d)は同真空ポンプの組立要領を示
す説明図である。
4 (a) to (d) are explanatory views showing an assembling procedure of the vacuum pump.

【図5】同真空ポンプの第2実施例を示す縦断側面図で
ある。
FIG. 5 is a vertical sectional side view showing a second embodiment of the vacuum pump.

【図6】同真空ポンプの静止円板を示す平面図である。FIG. 6 is a plan view showing a stationary disk of the vacuum pump.

【図7】同真空ポンプの第3実施例を示す斜視図であ
る。
FIG. 7 is a perspective view showing a third embodiment of the vacuum pump.

【図8】従来の真空ポンプを示す縦断側面図である。FIG. 8 is a vertical cross-sectional side view showing a conventional vacuum pump.

【図9】同真空ポンプの静止円板を示す平面図である。FIG. 9 is a plan view showing a stationary disk of the vacuum pump.

【図10】同真空ポンプの作用説明図である。FIG. 10 is an operation explanatory view of the vacuum pump.

【図11】同真空ポンプの組立要領を示す説明図であ
る。
FIG. 11 is an explanatory view showing an assembling procedure of the vacuum pump.

【符号の説明】[Explanation of symbols]

1A 回転円板 1C 〃 2 静止円板 2A 〃 2a 溝 2b 山 3 回転軸 4 モータロータ (回転側駆動機構) 5 ナット 6 玉軸受 6A アウタレース 6B インナレース 6C セラミックスボール 7 スペーサ 8 ケーシング 9 ハウジング 10 モータステータ (静止側駆動機構) 11 吸気口 12 排気口 13 潤滑油 14 ポンプ 15 潤滑油配管 16 潤滑油タンク 1A rotating disc 1C 〃 2 stationary disc 2A 〃 2a groove 2b mountain 3 rotating shaft 4 motor rotor (rotating side drive mechanism) 5 nut 6 ball bearing 6A outer race 6B inner race 6C ceramic ball 7 spacer 8 casing 9 housing 10 motor stator ( Stationary drive mechanism) 11 Inlet port 12 Exhaust port 13 Lubricating oil 14 Pump 15 Lubricating oil pipe 16 Lubricating oil tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 仁 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Yamada 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Hiroshima Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 駆動機構を具えた回転軸と、同回転軸を
回転可能に支持する軸受と、複数の回転円板と静止円板
とを交互に配置した翼列とを有し、同各回転円板を上記
回転軸に締結した真空ポンプにおいて、前記各回転円板
の少なくとも1段を他の回転円板に対して別個に形成す
るとともに、別個に形成した回転円板の近くの駆動機構
側に一体構造の静止円板を配置したことを特徴とする真
空ポンプ。
1. A rotary shaft having a drive mechanism, a bearing rotatably supporting the rotary shaft, and a blade row in which a plurality of rotary disks and stationary disks are alternately arranged. In a vacuum pump in which a rotating disc is fastened to the rotating shaft, at least one stage of each rotating disc is formed separately from other rotating discs, and a drive mechanism near the separately formed rotating discs. A vacuum pump characterized in that a stationary disk with an integral structure is placed on the side.
【請求項2】 前記各回転円板と前記各静止円板とを互
いの間に狭い隙間を置いて対向、配置するとともに、こ
れら回転円板と静止円板との一対の組合せのうち、何れ
か一方または両方の対向面にスパイラル状溝を設けたこ
とを特徴とする請求項1記載の真空ポンプ。
2. The rotating disk and the stationary disk are opposed to each other with a narrow gap therebetween and are arranged, and any one of a pair of combinations of the rotating disk and the stationary disk is provided. The vacuum pump according to claim 1, wherein a spiral groove is provided on one or both opposing surfaces.
【請求項3】 前記軸受にセラミックスボールを有する
玉軸受を使用することを特徴とする請求項1記載の真空
ポンプ。
3. The vacuum pump according to claim 1, wherein a ball bearing having ceramic balls is used as the bearing.
JP4144397A 1992-06-04 1992-06-04 Vacuum pump Withdrawn JPH05332284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4144397A JPH05332284A (en) 1992-06-04 1992-06-04 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4144397A JPH05332284A (en) 1992-06-04 1992-06-04 Vacuum pump

Publications (1)

Publication Number Publication Date
JPH05332284A true JPH05332284A (en) 1993-12-14

Family

ID=15361213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4144397A Withdrawn JPH05332284A (en) 1992-06-04 1992-06-04 Vacuum pump

Country Status (1)

Country Link
JP (1) JPH05332284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142156A (en) * 2015-01-30 2016-08-08 エドワーズ株式会社 Vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142156A (en) * 2015-01-30 2016-08-08 エドワーズ株式会社 Vacuum pump

Similar Documents

Publication Publication Date Title
EP0747596B1 (en) High displacement rate, scrolltype, fluid handling apparatus
US5118251A (en) Compound turbomolecular vacuum pump having two rotary shafts and delivering to atmospheric pressure
US5160250A (en) Vacuum pump with a peripheral groove pump unit
JPH11230085A (en) Improvement of vacuum pump
JP2003129990A (en) Vacuum pump
KR970010510B1 (en) Turbo vacuum pump
US5219269A (en) Vacuum pump
JP2009501865A (en) Centrifugal compressor
KR102213998B1 (en) Vacuum exhaust mechanism, compound vacuum pump, and rotating body component
JP4667043B2 (en) Vacuum pump discharge device
JP2005076631A (en) Vacuum pump
US6409468B1 (en) Turbo-molecular pump
US5451147A (en) Turbo vacuum pump
JPH05332284A (en) Vacuum pump
US4869651A (en) Wobble plate type compressor
JPS60156996A (en) Turbo pump having improved bearing apparatus
US5217346A (en) Vacuum pump
JP7534466B2 (en) Vacuum pump with improved suction capacity of Holweck pump stage
JPH0631198Y2 (en) Bearing device for leak-free pump
KR0127650B1 (en) Potary pump
JP2628351B2 (en) Compound molecular pump
JP3856576B2 (en) Fusion reactor exhaust system
JPH08200237A (en) Bearing structure for internal gear pump
SU1763817A1 (en) Turbine cooler
KR101091890B1 (en) Turbo Compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831