JPH05332047A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JPH05332047A
JPH05332047A JP16694892A JP16694892A JPH05332047A JP H05332047 A JPH05332047 A JP H05332047A JP 16694892 A JP16694892 A JP 16694892A JP 16694892 A JP16694892 A JP 16694892A JP H05332047 A JPH05332047 A JP H05332047A
Authority
JP
Japan
Prior art keywords
electric field
vibration
electrorheological fluid
foundation
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16694892A
Other languages
Japanese (ja)
Inventor
Hideyuki Kosaka
英之 小坂
Agurawaru Aniru
アグラワル アニル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP16694892A priority Critical patent/JPH05332047A/en
Publication of JPH05332047A publication Critical patent/JPH05332047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To suppress any shaking on vibratory movement in any mode caused by earthquake applied to a structure of which base is isolated. CONSTITUTION:In base isolation device 7 which is interposed between a base 2 and a structure 5 and which can absorb the energy of shaking on oscillation of the ground, a lower flange 9 is connected to the base 2 and an upper flange 9a is connected to the structure 5. A cylinder is composed of doughnut-like steel discs 9d and doughnut-like resilient discs 9e which are alternately stacked one upon another. A damper body 9c charged therein with electric viscous fluid 9i, is provided so that the lower and upper flanges 9b, 9a may be positionally shifted from each other in a horizontal direction, and the electric viscous fluid 9i may be deformed. Further, an energizing device 10 for creating an electric field in the damper body 9c and the electric viscous fluid 9i is connected thereto with a voltage control device 11 for controlling the intensity of the field, which is in turn connected thereto with an oscillation sensor 12 for detecting oscillation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】積層ゴムを用いて構造体を基礎に
対して弾性的に支持すると共に、地震等で構造体に生じ
る震動をダンパで吸収する免震構造物において、免震構
造物に生じる震動を吸収するために用いられる免震装置
に関する。
[Industrial application] In a base-isolated structure that uses a laminated rubber to elastically support the structure with respect to the foundation, and a damper that absorbs vibrations that occur in the structure due to an earthquake, etc. The present invention relates to a seismic isolation device used to absorb generated vibrations.

【0002】[0002]

【従来の技術】最近、免震構造物において、地震等の震
動エネルギを吸収する手段として、該震動エネルギを吸
収し得る粘弾性体を有する粘弾性ダンパを用いた免震装
置が提案されている。
2. Description of the Related Art Recently, as a means for absorbing vibration energy such as an earthquake in a seismic isolation structure, a seismic isolation device using a viscoelastic damper having a viscoelastic body capable of absorbing the vibration energy has been proposed. ..

【0003】[0003]

【発明が解決しようとする課題】しかし、一概に地震と
言っても、大きさや周期等、その震動様態は様々であ
り、本来は、その震動様態に応じて該震動エネルギを最
も好適に吸収し得る粘性が各々存在する。よって、様々
な震動様態の地震に対して高い免震効果を上げるには、
生じた地震の震動様態に応じて粘性の異なるダンパを用
いなければならない。ところが、従来提案されている免
震装置は、特定の粘性のダンパしか有していない。よっ
て、そのような免震装置では、前記免震構造物に生じる
多様な震動に対して必ずしも好適な免震を行うことが出
来ないという問題がある。
However, even if it is generally called an earthquake, there are various vibration modes such as size and period, and originally, the vibration energy is most preferably absorbed according to the vibration mode. There is a viscosity to each of them. Therefore, in order to improve the high seismic isolation effect against various earthquakes,
Dampers with different viscosities must be used depending on the vibration mode of the earthquake that occurred. However, the conventionally proposed seismic isolation device has only a damper having a specific viscosity. Therefore, in such a seismic isolation device, there is a problem that it is not always possible to perform suitable seismic isolation against various vibrations occurring in the seismic isolation structure.

【0004】[0004]

【課題を解決するための手段】本発明は、上記事情に鑑
み、地震等により、免震構造物にどのような震動様態の
震動が生じても該震動を好適に免震し得る免震装置を提
供することを目的としている。本発明は、基礎(2)と
該基礎(2)により支持される構造体(5)との間に設
けられて、地震等の地盤の震動の震動エネルギを吸収し
得る免震装置(7)において、前記基礎(2)に接続し
得る基礎接続部材(9b)を有し、前記基礎接続部材
(9b)に対向する位置に、前記構造体(5)に接続し
得る構造体接続部材(9a)を設け、前記基礎接続部材
(9b)と前記構造体接続部材(9a)の間に、加えら
れた電場の強さにより粘性が変化する電気粘性流体(9
i)を内部に充填したボディ(9c)を、前記基礎接続
部材(9b)と前記構造体接続部材(9a)が水平方向
に相対的に位置ずれし得るように、且つ、その際に前記
ボディ(9c)と共に該ボディ(9c)内部に充填され
た電気粘性流体(9i)が変形し得るように設け、前記
電気粘性流体(9i)に、該電気粘性流体(9i)中に
電場を形成し得る電場形成手段(9j、9k、9l、9
m、10)を設け、前記電場形成手段(9j、9k、9
l、9m、10)に、前記電場の強さを制御し得る電場
制御手段(11)を接続し、前記電場制御手段(11)
に、前記震動を検知し得る震動検知手段(12)を接続
して構成される。なお、( )内の番号等は、図面にお
ける対応する要素を示す、便宜的なものであり、従っ
て、本記述は図面上の記載に限定拘束されるものではな
い。以下の「作用」の欄についても同様である。
In view of the above circumstances, the present invention provides a seismic isolation device capable of suitably isolating a seismic isolation structure, even if the seismic isolation structure causes an earthquake. Is intended to provide. The present invention is a seismic isolation device (7) that is provided between a foundation (2) and a structure (5) supported by the foundation (2) and that can absorb the vibration energy of ground vibration such as an earthquake. In the structure connection member (9a), which has a base connection member (9b) connectable to the base (2), and can be connected to the structure (5) at a position facing the base connection member (9b). ) Is provided, and the electrorheological fluid (9) whose viscosity changes between the basic connection member (9b) and the structure connection member (9a) depending on the strength of the applied electric field.
The body (9c) in which i) is filled is arranged such that the base connection member (9b) and the structure connection member (9a) can be relatively displaced in the horizontal direction, and at that time, the body is connected. (9c) is provided so that the electrorheological fluid (9i) filled inside the body (9c) can be deformed, and an electric field is formed in the electrorheological fluid (9i). Obtaining electric field forming means (9j, 9k, 9l, 9
m, 10) and the electric field forming means (9j, 9k, 9)
1, 9 m, 10) is connected to an electric field control means (11) capable of controlling the strength of the electric field, and the electric field control means (11) is connected.
Is connected to a vibration detecting means (12) capable of detecting the vibration. The numbers in parentheses () indicate the corresponding elements in the drawings for the sake of convenience, and therefore the present description is not limited to the description in the drawings. The same applies to the column of "action" below.

【0005】[0005]

【作用】上記した構成により、本発明は、電場形成手段
(9j、9k、9l、9m、10)により電気粘性流体
(9i)中に電場を形成し、該電場により電気粘性流体
(9i)の粘性を変化させ得るように作用する。
With the above-described structure, the present invention forms an electric field in the electrorheological fluid (9i) by the electric field forming means (9j, 9k, 9l, 9m, 10), and the electric field forms the electrorheological fluid (9i). It acts to change the viscosity.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は、本発明の免震装置を用いた免震構造物の一
実施例を示す図である。図2は、本発明の免震装置の一
実施例を示す図である。図3は、図2に示す可変粘弾性
ダンパ9をXY断面で切断した断面図である。免震構造
物1は、図1に示すように、地盤に構築された基礎2を
有しており、基礎2上には、構造体5が複数個の公知の
積層ゴム支持体6を介して弾性的に支持されている。ま
た、構造体5と基礎2との間には、本発明の免震装置7
が設けられており、免震装置7は、構造体5と基礎2を
接続する形で設けられた可変粘弾性ダンパ9を有してい
る。可変粘弾性ダンパ9は、図2に示すように、構造体
5に接続した円板状の上フランジ9aと、基礎2に接続
した同じく円板状の下フランジ9bを有しており、上フ
ランジ9aと下フランジ9bの間には、円柱形に形成さ
れたダンパ本体9cが設けられている。ダンパ本体9c
は、ドーナツ円板状に形成された複数枚のスチール板9
dと、同様にゴム等の弾性体によりドーナツ円板状に形
成された複数枚の弾性板9eを、交互に積層して円筒状
に形成した弾性筒9fを有しており、弾性筒9fと、弾
性筒9fに上下から挟着している上フランジ9a及び下
フランジ9bにより、閉鎖空間9gが形成されている。
弾性筒9fの内周面、及び上下フランジ9a、9bの閉
鎖空間9gに接する面には、ゴム等の、弾性及び絶縁性
を有する材料により形成された絶縁層9hが、円柱状の
容器を形成する形で密着しており、閉鎖空間9gには、
絶縁層9hの内部に、電場を付加すると粘性を変化させ
る電気粘性流体9iが充填されている。また、弾性筒9
fの内周面のうち、複数個の、ドーナツ円板状のスチー
ル板9dの内周面には、図2及び図3に示すように、絶
縁層9hを介して円弧を形作るプラス電極9jと、同様
に円弧を形作るマイナス電極9kが、各々、対向する形
で、個々のスチール板9dに一組づつ付設されており、
絶縁層9hには、プラス電極9jが密着した部分の中心
に、孔9h1が設けられている。スチール板9dには、
孔9h1に連通する孔9d1が、スチール板9dの内周
面から外周面に貫通する形で形成されており、該孔9d
1及び孔9h1には、絶縁材料により被覆されたケーブ
ル9lが嵌挿され、プラス電極9jに接続している。ま
た、絶縁層9hには、マイナス電極9kが密着した部分
の中心に、孔9h2が設けられており、スチール板9d
には、孔9h2に連通する孔9d2が、スチール板9d
の内周面から外周面に貫通する形で形成されている。該
孔9d2及び孔9h2には、絶縁材料により被覆された
ケーブル9mが嵌挿され、マイナス電極9kに接続して
おり、前記ケーブル9lの他端とケーブル9mの他端
は、加電装置10に接続している。加電装置10には、
電圧制御装置11が接続しており、電圧制御装置11に
は、基礎2に設置された震動センサー12が接続してい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a seismic isolation structure using the seismic isolation device of the present invention. FIG. 2 is a diagram showing an embodiment of the seismic isolation device of the present invention. FIG. 3 is a sectional view of the variable viscoelastic damper 9 shown in FIG. 2 taken along the XY section. As shown in FIG. 1, the seismic isolation structure 1 has a foundation 2 constructed on the ground, and a structure 5 is provided on the foundation 2 with a plurality of known laminated rubber supports 6 interposed therebetween. It is elastically supported. The seismic isolation device 7 of the present invention is provided between the structure 5 and the foundation 2.
The seismic isolation device 7 has a variable viscoelastic damper 9 provided to connect the structure 5 and the foundation 2. As shown in FIG. 2, the variable viscoelastic damper 9 has a disk-shaped upper flange 9a connected to the structure 5 and a disk-shaped lower flange 9b connected to the foundation 2 as well. A damper main body 9c formed in a cylindrical shape is provided between 9a and the lower flange 9b. Damper body 9c
Is a plurality of steel plates 9 shaped like a donut disc
d and a plurality of elastic plates 9e, which are also made of an elastic material such as rubber and are formed into a donut disk shape, are laminated alternately to form an elastic cylinder 9f, which has a cylindrical shape. A closed space 9g is formed by the upper flange 9a and the lower flange 9b that are sandwiched from above and below the elastic cylinder 9f.
On the inner peripheral surface of the elastic cylinder 9f and the surfaces of the upper and lower flanges 9a and 9b in contact with the closed space 9g, an insulating layer 9h formed of a material having elasticity and insulating properties such as rubber forms a cylindrical container. It is in close contact with the closed space 9g,
The inside of the insulating layer 9h is filled with an electrorheological fluid 9i that changes its viscosity when an electric field is applied. Also, the elastic tube 9
As shown in FIGS. 2 and 3, a plurality of donut disk-shaped steel plates 9d among the inner peripheral surfaces of f are provided with positive electrodes 9j that form an arc through an insulating layer 9h. Similarly, negative electrodes 9k forming an arc are attached to the respective steel plates 9d in a pair so as to face each other.
A hole 9h1 is provided in the insulating layer 9h at the center of the portion where the positive electrode 9j is in close contact. On the steel plate 9d,
A hole 9d1 communicating with the hole 9h1 is formed so as to penetrate from the inner peripheral surface to the outer peripheral surface of the steel plate 9d.
A cable 9l covered with an insulating material is fitted and inserted in 1 and the hole 9h1, and is connected to the plus electrode 9j. Further, the insulating layer 9h is provided with a hole 9h2 at the center of the portion where the negative electrode 9k is in close contact with the steel plate 9d.
Has a hole 9d2 communicating with the hole 9h2 and a steel plate 9d.
Is formed so as to penetrate from the inner peripheral surface to the outer peripheral surface. A cable 9m covered with an insulating material is fitted into the holes 9d2 and 9h2 and connected to the negative electrode 9k. The other end of the cable 9l and the other end of the cable 9m are connected to the power supply device 10. Connected. The power supply device 10 includes
The voltage control device 11 is connected, and the vibration control sensor 12 installed on the foundation 2 is connected to the voltage control device 11.

【0007】免震装置7等は、以上のような構成を有す
るので、可変粘弾性ダンパ9において、上フランジ9
a、複数枚のスチール板9d、下フランジ9bの間をそ
れぞれ接続している弾性板9eが弾性変形自在であり、
可変粘弾性ダンパ9内部に充填されている電気粘性流体
9iも変形し得ることにより、構造体5に接続した上フ
ランジ9aと基礎2に接続した下フランジ9bは、水平
方向、即ち、図2中矢印A、B方向に相対移動自在であ
る。また、図2に示すように、加電装置10により、可
変粘弾性ダンパ9中に充填された電気粘性流体9iを挾
んで互いに対向する形で付設されたプラス電極9jとマ
イナス電極9kに加電圧Eを加えることが出来、これに
より、電気粘性流体9i中には、プラス電極6とマイナ
ス電極7の間の電気粘性流体9i中に、水平な円盤状の
領域Fを形成する電場を、並行して複数個形成すること
が出来る。すると、電場が形成された領域Fにおける電
気粘性流体9iは、電場により、電気粘性流体9iに分
散した形で含有している微粒子を鎖状に連結し、微粒子
のクラスタを形成する。すると、該領域Fの電気粘性流
体9iは、複数本の鎖状のクラスタにより見かけ上該粘
性を向上させることが出来る。また、微粒子の連結によ
るクラスタの形成は、電場の強さ、即ち、加電圧Eの強
さに比例して活発に行なわれるので、該領域Fにおける
電気粘性流体9iの粘性は、電場の強さ、即ち、加電圧
Eの強さに比例して高められる。よって、加電装置10
及びプラス電極9jとマイナス電極9kにより電気粘性
流体9iに加える電場の強さを変化させることによっ
て、電気粘性流体9iの粘性を、自在に変化させること
が出来る。また、図2に示すように、弾性筒9fの内周
面、及び上下フランジ9a、9bの閉鎖空間9gに接す
る面には、ゴム等の、弾性及び絶縁性を有する材料によ
り形成された絶縁層9hが、円柱状の容器を形成する形
で密着しており、スチール板9dの孔9d1、9d2に
挿嵌されたケーブル9l、9mは、絶縁材料により被覆
されているので、スチール板9dを介して、プラス電極
9jとマイナス電極9kが短絡することはない。そこ
で、まず、通常の状態では、図2に示す基礎2には、震
動は生じていないので、可変粘性ダンパ9内部の電気粘
性流体9iには、電場は形成されておらず、電気粘性流
体9iの粘性は非常に低い状態にある。次に、地震等に
際して、図2に示す基礎2が、水平方向、即ち、図1中
矢印A、B方向に震動すると、まず、基礎2には震動セ
ンサ12が付設されているので、該震動センサ12は基
礎2の震動を検知することが出来、震動センサ12は、
図2に示すように、電圧制御装置11に震動検知信号S
1を出力する。すると、電圧制御装置10は、震動検知
信号S1に基づき基礎2の震動様態を瞬時に認識し、前
記震動エネルギを最も効果的に吸収し得る形で加電圧指
令S2を加電装置10に指令することが出来る。する
と、加電装置10は、加電圧指令S2に基づき、可変粘
弾性ダンパ9中に充填された電気粘性流体9iを挾んで
互いに対向する形で付設されたプラス電極9jとマイナ
ス電極9kに前記震動エネルギを最も効果的に吸収し得
る形で加電圧Eを加える。すると、電気粘性流体9i中
に、水平な円盤状の領域Fを形成する形で電場が形成さ
れるので、該領域Fの電気粘性流体9iを、前記震動エ
ネルギを最も効果的に吸収し得る粘性に向上させること
が出来る。よって、電気粘性流体9iを内部に充填した
可変粘弾性ダンパ9により、基礎2に生じた震動の震動
エネルギーを好適に吸収し、基礎2上に積層ゴム支持体
6及び可変粘性ダンパ9を介して構築された構造体5に
該震動が伝播しないようにすることが出来る。
Since the seismic isolation device 7 and the like have the above-described structure, the variable viscoelastic damper 9 has the upper flange 9
a, elastic plates 9e connecting the plurality of steel plates 9d and the lower flange 9b are elastically deformable,
Since the electrorheological fluid 9i filled in the variable viscoelastic damper 9 can also be deformed, the upper flange 9a connected to the structure 5 and the lower flange 9b connected to the foundation 2 are horizontal, that is, in FIG. It is relatively movable in the directions of arrows A and B. In addition, as shown in FIG. 2, the voltage applying device 10 applies a voltage to a plus electrode 9j and a minus electrode 9k, which are attached in such a manner as to sandwich the electrorheological fluid 9i filled in the variable viscoelastic damper 9 and face each other. E can be added, whereby an electric field that forms a horizontal disk-shaped region F is parallel to the electrorheological fluid 9i in the electrorheological fluid 9i between the plus electrode 6 and the minus electrode 7. Can be formed in plural. Then, the electrorheological fluid 9i in the region F where the electric field is formed connects the fine particles contained in the electrorheological fluid 9i dispersed in a chain by the electric field to form a cluster of fine particles. Then, the electrorheological fluid 9i in the region F can apparently improve the viscosity by the plurality of chain clusters. In addition, since the formation of clusters by connecting the fine particles is actively performed in proportion to the strength of the electric field, that is, the strength of the applied voltage E, the viscosity of the electrorheological fluid 9i in the region F is the strength of the electric field. That is, it is increased in proportion to the strength of the applied voltage E. Therefore, the power supply device 10
By changing the strength of the electric field applied to the electrorheological fluid 9i with the plus electrode 9j and the minus electrode 9k, the viscosity of the electrorheological fluid 9i can be freely changed. In addition, as shown in FIG. 2, an insulating layer formed of a material having elasticity and insulation such as rubber is provided on the inner peripheral surface of the elastic cylinder 9f and the surfaces of the upper and lower flanges 9a and 9b in contact with the closed space 9g. 9h is in close contact with the steel plate 9d so as to form a cylindrical container, and the cables 9l and 9m inserted into the holes 9d1 and 9d2 of the steel plate 9d are covered with an insulating material. Therefore, the plus electrode 9j and the minus electrode 9k are not short-circuited. Therefore, first, in a normal state, since no vibration is generated in the foundation 2 shown in FIG. 2, an electric field is not formed in the electrorheological fluid 9i inside the variable viscosity damper 9 and the electrorheological fluid 9i is not formed. Has a very low viscosity. Next, when the foundation 2 shown in FIG. 2 vibrates in the horizontal direction, that is, in the directions of arrows A and B in FIG. 1 in the event of an earthquake or the like, first, since the vibration sensor 12 is attached to the foundation 2, The sensor 12 can detect the vibration of the foundation 2, and the vibration sensor 12
As shown in FIG. 2, the vibration control signal S is sent to the voltage control device 11.
1 is output. Then, the voltage control device 10 instantly recognizes the vibration mode of the foundation 2 based on the vibration detection signal S1, and issues the applied voltage command S2 to the power supply device 10 in a form capable of absorbing the vibration energy most effectively. You can Then, based on the applied voltage command S2, the power supply device 10 sandwiches the electrorheological fluid 9i filled in the variable viscoelastic damper 9 with the positive electrode 9j and the negative electrode 9k attached to face each other. The applied voltage E is applied so that the energy can be absorbed most effectively. Then, an electric field is formed in the electrorheological fluid 9i so as to form a horizontal disc-shaped region F, so that the electrorheological fluid 9i in the region F has a viscosity capable of absorbing the vibration energy most effectively. Can be improved. Therefore, the variable viscoelastic damper 9 having the electrorheological fluid 9i filled therein suitably absorbs the vibration energy of the vibration generated in the foundation 2, and the laminated rubber support 6 and the variable viscosity damper 9 are provided on the foundation 2. The vibration can be prevented from propagating to the constructed structure 5.

【発明の効果】以上説明したように、本発明によれば、
基礎2と該基礎2により支持される構造体5との間に設
けられて、地震等の地盤の震動の震動エネルギを吸収し
得る免震装置7において、前記基礎2に接続し得る下フ
ランジ9b等の基礎接続部材を有し、前記基礎接続部材
に対向する位置に、前記構造体5に接続し得る上フラン
ジ9a等の構造体接続部材を設け、前記基礎接続部材と
前記構造体接続部材の間に、加えられた電場の強さによ
り粘性が変化する電気粘性流体9iを内部に充填したダ
ンパ本体9c等のボディを、前記基礎接続部材と前記構
造体接続部材が水平方向に相対的に位置ずれし得るよう
に、且つ、その際に前記ボディと共に該ボディ内部に充
填された電気粘性流体9iが変形し得るように設け、前
記電気粘性流体9iに、該電気粘性流体9i中に電場を
形成し得る加電装置10等の電場形成手段を設け、前記
電場形成手段に、前記電場の強さを制御し得る電圧制御
装置11等の電場制御手段を接続し、前記電場制御手段
に、前記震動を検知し得る震動センサ12等の震動検知
手段を接続して構成したので、下フランジ9b等の基礎
接続部材を基礎2に接続し、上フランジ9a等の構造体
接続部材を構造体5に接続することが出来、前記基礎2
と前記構造体5の、水平方向への位置ずれに伴い、前記
構造体接続部材と前記基礎接続部材も同様に位置ずれさ
せることが出来る。また、前記構造体接続部材と前記基
礎接続部材の位置ずれに伴い、ダンパ本体9c等のボデ
ィの内部に充填された電気粘性流体9iは、前記ボディ
の変形と共に変形する。この際、前記電気粘性流体9i
は粘性を有しているので、前記電気粘性流体9iが変形
すると、該粘性により基礎2と構造体5dの位置ずれの
エネルギを吸収することが出来る。よって、地盤の震動
によって、基礎2と構造体5dが、水平方向に相対的に
位置ずれを繰り返す形で震動を生じた際には、前記電気
粘性流体9iにより該震動エネルギを吸収することが出
来、前記構造体5を免震することが出来る。また、震動
センサ12等の震動検知手段により地盤の震動様態を検
知することが出来、電圧制御装置11等の電場制御手段
により、検知された地盤の震動様態に基づいて、該震動
の震動エネルギを最も好適に吸収し得る強さの電場を形
成するように前記電場形成手段を制御することが出来
る。すると、前記電場形成手段は、前記電場制御手段の
制御の下に、前記電気粘性流体9i中に電場を形成する
ので、該電場により、前記電気粘性流体9iの粘性を前
記震動の震動エネルギを最も好適に吸収し得る粘性にす
ることが出来る。よって、本発明の免震装置7は、地
盤、即ち、基礎2にどのような震動様態の震動が生じて
も該震動エネルギを好適に吸収し、構造体5を免震する
ことが出来る。
As described above, according to the present invention,
In a seismic isolation device 7 provided between the foundation 2 and the structure 5 supported by the foundation 2 and capable of absorbing the vibration energy of ground vibration such as an earthquake, a lower flange 9b connectable to the foundation 2 And other structural connection members such as an upper flange 9a that can be connected to the structural body 5 are provided at positions facing the basic connection members, and the basic connection members and the structural connection members are connected to each other. In between, a body such as a damper body 9c having an electro-rheological fluid 9i whose viscosity changes according to the strength of an applied electric field is positioned relative to the base connection member and the structure connection member in the horizontal direction. The electrorheological fluid 9i, which is filled with the body so that the electrorheological fluid 9i can be deformed, can be displaced so that an electric field is formed in the electrorheological fluid 9i. Possible electrical equipment An electric field forming means such as 10 is provided, and an electric field controlling means such as a voltage control device 11 capable of controlling the strength of the electric field is connected to the electric field forming means, and the electric field controlling means has a vibration capable of detecting the vibration. Since the vibration detecting means such as the sensor 12 is connected, the base connecting member such as the lower flange 9b can be connected to the base 2, and the structure connecting member such as the upper flange 9a can be connected to the structure 5. Foundation 2
With the horizontal displacement of the structure 5, the structure connecting member and the base connecting member can be similarly displaced. In addition, the electrorheological fluid 9i filled in the body of the damper body 9c or the like is deformed as the body is deformed due to the displacement of the structure connection member and the base connection member. At this time, the electrorheological fluid 9i
Has a viscosity, so that when the electrorheological fluid 9i is deformed, the viscosity can absorb the energy of the positional deviation between the foundation 2 and the structure 5d. Therefore, when the foundation 2 and the structure 5d generate a tremor in the form of a relative positional displacement in the horizontal direction due to the tremor of the ground, the tremor energy can be absorbed by the electrorheological fluid 9i. The structure 5 can be isolated. Further, the vibration mode of the ground can be detected by the vibration detection means such as the vibration sensor 12, and the vibration energy of the vibration can be detected by the electric field control means such as the voltage control device 11 based on the detected vibration mode of the ground. The electric field forming means can be controlled so as to form an electric field having a strength that can be absorbed most preferably. Then, the electric field forming means forms an electric field in the electrorheological fluid 9i under the control of the electric field control means, so that the electric field causes the viscosity of the electrorheological fluid 9i to be the most vibration energy of the vibration. The viscosity can be suitably absorbed. Therefore, the seismic isolation apparatus 7 of the present invention can properly absorb the seismic energy and seismic the structure 5 no matter what seismic vibration occurs in the ground, that is, the foundation 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の免震装置を用いた免震構造物
の一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a seismic isolation structure using the seismic isolation device of the present invention.

【図2】図2は、本発明の免震装置の一実施例を示す図
である。
FIG. 2 is a diagram showing an embodiment of the seismic isolation device of the present invention.

【図3】図3は、図2に示す可変粘弾性ダンパ9をXY
断面で切断した断面図である。
FIG. 3 is an XY diagram of the variable viscoelastic damper 9 shown in FIG.
It is sectional drawing cut | disconnected by the cross section.

【符号の説明】[Explanation of symbols]

2……基礎 5……構造体 7……免震装置 9a……構造体接続部材(上フランジ) 9b……基礎接続部材(下フランジ) 9c……ボディ(ダンパ本体) 9i……電気粘性流体 9j……電場形成手段(プラス電極) 9k……電場形成手段(マイナス電極) 9l……電場形成手段(ケーブル) 9m……電場形成手段(ケーブル) 10……電場形成手段(加電装置) 11……電場制御手段(電圧制御装置) 12……震動検知手段(震動センサ) 2 ... Foundation 5 ... Structure 7 ... Seismic isolation device 9a ... Structure connection member (upper flange) 9b ... Foundation connection member (lower flange) 9c ... Body (damper body) 9i ... Electrorheological fluid 9j ... Electric field forming means (plus electrode) 9k ... Electric field forming means (minus electrode) 9l ... Electric field forming means (cable) 9m ... Electric field forming means (cable) 10 ... Electric field forming means (electric power supply device) 11 …… Electric field control means (voltage control device) 12 …… Vibration detection means (vibration sensor)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基礎と該基礎により支持される構造体との
間に設けられて、地震等の地盤の震動の震動エネルギを
吸収し得る免震装置において、 前記基礎に接続し得る基礎接続部材を有し、 前記基礎接続部材に対向する位置に、前記構造体に接続
し得る構造体接続部材を設け、 前記基礎接続部材と前記構造体接続部材の間に、加えら
れた電場の強さにより粘性が変化する電気粘性流体を内
部に充填したボディを、前記基礎接続部材と前記構造体
接続部材が水平方向に相対的に位置ずれし得るように、
且つ、その際に前記ボディと共に該ボディ内部に充填さ
れた電気粘性流体が変形し得るように設け、 前記電気粘性流体に、該電気粘性流体中に電場を形成し
得る電場形成手段を設け、 前記電場形成手段に、前記電場の強さを制御し得る電場
制御手段を接続し、前記電場制御手段に、前記震動を検
知し得る震動検知手段を接続して構成した免震装置。
1. A seismic isolation device, which is provided between a foundation and a structure supported by the foundation and can absorb the vibration energy of ground vibration such as an earthquake, the base connection member being connectable to the foundation. Having a structure connecting member that can be connected to the structure at a position facing the basic connecting member, between the basic connecting member and the structural connecting member, depending on the strength of the applied electric field. A body filled with an electrorheological fluid whose viscosity changes, so that the basic connection member and the structure connection member can be relatively displaced in the horizontal direction,
And at that time, the body is provided so that the electrorheological fluid filled inside the body may be deformed, and the electrorheological fluid is provided with an electric field forming means capable of forming an electric field in the electrorheological fluid, A seismic isolation device configured by connecting an electric field control unit capable of controlling the strength of the electric field to the electric field forming unit, and connecting a vibration detection unit capable of detecting the vibration to the electric field control unit.
JP16694892A 1992-06-02 1992-06-02 Base isolation device Pending JPH05332047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16694892A JPH05332047A (en) 1992-06-02 1992-06-02 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16694892A JPH05332047A (en) 1992-06-02 1992-06-02 Base isolation device

Publications (1)

Publication Number Publication Date
JPH05332047A true JPH05332047A (en) 1993-12-14

Family

ID=15840604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16694892A Pending JPH05332047A (en) 1992-06-02 1992-06-02 Base isolation device

Country Status (1)

Country Link
JP (1) JPH05332047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089466A (en) * 2021-04-22 2021-07-09 济南大学 Electric control friction damping seismic mitigation and isolation spherical support

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089466A (en) * 2021-04-22 2021-07-09 济南大学 Electric control friction damping seismic mitigation and isolation spherical support

Similar Documents

Publication Publication Date Title
US7775333B2 (en) Magnetorheological damper and use thereof
US5267633A (en) Electrorheological fluid-applied apparatus, electrorheological fluid-applied vibration controller, and electrorheological fluid-applied fixing apparatus
US8398570B2 (en) Wide band vibrational stimulus device
US5029823A (en) Vibration isolator with electrorheological fluid controlled dynamic stiffness
KR0156745B1 (en) Hydraulic antivibratory device
WO2011103078A1 (en) Variabale stiffness liquid inertia vibration eliminator
JPH02225837A (en) Vibration isolator
JPH05332047A (en) Base isolation device
JPS5965640A (en) Vibration absorbing device
JPH0221044A (en) Vibration proofing method and device thereof
JP2018091437A (en) Multilayer rubber base isolation device or viscous mass damper with spring
JP2761647B2 (en) Seismic isolation device for buildings
JP4732773B2 (en) Damping spring member and vibration isolator using the same
US5472069A (en) Vibration damping device
JP3165900B2 (en) Variable damping mass damper
JPH02246382A (en) Piezo actuator and active vibration insulating device
JPH0893833A (en) Damper
JPH10252820A (en) Vibration isolator
JPH06207479A (en) Variable vibration damping control device
JPS61201946A (en) Vibration insulator
JP2990532B2 (en) Seismic isolation device for lightweight buildings
KR100503891B1 (en) Mounting apparatus using electro-rheological fluid's squeeze flow
CN117028481A (en) Active and passive integrated vibration isolator based on dielectric elastomer
JPH0989042A (en) Vibration damping device
JPH0243432A (en) Anti-vibration and anti-seismic material for construction