JPH05331525A - Method for cooling immersion tube - Google Patents

Method for cooling immersion tube

Info

Publication number
JPH05331525A
JPH05331525A JP4138259A JP13825992A JPH05331525A JP H05331525 A JPH05331525 A JP H05331525A JP 4138259 A JP4138259 A JP 4138259A JP 13825992 A JP13825992 A JP 13825992A JP H05331525 A JPH05331525 A JP H05331525A
Authority
JP
Japan
Prior art keywords
cooling
water
molten steel
immersion tube
core metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4138259A
Other languages
Japanese (ja)
Other versions
JP3256275B2 (en
Inventor
Kanji Aizawa
完二 相沢
Kiyoshi Takahashi
清志 高橋
Nobumoto Takashiba
信元 高柴
Michihiro Kuwayama
道弘 桑山
Masato Mizufuji
政人 水藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13825992A priority Critical patent/JP3256275B2/en
Publication of JPH05331525A publication Critical patent/JPH05331525A/en
Application granted granted Critical
Publication of JP3256275B2 publication Critical patent/JP3256275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To safely and effectively cool an immersion tube and to extend the service life of the immersion tube by arranging a passage around a core metal in the immersion tube for treating molten steel and flowing gas mixing fine water drips. CONSTITUTION:The immersion tube 1 for circulating the molten steel into a ladle and a treating vessel in order to execute degassing refining, component adjustment, etc., to the molten steel is constituted by arranging a refractory 3 around the core metal 2. In order to prevent the erosion of the core metal 2 caused by heating with the high temp. molten steel, the development of longitudinal crack to the refractory 3 caused by heat expansion of the core metal 2 and the breakage of the immersion tube 1 caused by contacting with the molten steel, a cooling furnace 4 composed of a half-cutting pipe is formed around the core metal 2, and by introducing cooling medium 5 from an inlet 4a and discharging from an outlet 4b, the immersion tube 1 is cooled. As the cooling medium 5, the gas 10 such as air, etc., and the clean water 9 are supplied into the water drip classifier 7 and the clean water is supplied as the fine water drips having <=30mum together with the air 10 into the cooling passage 4 from a fog generating nozzle 8 through a carrying pipe 6. Apparent sp. heat of the colling medium 5 is increased by mixing the water drips and also, the immersion pipe 1 is effectively cooled with large vaporizing latent heat of the water drips.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、溶鋼脱ガス処理、溶
鋼の成分調整または精錬などを行う設備で使用される浸
漬管の冷却方法に関し、とくに安全な冷却を実現しよう
とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a dip pipe used in equipment for degassing molten steel, adjusting the composition of molten steel, refining, and the like, and is intended to realize particularly safe cooling.

【0002】[0002]

【従来の技術】溶鋼の脱ガス処理設備あるいは溶鋼成分
調整設備、精錬設備等においては、基体となる鋼板製筒
状の芯金とこれを取り囲む耐火物との組合せからなる浸
漬管を用い、これを溶鋼中に浸漬することによって脱ガ
スや成分調整などの処理を行うのが通例である。そし
て、溶鋼の処理温度は1600℃前後であるため、処理時間
が20〜40分にも及ぶような溶鋼の脱ガス処理では、処理
を繰り返すうちに芯金の温度が1000℃を越える高温とな
る。このため、浸漬管においては、芯金の高温クリープ
現象に由来した耐火物目地部への地金の差し込み、溶鋼
による芯金の溶損あるいは芯金の膨張に伴う耐火物の縦
割れが発生し、その寿命は極めて短く、高温状態におけ
る過酷な条件の下で頻繁に補修する必要があった。
2. Description of the Related Art In equipment for degassing molten steel, equipment for adjusting the composition of molten steel, refining equipment, etc., a dip tube consisting of a combination of a steel-made tubular core metal and a refractory surrounding it is used. It is customary to carry out treatments such as degassing and component adjustment by immersing in the molten steel. And since the processing temperature of molten steel is around 1600 ° C, in the degassing treatment of molten steel such that the processing time extends to 20 to 40 minutes, the temperature of the core becomes higher than 1000 ° C while repeating the processing. .. Therefore, in the immersion pipe, insertion of the metal into the joint of the refractory due to the high temperature creep phenomenon of the core, melting of the core due to molten steel or vertical cracking of the refractory due to expansion of the core occurs. , Its life is extremely short, and it was necessary to repair it frequently under severe conditions at high temperature.

【0003】かかる問題に対処する試みとして、特開昭
58−96813 号公報には、浸漬管の芯金付近に配置した、
二重管や冷却管に、空気、窒素等のガス体と被霧化液体
である水を送り込み、芯金を冷却する方法が開示されて
いる。
As an attempt to deal with such a problem, Japanese Patent Laid-Open No.
In the 58-96813 publication, it is arranged near the core metal of the immersion pipe,
A method is disclosed in which a gas body such as air or nitrogen and water as an atomized liquid are fed into a double pipe or a cooling pipe to cool a cored bar.

【0004】[0004]

【発明が解決しようとする課題】上記の冷却方法では、
気体に霧化した水を混合することによって、冷却能を向
上することが可能であるが、霧化した水を浸漬管の下部
まで移動するには、その水滴が冷却管等の内壁に衝突お
よび付着しながらも霧状の形態を保っている必要があ
る。しかしながら、水滴が管壁に衝突および付着するこ
とが繰り返されるうちに、水滴はより大きな水滴に成長
し、さらには水滴が集合して水流となるため、所期した
冷却能が得られず、また冷却媒体の通路が溶損した場合
の、水蒸気爆発の危険は、依然として解消されてはいな
かった。
In the above cooling method,
It is possible to improve the cooling capacity by mixing atomized water with gas, but in order to move the atomized water to the lower part of the immersion pipe, the water droplets collide with the inner wall of the cooling pipe and the like. It is necessary to maintain the mist form while adhering. However, as the water droplets repeatedly collide with and adhere to the tube wall, the water droplets grow into larger water droplets, and further, the water droplets aggregate into a water flow, so that the desired cooling capacity cannot be obtained, and The danger of a steam explosion if the cooling medium passages are melted down has not been eliminated.

【0005】そこでこの発明は、冷却効果が高く、また
水蒸気爆発などの危険性のない、浸漬管の冷却方法につ
いて、提案することを目的とする。
Therefore, an object of the present invention is to propose a method for cooling an immersion pipe which has a high cooling effect and is free from the risk of steam explosion.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記した問
題について種々検討したところ、霧化した水を冷却媒体
として用いるに当たっては、その水滴径に好適範囲が存
在することを見出し、この発明を完成するに到った。
Means for Solving the Problems The inventors of the present invention have made various studies on the above-mentioned problems, and found that when atomized water is used as a cooling medium, the water droplet diameter has a suitable range. Came to complete.

【0007】すなわちこの発明は、浸漬管の芯金の周り
に設けた通路に冷却媒体を供給して浸漬管を冷却するに
当たり、該冷却媒体は、気体に、径が30μm以下の水滴
を混合してなることを特徴とする、浸漬管の冷却方法で
ある。また実施に当たり、気体には、空気、窒素および
水蒸気のうちから選ばれる少なくとも1種を用いること
が、有利である。
That is, according to the present invention, when the cooling medium is supplied to the passage provided around the core of the immersion pipe to cool the immersion pipe, the cooling medium is a gas mixed with water droplets having a diameter of 30 μm or less. It is a method for cooling an immersion pipe, which is characterized in that In practice, it is advantageous to use at least one selected from air, nitrogen and water vapor as the gas.

【0008】さて、図1に、この発明で用いる浸漬管の
冷却装置について示す。まず、図示の浸漬管1は、芯金
2の周りに耐火物3を配置した、一般的な構造で、さら
に芯金2の周壁に半割りのパイプを固着してなる冷却通
路4を配置し、この冷却通路4の一方の開口4aから冷却
媒体5を導入し、この冷却媒体5は、通路4に案内され
て芯金2に沿って移動した後、他方の開口4bから大気中
へ放出される。一方冷却媒体5は、搬送管6を介して、
水滴分級機7から供給される。
Now, FIG. 1 shows a cooling device for an immersion pipe used in the present invention. First, the immersion pipe 1 shown has a general structure in which a refractory material 3 is arranged around a core metal 2, and a cooling passage 4 formed by fixing a half pipe to the peripheral wall of the core metal 2 is arranged. The cooling medium 5 is introduced from one opening 4a of the cooling passage 4, the cooling medium 5 is guided by the passage 4 and moves along the cored bar 2, and then is discharged into the atmosphere from the other opening 4b. It On the other hand, the cooling medium 5 passes through the carrier pipe 6,
It is supplied from the water drop classifier 7.

【0009】この水滴分級機7は、その内部に配置した
フォッグ発生ノズル8に浄水9および気体10を導き、該
ノズル8の先端で浄水9を気体10により微細化して発生
させたフォッグを、その水滴径に応じて径:30μmを境
に分級し、大きな水滴は分級機7の下部に沈降させ、水
滴径:30μm以下のフォッグを冷却媒体5として搬送管
6へ送り込むためのものである。なお、水滴分級機7の
下部に沈降した大径の水滴は、ドレン抜き11を開くこと
によって、排水溝12へと導かれる。
The water drop classifier 7 introduces purified water 9 and gas 10 to a fog generating nozzle 8 disposed inside the fog generating nozzle 8 and atomizes the purified water 9 by the gas 10 at the tip of the nozzle 8. According to the diameter of the water droplet, the classification is performed with a diameter of 30 μm as a boundary, large water droplets are settled in the lower part of the classifier 7, and fogs having a water droplet diameter of 30 μm or less are sent to the carrier pipe 6 as the cooling medium 5. The large-diameter water droplets settled in the lower part of the water droplet classifier 7 are guided to the drain groove 12 by opening the drainage 11.

【0010】ここで、水滴分級機7における分級の仕組
みについて詳述する。30μm 径の水滴が大気中で沈降す
る速度は約4cm/s である。従って、分級機内を上昇す
るガスの流速をこれと同程度にすれば、30μm 径を越え
る水滴は同分級機内で沈降し、30μm 径以下の水滴は上
昇ガスと共に分級機外に導き出されるわけである。
Here, the classification mechanism of the water drop classifier 7 will be described in detail. The rate at which water droplets with a diameter of 30 μm settle in the atmosphere is about 4 cm / s. Therefore, if the flow rate of the gas rising in the classifier is set to the same level as this, water droplets with a diameter of more than 30 μm will settle in the classifier, and water droplets with a diameter of 30 μm or less will be led out of the classifier together with the rising gas. ..

【0011】また、フォッグ発生ノズル8には、平均径
が50μm前後の水滴を発生する、一般的なものではな
く、噴出ガスの剪断作用によって微細化された液滴を内
包するジェット同志を衝突させ、相互剪断作用とその時
発生する数万ヘルツの超音波を利用して液滴をさらに微
細化する形式になる、平均径が6μm前後の水滴を発生
するものを用いることが好ましい。
Further, the fog generating nozzle 8 is not a general one for generating water droplets having an average diameter of about 50 μm, but jet jets enclosing the droplets which are miniaturized by the shearing action of the jet gas are made to collide with each other. It is preferable to use a water droplet having an average diameter of about 6 μm, which is in a form of further miniaturizing the droplet by utilizing mutual shearing action and ultrasonic waves of tens of thousands of hertz generated at that time.

【0012】なお、冷却通路4は図1に示した半割りの
パイプを固着してなる構成のほか、通常の円筒状パイプ
を固着したり、あるいは芯金自体を2重壁構造とし、そ
の内壁と外壁との間に、冷却通路を構成してもよい。
The cooling passage 4 has a structure in which the half-divided pipe shown in FIG. 1 is fixed, a normal cylindrical pipe is fixed, or the core metal itself has a double wall structure, and its inner wall is formed. A cooling passage may be formed between the outer wall and the outer wall.

【0013】[0013]

【作用】浸漬管の冷却通路に導入する冷却媒体に、微細
径の水滴と気体との混合流体を用いると、浸漬管の冷却
効率は格段に向上する。しかし、冷却媒体が冷却通路の
直線部やベンド部を経由して進む過程で、冷却媒体中の
水滴の径が大きいと、冷却通路の壁面に付着したり衝突
したりして、その場に止まるため、水滴を浮遊させたま
ま輸送することが難しい。ここに、冷却効率の低下およ
び水蒸気爆発の危険性が存在するわけで、これらの不利
を回避するには、水滴を浮遊させたまま輸送することが
必要となる。
When a mixed fluid of water droplets and gas having a small diameter is used as the cooling medium introduced into the cooling passage of the immersion pipe, the cooling efficiency of the immersion pipe is remarkably improved. However, if the diameter of the water droplets in the cooling medium is large in the process in which the cooling medium travels through the straight portion or bend portion of the cooling passage, it will adhere to or collide with the wall surface of the cooling passage and stay there. Therefore, it is difficult to transport water droplets in a suspended state. Here, there is a risk of cooling efficiency reduction and steam explosion, and in order to avoid these disadvantages, it is necessary to transport water droplets in a suspended state.

【0014】そこで、冷却通路の形状に拘らずに、浮遊
状態での輸送が可能となる水滴径について検討したとこ
ろ、水滴径を30μm以下にすれば浮遊状態を維持できる
ことが、新たに判明した。すなわち、径が30μm以下の
水滴は、気流に乗って移動して気流の方向の変化にも追
随できるため、冷却通路の始端から終端に到るまで浮遊
状態での輸送が可能となる。
Therefore, as a result of studying the diameter of water droplets that can be transported in a floating state regardless of the shape of the cooling passage, it was newly found that the floating state can be maintained if the water droplet diameter is 30 μm or less. That is, since the water droplets having a diameter of 30 μm or less can move along with the airflow and follow the change in the direction of the airflow, the water droplets can be transported in a floating state from the start end to the end of the cooling passage.

【0015】また、径が30μm以下の水滴を含む気体
は、水滴の混入によって気体の見掛けの比熱が増加する
ため、大きな冷却効果を期待でき、これは水滴が壁面に
衝突して直接冷却する、スプレーやミスト冷却とは本質
的に異なるものである。さらに、大きな蒸発潜熱を有す
る水滴がほぼ全て蒸発するため、少量の水滴の混入です
み、この蒸発後の気体の体積膨張は、同温度の気体の2
倍未満となり急激な体積膨張は生じない。従って、漏鋼
などと接触して1000倍に体積膨張して水蒸気爆発を起こ
す、水と比較して、高い安全性を付与することができ
る。
A gas containing water droplets having a diameter of 30 μm or less can be expected to have a great cooling effect because the apparent specific heat of the gas increases due to the mixing of the water droplets. It is essentially different from spraying and mist cooling. Furthermore, since almost all water droplets with a large latent heat of vaporization evaporate, only a small amount of water droplets need to be mixed in. The volume expansion of the gas after evaporation is 2 times that of a gas of the same temperature.
It becomes less than double and no sudden volume expansion occurs. Therefore, as compared with water, which is in contact with leaking steel or the like and expands in volume 1000 times to cause a steam explosion, higher safety can be imparted.

【0016】なお、冷却媒体における、気体と水滴との
比率は、フォッグ発生用ノズルの特性に影響されるとこ
ろが大きいが、歩留りよく微細水滴を発生させるために
は、ジェットのエネルギーと所定量の水を微細化するた
めに必要なエネルギーとのバランスから混水率を設定す
る必要がある。この理由から、混水率を重量比で 1 (kg
-H2O/kg-Air) 以下とすることが好ましい。
The ratio of gas to water droplets in the cooling medium is largely influenced by the characteristics of the fog generating nozzle, but in order to generate fine water droplets with good yield, the jet energy and a predetermined amount of water are required. It is necessary to set the water mixing rate from the balance with the energy required for refining water. For this reason, the water mixing ratio is 1 (kg
-H 2 O / kg-Air) is preferable.

【0017】[0017]

【実施例】溶鋼の環流速度180t/min, 1回当たりの処理
量が285tになるRH式真空脱ガス設備の真空槽に、内
径:1100mmφ, 厚さ16mmおよび高さ:600 mmの芯金に耐
火物を組合わせてなる、図1に示した構造の浸漬管(内
径:750 mmφ)を配置して溶鋼の脱ガス処理を行うに当
たり、図1に示したところに従って、水:0.5 Nl/minお
よび空気:1.2 Nm3/min をフォッグ発生ノズル8に供給
して得られた、30μm径以下の水滴を99重量%含む空気
(フォッグ)を冷却媒体として、浸漬管の冷却を行っ
た。この処理を62時間行ったところで、分級ノズルを変
更し水滴径を平均50μm (20〜100 μm )に変更した空
気(ミスト)を冷却媒体とする処理に切替えて、この処
理を10時間続行し、次いでフォッグ発生ノズルへの水の
供給を中止し、空気のみによる浸漬管の冷却を行い、そ
の8時間後には空気の供給も中止した。
[Example] In a vacuum tank of an RH-type vacuum degassing equipment with a molten steel recirculation velocity of 180 t / min and a processing amount of 285 t per treatment, a core metal with an inner diameter of 1100 mmφ, a thickness of 16 mm and a height of 600 mm was used. When the molten steel is degassed by arranging the immersion pipe (inner diameter: 750 mmφ) of the structure shown in Fig. 1, which is composed of refractory materials, water: 0.5 Nl / min according to the place shown in Fig. 1. And air: 1.2 Nm 3 / min was supplied to the fogg generating nozzle 8 to cool the dip tube using air (fogg) containing 99% by weight of water droplets having a diameter of 30 μm or less as a cooling medium. After performing this process for 62 hours, switch to a process that uses air (mist) that has changed the classification nozzle and changed the average water droplet size to 50 μm (20-100 μm) as the cooling medium, and continue this process for 10 hours. Then, the supply of water to the fog generating nozzle was stopped, the immersion tube was cooled only by air, and 8 hours later, the supply of air was stopped.

【0018】上記の(1) フォッグ冷却工程、(2) ミスト
冷却工程、(3) 空気冷却工程および(4) 冷却中止後にお
ける、芯金の温度を、図1に示すA(芯金下端から80m
m)、B(芯金下端から190 mm)およびC(芯金下端か
ら300 mm)の位置で測定した結果を、図2に示す。同図
から、フォッグを用いる冷却での冷却効果が、その他の
工程に比較して、極めて高いことがわかる。
The temperature of the core metal after the above (1) fog cooling step, (2) mist cooling step, (3) air cooling step, and (4) cooling stop is shown in FIG. 80m
The results of measurements at m), B (190 mm from the lower end of the core) and C (300 mm from the lower end of the core) are shown in FIG. From the figure, it can be seen that the cooling effect in the cooling using the fog is extremely high as compared with the other steps.

【0019】また、上記の (1)〜(3) の冷却工程を適用
した処理を、同じ処理時間行ったときに、芯金の温度を
一定温度に保つのに用いた冷却媒体にかかるコストを、
(3)空気冷却工程の場合を100 としたときの指数にて、
表1に示す。さらに、上記の(1) 〜(3) の冷却工程を適
用した処理における、浸漬管の下部がラッパ状に変形す
るかもしくは縦割れ補修の限界により使用不能となるま
での寿命を調査した結果についても、(3) 空気冷却工程
の場合を 100としたときの指数にて、表1に併記する。
Further, when the treatments to which the cooling steps (1) to (3) are applied are performed for the same treatment time, the cost of the cooling medium used for keeping the temperature of the cored bar at a constant temperature is reduced. ,
(3) Index based on 100 for the air cooling process,
It shows in Table 1. Furthermore, regarding the results of investigating the life until the lower part of the immersion pipe is deformed into a trumpet shape or it becomes unusable due to the limit of vertical crack repair in the treatment applying the cooling process of (1) to (3) above Also, (3) is an index based on 100 in the case of the air cooling step, and is also shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】この発明によれば、冷却効果が高くかつ
水蒸気爆発などの危険性のない、浸漬管の冷却を実現で
き、浸漬管の寿命を飛躍的に、しかも低コストで向上し
得る。
According to the present invention, it is possible to realize the cooling of the dip tube which has a high cooling effect and is free from the risk of steam explosion, and the life of the dip tube can be dramatically improved and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従う浸漬管の冷却方法を説明する模
式図である。
FIG. 1 is a schematic diagram illustrating a method for cooling an immersion pipe according to the present invention.

【図2】浸漬管の冷却効果を示すグラフである。FIG. 2 is a graph showing the cooling effect of the immersion pipe.

【符合の説明】 1 浸漬管 2 芯金 3 耐火物 4 冷却通路 4a 開口 4b 開口 5 冷却媒体 6 搬送管 7 水滴分級機 8 フォッグ発生ノズル 9 浄水 10 気体[Explanation of symbols] 1 immersion pipe 2 core metal 3 refractory 4 cooling passage 4a opening 4b opening 5 cooling medium 6 carrier pipe 7 water drop classifier 8 fogging nozzle 9 clean water 10 gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高柴 信元 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 桑山 道弘 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 水藤 政人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobumoto Takashiba 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no house number) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (72) Michihiro Kuwayama, Kawashima-dori, Kurashiki-shi, Okayama Prefecture 1-chome (without street number) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works (72) Inventor Masato Mizuto 1-chome (without street number) Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture Kawasaki Steel Co., Ltd. within Mizushima Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浸漬管の芯金の周りに設けた通路に冷却
媒体を供給して浸漬管を冷却するに当たり、該冷却媒体
は、気体に、径が30μm以下の水滴を混合してなること
を特徴とする、浸漬管の冷却方法。
1. When the cooling medium is supplied to a passage provided around a cored bar of the immersion pipe to cool the immersion pipe, the cooling medium is formed by mixing gas with water droplets having a diameter of 30 μm or less. A method for cooling an immersion pipe, comprising:
【請求項2】 気体は、空気、窒素および水蒸気のうち
から選ばれる少なくとも1種を用いる、請求項1に記載
の浸漬管の冷却方法。
2. The method for cooling an immersion pipe according to claim 1, wherein at least one selected from air, nitrogen and water vapor is used as the gas.
JP13825992A 1992-05-29 1992-05-29 Immersion tube cooling device Expired - Fee Related JP3256275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13825992A JP3256275B2 (en) 1992-05-29 1992-05-29 Immersion tube cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13825992A JP3256275B2 (en) 1992-05-29 1992-05-29 Immersion tube cooling device

Publications (2)

Publication Number Publication Date
JPH05331525A true JPH05331525A (en) 1993-12-14
JP3256275B2 JP3256275B2 (en) 2002-02-12

Family

ID=15217763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13825992A Expired - Fee Related JP3256275B2 (en) 1992-05-29 1992-05-29 Immersion tube cooling device

Country Status (1)

Country Link
JP (1) JP3256275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118066878A (en) * 2024-04-24 2024-05-24 福建永久硅碳材料有限公司 Energy-saving type circulating cooling device for electrode negative electrode material production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118066878A (en) * 2024-04-24 2024-05-24 福建永久硅碳材料有限公司 Energy-saving type circulating cooling device for electrode negative electrode material production

Also Published As

Publication number Publication date
JP3256275B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
US3704570A (en) Process and apparatus for cleaning and pumping contaminated industrial gases
US6162377A (en) Apparatus and method for the formation of uniform spherical particles
FR2543938A1 (en) PROCESS FOR PRODUCING SULFURIC ACID BY THE CONTACT METHOD
US20090249834A1 (en) Method for removal of gaseous inclusions from viscous liquids
JP3320105B2 (en) Nozzle for cavitation jet
CA2516038A1 (en) Continuous casting method
JP6477919B2 (en) Method for cooling high-temperature metal and method for producing hot-dip galvanized steel strip
JP4628122B2 (en) Nozzle for extreme ultraviolet light source device
PL92484B1 (en)
JP2003504177A (en) Steam control system
US20040154435A1 (en) Method and device for producing spherical metal particles
JPH05331525A (en) Method for cooling immersion tube
US3529955A (en) Method for controlling the temperature of metal lances in molten baths
KR100983947B1 (en) Manufacturing equipment of magmesium powder
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
RU2780215C1 (en) Method for granulation of substances
RU2778933C1 (en) Device for granulation of substances
TW202209933A (en) Apparatus for and method of accelerating droplets in a droplet generator for an euv source
JPH08159673A (en) Method and equipment for carrying fog for cooling to cooling object
JPS6234809B2 (en)
JP4437957B2 (en) High temperature exhaust gas treatment method and apparatus
EP1200788A1 (en) Method for cooling the gas flow in a smelting furnace
JPS5826998A (en) Method of removing substance adhered to inside of tube
WO2024018916A1 (en) Granular iron manufacturing device and granular iron manufacturing method
JP2719923B2 (en) Method for producing liquid or molten fine particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees