JPH05331586A - High strength aluminum alloy - Google Patents

High strength aluminum alloy

Info

Publication number
JPH05331586A
JPH05331586A JP13885092A JP13885092A JPH05331586A JP H05331586 A JPH05331586 A JP H05331586A JP 13885092 A JP13885092 A JP 13885092A JP 13885092 A JP13885092 A JP 13885092A JP H05331586 A JPH05331586 A JP H05331586A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
fine crystalline
specific gravity
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13885092A
Other languages
Japanese (ja)
Inventor
Yukio Okochi
幸男 大河内
Kazuaki Sato
和明 佐藤
Tetsuya Suganuma
徹哉 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13885092A priority Critical patent/JPH05331586A/en
Publication of JPH05331586A publication Critical patent/JPH05331586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain an amorphous or fine crystalline high strength aluminum alloy having low specific gravity and high strength. CONSTITUTION:This alloy has a composition where the content of Mm to be incorporated into Al is controlled to 0.5-4 atomic % and also Fe and Ti or Mn are incorporated so that they satisfy, by atom, 1<=Fe+Ti+Mn<=8 and 0.2<=(Ti+Mn)/(Fe+Ti+Mn)<=0.7. Further, this alloy has a structure of fine crystalline substances or a mixed structure of amorphous and fine crystalline substances. Because the amounts of the addition elements having relatively high specific gravities are limited and the content of Al by atomic percentage is increased, the specific gravity of the alloy can be reduced. Moreover, amorphous phases or fine crystalline phases are uniformly and properly dispersed in fine crystalline phases in a matrix and the fine crystalline phases in the matrix are subjected to solid solution strengthening by means of Mm and transition metals, such as Ti, Mn, and Fe, by which low specific gravity and high strength which cannot be provided by the conventional alloy can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細結晶質または非晶質
相中に微細結晶質が分散した高強度のアルミニウム合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy having fine crystalline or amorphous phase dispersed therein.

【0002】[0002]

【従来の技術】アモルファス合金、すなわち非晶質合金
は、物質を構成する原子の配列が結晶様の長周期規則性
を持たないものと定義され、一般に融液の急冷、電着、
蒸着、スパッタリングなどの製法により作製される。こ
の非晶質合金は、対応する結晶質合金と比較して、材料
特性の上で種々の優れた特性を持っていることは良く知
られている。
2. Description of the Related Art Amorphous alloys, that is, amorphous alloys, are defined as those in which the arrangement of the atoms that make up a substance does not have a crystal-like long-period regularity.
It is manufactured by a manufacturing method such as vapor deposition and sputtering. It is well known that this amorphous alloy has various excellent properties in terms of material properties as compared with the corresponding crystalline alloy.

【0003】Al基合金においても、非晶質合金が得ら
れることは従来から良く知られており、金属−金属系非
結質合金としては、Al−Ln2元合金(Ln=Y、L
a、Ce、Pr、Nd、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb)、あるいはAl−Ln−
TM3元合金(TM=V、Nb、Mo、Mn、Fe、C
o、Ni)などがある。
It has been well known that an amorphous alloy can be obtained even from an Al-based alloy. As a metal-metal non-binding alloy, an Al-Ln binary alloy (Ln = Y, L) is used.
a, Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb), or Al-Ln-
TM ternary alloy (TM = V, Nb, Mo, Mn, Fe, C
o, Ni), etc.

【0004】Al−Ln2元合金の硬さ(Hv)と引張
強さ(σf)とは、Ln量の増加に伴い増大し、2元非
晶質合金でのHvとσfの最高値は250および875
MPaである。さらに高い機械的強度がAl−Ln−T
M3元非晶質合金において得られており、Al−Ln−
Ni系においてσfとHvの最高値はそれぞれ1140
MPa、340であって、これらの値はAl基結晶質合
金の最高値(550MPa、180)を大きく上回って
おり、Al基非晶質合金が優れた機械的性質を有するこ
とがわかる。
The hardness (Hv) and the tensile strength (σf) of the Al-Ln binary alloy increase as the amount of Ln increases, and the maximum value of Hv and σf in the binary amorphous alloy is 250 and 875
It is MPa. Higher mechanical strength is Al-Ln-T
Al-Ln- was obtained in the M3 element amorphous alloy.
In Ni system, the maximum values of σf and Hv are respectively 1140
These values are MPa and 340, which are much higher than the maximum values (550 MPa, 180) of the Al-based crystalline alloy, and it can be seen that the Al-based amorphous alloy has excellent mechanical properties.

【0005】また、特開平1−275732号公報にお
いては、一般式:Alabc (但し、M:V、C
r、Mn、Fe、Co、Ni、Cu、Zr、Ti、M
o、W、Ca、Li、Mg、Si、Nbから選ばれる1
種もしくは2種以上の金属元素、X:Y、La、Ce、
Sm、Nd、Hf、Ta、Mm(ミッシュメタル)から
選ばれる1種もしくは2種以上の金属元素、a、b、c
は原子パーセントで、a:50〜95at%、b:0.
5〜35at%、c:0.5〜25at%)からなる3
元合金を急冷凝固することにより、引張強度87〜10
3kg/mm2、降伏強度82〜96kg/mm2の非晶
質または非晶質と微細結晶質の複合体が得られている。
Further, in Japanese Patent Application Laid-Open No. 1-275732, the general formula: Al a M b X c (where M: V, C
r, Mn, Fe, Co, Ni, Cu, Zr, Ti, M
1 selected from o, W, Ca, Li, Mg, Si, Nb
Or two or more metal elements, X: Y, La, Ce,
One or more metal elements selected from Sm, Nd, Hf, Ta, Mm (Misch metal), a, b, c
Is an atomic percentage, a: 50 to 95 at%, b: 0.
5 to 35 at%, c: 0.5 to 25 at%) 3
Tensile strength 87-10 by quenching and solidifying the original alloy
3 kg / mm 2, a complex of amorphous or amorphous and fine crystalline yield strength 82~96kg / mm 2 is obtained.

【0006】Al−Ln−Ni3元系の非晶質合金にお
いて、優れた機械的強度が得られることは前記の通りで
あるが、さらにAl88Ni102合金を基本組成とし、
Niの一部をMn、Fe、Co、Zr等で置換する4元
合金についての研究がなされ、Al88Ni52Fe5
金において1400MPa、Al88Ni82Mn2合金
において1470MPaの高い引張強さが得られている
(日本学術振興会アモルファス材料第147委員会第3
0回研究資料)。
As described above, excellent mechanical strength can be obtained in the Al-Ln-Ni ternary amorphous alloy. However, the basic composition is Al 88 Ni 10 Y 2 alloy,
Studies have been conducted on a quaternary alloy in which a part of Ni is replaced with Mn, Fe, Co, Zr, etc., and it is as high as 1400 MPa in the Al 88 Ni 5 Y 2 Fe 5 alloy and 1470 MPa in the Al 88 Ni 8 Y 2 Mn 2 alloy. Tensile strength is obtained (Japan Society for the Promotion of Science, Amorphous Materials, 147th Committee, 3rd Committee)
0th research material).

【0007】[0007]

【発明が解決しようとする課題】このように、Al基非
晶質合金あるいは非晶質と微細結晶質の複合体からなる
合金が、従来のAl結晶質合金に比べて2倍以上の引張
強さあるいは硬さを有することは、前記の通りである
が、比重および引張強さについて、他の結晶質または非
晶質の合金と比較してみると表1に示す通りとなる。
As described above, an Al-based amorphous alloy or an alloy composed of a composite of an amorphous and a fine crystalline material has a tensile strength more than twice that of a conventional Al crystalline alloy. Although having the hardness or hardness is as described above, the specific gravity and the tensile strength are as shown in Table 1 when compared with other crystalline or amorphous alloys.

【0008】[0008]

【表1】 [Table 1]

【0009】表1から明らかなように、Al非晶質合金
のうち、比重は最も強度の高い4元系合金であるAl88
Ni82Mn2合金において3.2、Al88Fe9Mm3
合金においては3.3と大きい。それに対して、現行結
晶質の鍛造材・押出材の比重は2.8〜2.9と小さい
が強度は最大でも700MPaと小さい。
As is clear from Table 1, among the amorphous Al alloys, the specific gravity is Al 88 which is the strongest quaternary alloy.
3.2 in Ni 8 Y 2 Mn 2 alloy, Al 88 Fe 9 Mm 3
In alloy, it is as large as 3.3. On the other hand, the specific gravity of the current crystalline forged material / extruded material is as small as 2.8 to 2.9, but the strength is as small as 700 MPa at the maximum.

【0010】このように従来の非晶質合金の比重が重い
原因は、Alより比重の重いFe、Ni、Mn等を含有
するためである。そのため、航空機や自動車の軽量化、
低燃費化を進める上において、さらに低比重で高強度を
維持したAl基非晶質合金の出現が望まれていた。
The reason why the conventional amorphous alloy has a heavy specific gravity is that it contains Fe, Ni, Mn, etc., which have a higher specific gravity than Al. Therefore, weight reduction of aircraft and automobiles,
In order to reduce fuel consumption, it has been desired to develop an Al-based amorphous alloy having a lower specific gravity and a high strength.

【0011】本発明はAl基非晶質合金の比重が大きい
という前記のごとき問題点に鑑みてなされたものであっ
て、従来のAl基非晶質合金よりもさらに低比重で高強
度を維持したAl基非晶質合金を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problem that the specific gravity of the Al-based amorphous alloy is large, and maintains the high strength with a lower specific gravity than the conventional Al-based amorphous alloy. The present invention aims to provide the Al-based amorphous alloy described above.

【0012】[0012]

【課題を解決するための手段】比重を小さくするため、
Al−Ln−TM系においてAlの原子パーセントをで
きるだけ増量することを着想した。一方、種々のLnお
よびTMを最小限添加することにより合金の非晶質形成
能を維持させ、かつ組織の最適化により、高い強度を維
持すると共に、コスト等の実用性についても検討した。
[Means for Solving the Problems] In order to reduce the specific gravity,
The idea was to increase the atomic percentage of Al in the Al-Ln-TM system as much as possible. On the other hand, by adding various kinds of Ln and TM to the minimum, the amorphous forming ability of the alloy was maintained, and by optimizing the structure, high strength was maintained, and practicality such as cost was examined.

【0013】その結果、TMとしてはTi、Mn、Fe
を、LnとしてはMmを選択した。さらに、非晶質相の
中に微細結晶質相が分散することにより高強度が得られ
ることに鑑み、適量の非晶質相あるいは微細結晶相が分
散しかつ基地組織が最適に固溶強化された結晶相でなる
ようなTi、Mn、FeとMmの適量含有範囲につい
て、研究を重ねた結果、従来Al非晶質合金より低比重
で高強度を維持したAl基非晶質合金を完成した。
As a result, TM is Ti, Mn, Fe.
And Lm was selected as Mm. Further, considering that high strength can be obtained by dispersing the fine crystalline phase in the amorphous phase, an appropriate amount of the amorphous phase or the fine crystalline phase is dispersed and the matrix structure is optimally solid-solution strengthened. As a result of repeated research on appropriate content ranges of Ti, Mn, Fe, and Mm that have different crystal phases, an Al-based amorphous alloy having lower specific gravity and higher strength than the conventional Al amorphous alloy was completed. ..

【0014】本発明の高強度アルミニウム合金は、Fe
と、TiおよびMnのうち1種または2種と、Mm(た
だしMmはミッシュメタル)とを含み、残部が不可避不
純物とAlとからなり、それぞれの量が、原子%で次の
関係式 1≦Fe+Ti+Mn≦8 0.2≦(Ti+Mn)/(Fe+Ti+Mn)≦0.
7 0.5≦ Mm ≦4 を満たし、微細結晶質または微細結晶質と非晶質の混合
組織を有することを要旨とする。
The high strength aluminum alloy of the present invention is Fe
And one or two of Ti and Mn, and Mm (where Mm is misch metal), the balance consisting of unavoidable impurities and Al, the respective amounts being in atomic%, and the following relational expression 1 ≦ Fe + Ti + Mn ≦ 8 0.2 ≦ (Ti + Mn) / (Fe + Ti + Mn) ≦ 0.
7 The condition is that 0.5 ≦ Mm ≦ 4 is satisfied, and a fine crystalline structure or a mixed structure of fine crystalline and amorphous is provided.

【0015】Mmはミッシュメタルを表し、ミッシュメ
タルとは主要元素がLa、Ceであり、そのほかに上記
La、Ceを除く希土類(ランタノイド系列)元素およ
び不可避不純物(Si、Mg、Fe、Ag等)を含有す
る複合体の通称であり、成分はCe45〜54wt%、
La23〜32wt%、Nd13〜19wt%、Pr3
〜8wt%、Fe1%未満、その他1wt%未満であ
る。
Mm represents a misch metal, and the main elements of the misch metal are La and Ce. In addition to the above La and Ce, rare earth (lanthanoid series) elements and inevitable impurities (Si, Mg, Fe, Ag, etc.) Is a common name for a composite containing, and the component is Ce45 to 54 wt%,
La23 to 32 wt%, Nd13 to 19 wt%, Pr3
˜8 wt%, Fe less than 1% and other less than 1 wt%.

【0016】本発明の高強度アルミニウム合金におい
て、非晶質と微細結晶質の混相または微細結晶質を得る
には、前記組成を有する合金の溶湯を液体急冷凝固法で
急冷凝固することにより得られる。液体急冷凝固法は溶
融した金属・合金を急速に冷却して過冷させ、その構造
を凍結させて非晶質を得る方法であって、数100mg
程度の薄片を得るガン法、ピストン・アンビル法、ある
いは薄帯を連続的に得ることができる遠心法、単ロール
法、双ロール法、粉体が得られるスプレー法、細線とし
て得られる回転液中紡糸法などがある。
In the high-strength aluminum alloy of the present invention, in order to obtain a mixed phase of amorphous and fine crystalline or fine crystalline, a molten alloy of the above composition is rapidly solidified by a liquid rapid solidification method. .. The liquid rapid solidification method is a method of rapidly cooling and supercooling a molten metal / alloy and freezing its structure to obtain an amorphous material.
Gun method for obtaining thin slices, piston-anvil method, or centrifugal method for continuously obtaining thin strips, single-roll method, twin-roll method, spray method for obtaining powder, rotating liquid for obtaining fine wire There is a spinning method.

【0017】本発明には、単ロール法、双ロール法また
は回転液中紡糸法が特に有効である。これらの方法では
104〜106℃/秒程度の冷却速度が得られる。この単
ロール法、双ロール法により薄帯を製造するには、ノズ
ル孔を通して約300〜10000rpmの範囲の一定
速度で回転している直径30〜300mmの銅あるいは
鋼製のロールに溶湯を噴出する。これにより幅が約1〜
300mm厚さが約5〜500μmの非晶質薄片を製造
することができる。
The single roll method, the twin roll method or the rotating submerged spinning method is particularly effective for the present invention. By these methods, a cooling rate of about 10 4 to 10 6 ° C / sec can be obtained. In order to produce a thin strip by the single roll method or the twin roll method, the molten metal is jetted to a copper or steel roll having a diameter of 30 to 300 mm which is rotating at a constant speed of about 300 to 10000 rpm through a nozzle hole. .. This results in a width of about 1
Amorphous flakes with a thickness of 300 mm of about 5 to 500 μm can be produced.

【0018】回転液中紡糸法により、非晶質細線を得る
には、約50〜500rpmで回転するドラム内に遠心
力により保持された深さ1〜10cmの冷却液層を形成
し、この回転する冷却液層中に、ノズル孔を通じ、アル
ゴン背圧にて、溶湯を噴出することにより得られる。
In order to obtain an amorphous fine wire by the rotating submerged spinning method, a cooling liquid layer having a depth of 1 to 10 cm held by centrifugal force is formed in a drum rotating at about 50 to 500 rpm, and this rotation is performed. It is obtained by jetting the molten metal through the nozzle hole into the cooling liquid layer under a back pressure of argon.

【0019】高圧溶湯噴霧法により非晶質粉末を得るに
は、滴下させた溶湯に40〜100kgf/cm2の高
圧の窒素あるいはアルゴンガスやヘリウムガスなどを吹
き付けて、溶湯を急冷させることにより得られる。な
お、非晶質相あるいは微細結晶相を得るには、液体急冷
凝固法の他に、真空蒸着法、スパッタ法あるいは気相化
学反応法(CVD法)などを用いることができる。
In order to obtain an amorphous powder by the high-pressure molten metal spraying method, a high-pressure nitrogen or argon gas or a helium gas of 40 to 100 kgf / cm 2 is blown onto the dropped molten metal to quench the molten metal. Be done. In addition, in order to obtain the amorphous phase or the fine crystalline phase, a vacuum vapor deposition method, a sputtering method, a vapor phase chemical reaction method (CVD method) or the like can be used in addition to the liquid rapid solidification method.

【0020】液体急冷凝固法等によって得られたアルミ
ニウム合金が、非晶質と微細結晶質の混相であるかまた
は微細結晶質であるかどうかは、通常のX線回折法によ
って知ることができる。すなわち、非晶質の存在は、非
晶質組織特有のハローパターンを示し、非晶質と微細結
晶質の複合体である場合は、ハローパターンと微細結晶
質に起因する回折ピークの合成された回折パターンが示
される。
Whether the aluminum alloy obtained by the liquid rapid solidification method or the like is a mixed phase of amorphous and fine crystalline or fine crystalline can be known by a usual X-ray diffraction method. That is, the presence of amorphous material shows a halo pattern peculiar to an amorphous structure, and in the case of a composite of amorphous and fine crystalline material, a diffraction peak due to the halo pattern and fine crystalline material was synthesized. The diffraction pattern is shown.

【0021】また、非晶質合金は示差走査熱量計(DS
C)において、結晶化温度(TX)以上の温度で発熱と
して検出される。
Amorphous alloys have a differential scanning calorimeter (DS).
In C), it is detected as a heating at the crystallization temperature (T X) or higher.

【0022】[0022]

【作用】本発明の高強度アルミニウム合金は、添加元素
であるFe、TiおよびMnの合計を8原子%以下に、
またMmを4原子%以下にしたので、比重の軽いAl含
有量が多く、合金の比重を3.0以下に抑えることがで
き、比強度の向上を図ることができた。
The high-strength aluminum alloy of the present invention has a total content of Fe, Ti and Mn as additive elements of 8 atomic% or less,
Further, since Mm is 4 atomic% or less, the content of Al having a low specific gravity is large, the specific gravity of the alloy can be suppressed to 3.0 or less, and the specific strength can be improved.

【0023】また、Al非晶質合金を形成するランタノ
イド系元素および遷移金属元素の中からそれぞれMmお
よびTi、Mn、Feを選択し、その含有量を前記関係
式のごとく規制したので、非晶質相あるいは微細結晶が
適度に微細結晶質相中に均一に分散し、しかも生成する
基地の微細結晶質相がMmおよび遷移金属によって固溶
強化され、従来合金では得られない低比重かつ高強度が
得られた。
Further, since Mm, Ti, Mn, and Fe were selected from the lanthanoid series element and the transition metal element forming the Al amorphous alloy, and their contents were regulated according to the above relational expressions, they were amorphous. The fine phase or fine crystals are dispersed in the fine crystalline phase to a suitable degree, and the resulting fine crystalline phase of the matrix is solid-solution strengthened by Mm and the transition metal, resulting in low specific gravity and high strength that cannot be obtained with conventional alloys. was gotten.

【0024】次に、本発明において成分範囲を限定した
理由について、説明する。 1≦(Fe+Ti+Mn)≦8% Fe+Ti+Mnが1%未満では固溶量が少なく固溶強
化されず、Ti、Mnによる強化がない。また、8%を
越えると、Ti、Mnによる強化があるが比重が大きく
なり比強度が低下するので、Fe+Ti+Mnの含有量
を1〜8%に限定した。
Next, the reason why the component range is limited in the present invention will be explained. 1 ≦ (Fe + Ti + Mn) ≦ 8% If Fe + Ti + Mn is less than 1%, the amount of solid solution is small and solid solution strengthening is not performed, and there is no strengthening by Ti and Mn. On the other hand, if it exceeds 8%, there is strengthening by Ti and Mn, but the specific gravity increases and the specific strength decreases, so the content of Fe + Ti + Mn was limited to 1-8%.

【0025】0.2≦(Ti+Mn)/(Fe+Ti+
Mn)≦0.7 TiまたはMnはFeとの交互作用により、固溶強化が
促進され、また結晶相の微細化の促進により、Al合金
の強度を向上する。その作用の詳細については、まだ明
らかでないが、実験によれば、原子%で(Ti+Mn)
/(Fe+Ti+Mn)が0.2未満であると、強度の
向上が充分でなく、0.7を越えても強度向上の効果は
飽和するので、前記比率は0.2〜0.7に限定した。
0.2 ≦ (Ti + Mn) / (Fe + Ti +
Mn) ≦ 0.7 Ti or Mn promotes solid solution strengthening due to the interaction with Fe, and improves the strength of the Al alloy by promoting the refinement of the crystal phase. The details of its action are not clear yet, but according to the experiment, (Ti + Mn) in atomic%
If / (Fe + Ti + Mn) is less than 0.2, the strength is not sufficiently improved, and if it exceeds 0.7, the strength improving effect is saturated, so the ratio is limited to 0.2 to 0.7. ..

【0026】0.5≦ Mm ≦4 Mm含有量が0.5%未満ではMmの固溶強化、アモル
ファス形成能が発揮されず強度が小さい。また4%を越
えると固溶強化、アモルファス形成能は充分であるが比
重が大きくなり比強度が低下する。そのため、Mm含有
量は0.5〜4%に限定した。
0.5 ≦ Mm ≦ 4 If the Mm content is less than 0.5%, the solid solution strengthening of Mm and the ability to form an amorphous phase are not exhibited, and the strength is low. On the other hand, if it exceeds 4%, solid solution strengthening and amorphous forming ability are sufficient, but specific gravity increases and specific strength decreases. Therefore, the Mm content is limited to 0.5 to 4%.

【0027】[0027]

【実施例】本発明の実施例を比較例と共に説明し、本発
明の効果を明らかにする。プラズマ溶解により、表2に
示す化学成分のAl合金を溶解し、ボタンインゴットを
作製した。なお、No.1〜12は本発明の実施例であ
る。No.13〜19は本発明の組成範囲外の比較例で
あが、No.13および14は特開平1−275732
に開示された成分に相当するものであり、No.15は
Mmが0.5%未満、Fe+Ti+Mnが1%未満、N
o.16はMmが4%以上、Fe+Ti+Mnが8%以
上、No.17はMmが4%以上、Fe+Ti+Mnが
1%未満の比較例である。また、No.18は(Ti+
Mn)/(Fe+Ti+Mn)が0.7以上の比較例、
No.19は(Ti+Mn)/(Fe+Ti+Mn)が
0.2以下の比較例である。
EXAMPLES Examples of the present invention will be described together with comparative examples to clarify the effects of the present invention. A button ingot was produced by melting the Al alloy having the chemical composition shown in Table 2 by plasma melting. In addition, No. 1 to 12 are examples of the present invention. No. Nos. 13 to 19 are comparative examples outside the composition range of the present invention, but No. Nos. 13 and 14 are JP-A-1-275732
Corresponding to the components disclosed in No. 15, Mm is less than 0.5%, Fe + Ti + Mn is less than 1%, N
o. No. 16 has Mm of 4% or more, Fe + Ti + Mn of 8% or more, and No. No. 17 is a comparative example in which Mm is 4% or more and Fe + Ti + Mn is less than 1%. In addition, No. 18 is (Ti +
Comparative example in which Mn) / (Fe + Ti + Mn) is 0.7 or more,
No. 19 is a comparative example in which (Ti + Mn) / (Fe + Ti + Mn) is 0.2 or less.

【0028】[0028]

【表2】 [Table 2]

【0029】このボタンインゴットから切り出したイン
ゴットを、図1に示す単ロール式液体急冷凝固装置の石
英管1に入れ、石英管1の先端に設けた小孔5(孔径:
0.3mm)を銅製ロール5の直上に0.5mmの間隙
を設けて設置し、石英管1内のインゴットを高周波溶解
した後、回転数4000rpmで回転している銅製ロー
ル5に噴出圧1kgf/cm2で溶湯3を噴射し、急冷
凝固させて幅約1mm、厚さ約20μmのリボン4を得
た。
The ingot cut out from this button ingot is put into the quartz tube 1 of the single roll type liquid rapid solidification apparatus shown in FIG. 1, and a small hole 5 (hole diameter:
(0.3 mm) is installed directly above the copper roll 5 with a gap of 0.5 mm, the ingot in the quartz tube 1 is melted by high frequency, and then a jet pressure of 1 kgf / is applied to the copper roll 5 rotating at 4000 rpm. The molten metal 3 was sprayed in cm 2 , and rapidly solidified to obtain a ribbon 4 having a width of about 1 mm and a thickness of about 20 μm.

【0030】得られたリボンについてX線回折を実施し
た結果、回折ピークは全てαAlのみで金属間化合物は
なかった。また、示差熱分析を実施した結果、No.1
〜6は発熱反応がなかったことから、結晶質であること
がわかった。また、No.7〜12は全て吸熱反応があ
り、非晶質相の存在が確認され、非晶質と結晶質の混相
であることが確認された。次に、リボンの引張試験をイ
ンストロン引張試験機を用いて行った。得られた結果は
表3にまとめて示した。
As a result of carrying out X-ray diffraction on the obtained ribbon, all diffraction peaks were αAl and there was no intermetallic compound. Moreover, as a result of performing the differential thermal analysis, No. 1
Since ~ 6 had no exothermic reaction, it was found to be crystalline. In addition, No. 7 to 12 all had an endothermic reaction, the presence of an amorphous phase was confirmed, and it was confirmed that it was a mixed phase of amorphous and crystalline. Next, a ribbon tensile test was performed using an Instron tensile tester. The results obtained are summarized in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】表3に示したように、比較例であるNo.
13はFe+Ti+Mnが8%以上であるため、比重が
大きく、またTiまたはMnを含まないため、比強度が
低い。また、比較例であるNo.14はMmを10%含
有し強度は高いが、比強度は小さかった。No.15は
Mmが0.5%未満、Fe+Ti+Mnが1%未満であ
ったため、強度が極端に低く、No.16はMmが4%
以上、Fe+Ti+Mnが8%以上であるため、強度は
高いものの、比重が大きく、比強度が低く、No.17
はMmが4%以上、Fe+Ti+Mnが1%未満である
ため固溶強化が充分でなく、強度において劣っていた。
また、No.18は(Ti+Mn)/(Fe+Ti+M
n)が0.7以上であり、No.19は(Ti+Mn)
/(Fe+Ti+Mn)が0.2以下であったため、い
ずれも引張強さが820〜880MPaと低く、比強度
が低かった。
As shown in Table 3, no.
No. 13 has a large specific gravity because Fe + Ti + Mn is 8% or more, and has a low specific strength because it does not contain Ti or Mn. In addition, No. No. 14 contained 10% of Mm and had high strength, but had low specific strength. No. No. 15 had an Mm of less than 0.5% and Fe + Ti + Mn of less than 1%, so the strength was extremely low. 16 has a Mm of 4%
As described above, since Fe + Ti + Mn is 8% or more, the strength is high, but the specific gravity is large and the specific strength is low. 17
Since Mm was 4% or more and Fe + Ti + Mn was less than 1%, solid solution strengthening was insufficient and strength was poor.
In addition, No. 18 is (Ti + Mn) / (Fe + Ti + M
n) is 0.7 or more, and No. 19 is (Ti + Mn)
Since / (Fe + Ti + Mn) was 0.2 or less, the tensile strength was low at 820 to 880 MPa, and the specific strength was low.

【0033】これに対して本発明の実施例であるNo.
1〜12は比重が2.75〜3.04と小さい上に、引
張強さも1000〜1200MPaと大きく、その結果
比強度が329〜401MPaとなり、本発明の効果を
確認することができた。
On the other hand, No. 1 which is an embodiment of the present invention.
1 to 12 have a small specific gravity of 2.75 to 3.04 and a large tensile strength of 1000 to 1200 MPa, and as a result, a specific strength of 329 to 401 MPa, confirming the effect of the present invention.

【0034】[0034]

【発明の効果】本発明の高強度アルミニウム合金は以上
説明したように、Alに含有させるMmを原子%で0.
5〜4%に規制すると共に、FeとTiまたはMnを原
子%で1≦Fe+Ti+Mn≦8でかつ0.2≦(Ti
+Mn)/(Fe+Ti+Mn)≦0.7を満足させる
ように含有させ、微細結晶質または微細結晶質と非晶質
の混合組織を有することを特徴とするものであって、比
較的比重の大きい添加元素量を規制し、Alの原子パー
セントを多くしたので、合金の比重を軽く抑えることが
できた。また、非晶質相あるいは微細結晶質相を適度に
基地の微細結晶相中に均一に分散させ、しかも基地の微
細結晶質相がMmおよびTi、Mn、Fe等の遷移金属
によって固溶強化され、従来合金では得られない低比重
かつ高強度が得られた。
As described above, the high-strength aluminum alloy of the present invention has a Mm content of Al of 0.1% by atom.
It is regulated to 5 to 4%, and Fe and Ti or Mn in atomic% are 1 ≦ Fe + Ti + Mn ≦ 8 and 0.2 ≦ (Ti
+ Mn) / (Fe + Ti + Mn) ≦ 0.7, and is characterized by having a fine crystalline structure or a mixed structure of fine crystalline and amorphous and having a relatively large specific gravity. Since the amount of elements was regulated and the atomic percentage of Al was increased, the specific gravity of the alloy could be suppressed lightly. Further, the amorphous phase or the fine crystalline phase is appropriately dispersed uniformly in the fine crystalline phase of the matrix, and the fine crystalline phase of the matrix is solid-solution strengthened by Mm and transition metals such as Ti, Mn, and Fe. , Low specific gravity and high strength, which cannot be obtained with conventional alloys.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた単ロール式液体急冷凝固装置の
概略側面図である。
FIG. 1 is a schematic side view of a single roll type liquid rapid solidification apparatus used in Examples.

【符号の説明】[Explanation of symbols]

1 石英管 2 銅製ロール 3 溶湯 4 リボン 5 小孔 1 Quartz tube 2 Copper roll 3 Molten metal 4 Ribbon 5 Small hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Feと、TiおよびMnのうち1種また
は2種と、Mm(ただしMmはミッシュメタル)とを含
み、残部が不可避不純物とAlとからなり、それぞれの
量が、原子%で次の関係式 1≦Fe+Ti+Mn≦8 0.2≦(Ti+Mn)/(Fe+Ti+Mn)≦0.
7 0.5≦ Mm ≦4 を満たし、微細結晶質または微細結晶質と非晶質の混合
組織を有することを特徴とする高強度アルミニウム合金
1. Fe, one or two of Ti and Mn, and Mm (where Mm is a misch metal), the balance consisting of unavoidable impurities and Al, the respective amounts of which are atomic% The following relational expression 1 ≦ Fe + Ti + Mn ≦ 8 0.2 ≦ (Ti + Mn) / (Fe + Ti + Mn) ≦ 0.
7 High-strength aluminum alloy satisfying 0.5 ≦ Mm ≦ 4 and having a microcrystalline structure or a mixed structure of microcrystalline and amorphous
JP13885092A 1992-05-29 1992-05-29 High strength aluminum alloy Pending JPH05331586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13885092A JPH05331586A (en) 1992-05-29 1992-05-29 High strength aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13885092A JPH05331586A (en) 1992-05-29 1992-05-29 High strength aluminum alloy

Publications (1)

Publication Number Publication Date
JPH05331586A true JPH05331586A (en) 1993-12-14

Family

ID=15231633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13885092A Pending JPH05331586A (en) 1992-05-29 1992-05-29 High strength aluminum alloy

Country Status (1)

Country Link
JP (1) JPH05331586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316738A (en) * 1992-02-07 1994-11-15 Toyota Motor Corp High strength aluminum alloy
WO2000003051A1 (en) * 1998-07-08 2000-01-20 Japan Science And Technology Corporation Amorphous alloy having excellent bending strength and impact strength, and method for producing the same
WO2008123258A1 (en) 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316738A (en) * 1992-02-07 1994-11-15 Toyota Motor Corp High strength aluminum alloy
WO2000003051A1 (en) * 1998-07-08 2000-01-20 Japan Science And Technology Corporation Amorphous alloy having excellent bending strength and impact strength, and method for producing the same
WO2008123258A1 (en) 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
US7976775B2 (en) * 2007-03-26 2011-07-12 National Institute For Materials Science Sintered binary aluminum alloy powder sintered material and method for production thereof

Similar Documents

Publication Publication Date Title
JP2799642B2 (en) High strength aluminum alloy
JP2911673B2 (en) High strength aluminum alloy
US4595429A (en) Amorphous or microcrystalline aluminum-base alloys
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
Inoue et al. The effect of aluminium on mechanical properties and thermal stability of (Fe, Co, Ni)-Al-B ternary amorphous alloys
US6302939B1 (en) Rare earth permanent magnet and method for making same
JPH0336243A (en) Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability
JPH0580538B2 (en)
JPH06184712A (en) Production of high strength aluminum alloy
JPH06264200A (en) Ti series amorphous alloy
US20050123686A1 (en) Amorphous metal deposition and new aluminum-based amorphous metals
EP0540055A1 (en) High-strength and high-toughness aluminum-based alloy
JPH0445246A (en) High strength magnesium-base alloy
JPH05331586A (en) High strength aluminum alloy
JPH0748646A (en) High strength magnesium base alloy and production thereof
JP3238516B2 (en) High strength magnesium alloy and method for producing the same
JPH05331584A (en) Aluminum alloy with high elasticity and high strength
JPH06316740A (en) High strength magnesium-base alloy and its production
JP3346861B2 (en) High strength copper alloy
CN111394636B (en) High-strength high-plasticity high-entropy alloy with martensite phase transformation and preparation method thereof
JPH0693393A (en) Aluminum-base alloy with high strength and corrosion resistance
JP2941571B2 (en) High strength corrosion resistant aluminum-based alloy and method for producing the same
JPH07252561A (en) Ti-zr alloy
JP3485961B2 (en) High strength aluminum base alloy
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material