JPH05331463A - Blue luminescent fluorescencer and its production - Google Patents

Blue luminescent fluorescencer and its production

Info

Publication number
JPH05331463A
JPH05331463A JP16844592A JP16844592A JPH05331463A JP H05331463 A JPH05331463 A JP H05331463A JP 16844592 A JP16844592 A JP 16844592A JP 16844592 A JP16844592 A JP 16844592A JP H05331463 A JPH05331463 A JP H05331463A
Authority
JP
Japan
Prior art keywords
zinc sulfide
phosphor
silver
particle size
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16844592A
Other languages
Japanese (ja)
Other versions
JP2762846B2 (en
Inventor
Shinji Kubo
真治 久保
Yoshinaga Yamashita
恵祥 山下
Katsunori Uchimura
勝典 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP16844592A priority Critical patent/JP2762846B2/en
Publication of JPH05331463A publication Critical patent/JPH05331463A/en
Application granted granted Critical
Publication of JP2762846B2 publication Critical patent/JP2762846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain a blue luminascent fiuorescencer having excellent particle size distribution while simply controlling particle diameters without changing a burning temperature, burning time, etc., by blending zinc sulfide with silver and a specific amount of antimony and burning in a sulfur-containing reducing atmosphere. CONSTITUTION:First, zinc sulfide is blended with a silver compound (e.g. AgCl) and <=0.02% based on zinc sulfide of an antimony compound (preferably Sb2S3). Then the mixture is burnt in a sulfur containing reducing atmosphere usually at 750-1,100 deg.C for 30 minutes to 10 hours to give the objective fluorescencer. containing <=0.01% antimony based on the parent material of zinc sulfide in the silver-activated zinc sulfide fluorescencer. Zinc sulfide is generally obtained by introducing a hydrogen sulfide gas to an aqueous solution containing Zn ion such as aqueous solution of zinc sulfate to form precipitate of zinc sulfide, separating and drying the precipitate. The amount of Ag is usually 0.01-0.5% based on the parent material of zinc sulfide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は母体に硫化亜鉛、付活剤
に銀を含む陰極線管用の銀付活硫化亜鉛青色発光蛍光体
と、その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver-activated zinc sulfide blue light-emitting phosphor for a cathode ray tube which contains zinc sulfide as a base material and silver as an activator, and a method for producing the same.

【0002】[0002]

【従来の技術】陰極線管用の青色発光蛍光体として、一
般式がZnS:Ag,X(但し、Xはハロゲン元素、Al
のうちの少なくとも一種。)で表される銀付活硫化亜鉛
蛍光体が知られている。一般に、この蛍光体は、湿式反
応により得られた母体となる硫化亜鉛に、付活剤として
例えばAgCl、AgNO3等のAgを含む化合物と、
共付活剤または融剤としてKCl、NaCl、Al
2(SO43等のX元素を含む化合物とを混合し、硫化
水素雰囲気、または水素を含む還元性雰囲気中で、75
0℃〜1100℃で焼成することによって得られる。
As a blue light emitting phosphor for a cathode ray tube, a general formula is ZnS: Ag, X (where X is a halogen element, Al
At least one of. ) A silver-activated zinc sulfide phosphor represented by (1) is known. In general, this phosphor is obtained by adding a compound containing Ag such as AgCl or AgNO 3 as an activator to zinc sulfide which is a matrix obtained by a wet reaction.
KCl, NaCl, Al as co-activator or flux
2 (SO 4 ) 3 and other compounds containing an X element are mixed together, and the mixture is mixed in a hydrogen sulfide atmosphere or a reducing atmosphere containing hydrogen at 75
It is obtained by firing at 0 ° C to 1100 ° C.

【0003】上記製造方法において、目的とする粒径の
銀付活硫化亜鉛蛍光体を得るには、焼成温度、焼成時
間、および融剤の添加量を調整する手段が一般的であ
り、この手段は、銀付活硫化亜鉛蛍光体に限らず、一般
の硫化亜鉛系蛍光体全般について行われている。また、
陰極線管には平均粒径がおよそ5μmから8μmに調整
された蛍光体が最も好ましく用いられている。
In the above manufacturing method, in order to obtain a silver-activated zinc sulfide phosphor having a desired particle diameter, a means for adjusting the firing temperature, the firing time, and the amount of the flux added is generally used. Is performed not only for silver-activated zinc sulfide phosphors but also for general zinc sulfide-based phosphors in general. Also,
For the cathode ray tube, a phosphor having an average particle size adjusted to about 5 μm to 8 μm is most preferably used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、焼成温
度、焼成時間、融剤の添加量等で粒径を調整する手段
は、長期にわたる実験を繰り返さねばならず、またその
実験によって得た技術はノウハウとして保全され、開示
されることが少ないのが実状である。
However, the means for adjusting the particle size by the firing temperature, the firing time, the amount of the flux added, etc. must repeat long-term experiments, and the technology obtained by the experiments is a know-how. It is the actual situation that it is preserved as and is rarely disclosed.

【0005】現在、銀付活硫化亜鉛蛍光体は、陰極線管
用の青色発光蛍光体として知られている蛍光体の中で
も、最も輝度が高く、電子線に対して比較的安定である
ため、多用されているが、HDTV、大画面型の陰極線
管等が開発されるにつれ、例えば平均粒径が9μm以上
の大粒子の蛍光体が望まれるようになってきた。
At present, silver-activated zinc sulfide phosphor has the highest brightness among phosphors known as blue light-emitting phosphors for cathode ray tubes and is relatively stable to electron beams, and thus is widely used. However, with the development of HDTVs, large-screen cathode ray tubes, and the like, there has been a growing demand for large-particle phosphors having an average particle diameter of 9 μm or more.

【0006】一方、従来の方法によって得られた大粒子
の蛍光体は粒度分布が悪く、粗大粒子、小粒子の蛍光体
が多く分布しており、粒度分布の悪い蛍光体は、蛍光膜
形成時に均一な塗布面が形成できず、塗布特性が悪いと
いう問題がある。たとえば、粒度分布を表す指標はσl
ogまたはlogσ(中央粒径d50に対する標準偏差)
で表されているが、その値がおよそ0.5以上である
と、分級して、粗大粒子、小粒子を多量に取り除かねば
ならないため、生産性が著しく低下する。
On the other hand, the phosphors of large particles obtained by the conventional method have a poor particle size distribution, and a large amount of coarse particles and phosphors of small particles are distributed. There is a problem that a uniform coating surface cannot be formed and coating characteristics are poor. For example, the index indicating the particle size distribution is σl
log or log σ (standard deviation for median particle diameter d50)
If the value is about 0.5 or more, it is necessary to classify and remove a large amount of coarse particles and small particles, resulting in a marked decrease in productivity.

【0007】従って、本発明はこのような事情を鑑みて
成されたものであり、その目的とするところは、従来の
ように焼成温度、焼成時間、融剤量を変更せずとも、簡
単に粒径を調整できる銀付活硫化亜鉛蛍光体の製造方法
と、粒度分布に優れた銀付活硫化亜鉛蛍光体を提供する
ものである。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to easily carry out without changing the baking temperature, the baking time, and the amount of the flux as in the conventional case. The present invention provides a method for producing a silver-activated zinc sulfide phosphor capable of adjusting the particle size, and a silver-activated zinc sulfide phosphor excellent in particle size distribution.

【0008】[0008]

【課題を解決するための手段】我々は、従来添加してい
る融剤の他に、銀付活硫化亜鉛蛍光体の輝度を低下させ
ずに結晶を成長させる融剤となり得る物質について、数
々の実験を繰り返した結果、特定の元素を含む低融点物
質を銀付活硫化亜鉛蛍光体に付活させることにより、上
記問題が解決できることを新たに見いだし本発明を成す
に至った。
[Means for Solving the Problems] In addition to the conventionally added fluxes, we have made a number of studies on substances that can be used as fluxes that grow crystals without lowering the brightness of silver-activated zinc sulfide phosphor. As a result of repeated experiments, it was newly found that the above problems can be solved by activating a low melting point substance containing a specific element to a silver activated zinc sulfide phosphor, and the present invention has been accomplished.

【0009】即ち、本発明の青色発光蛍光体の製造方法
は、硫化亜鉛に、少なくとも銀と、硫化亜鉛に対し0.
02%以下のアンチモンとを混合し、硫黄を含む還元性
雰囲気中で焼成することを特徴とするものである。詳し
く述べると、まず硫酸亜鉛水溶液等のZnイオンを含む
水溶液に、硫化水素ガスを吹き込んで得られる硫化亜鉛
沈澱を分離、乾燥した硫化亜鉛生粉に、AgCl、Ag
NO3等のAgを含む化合物と、NH4Cl等の融剤と、
アンチモンとをアンチモンが前記硫化亜鉛生粉に対し
0.02%以下の割合となるように添加、混合した後、
坩堝に入れ、硫黄を含む還元性雰囲気で750℃〜11
00℃の温度域で、30分〜10時間焼成することによ
って得ることができる。なお、請求項2の本発明の製造
方法において、硫化亜鉛に混合する銀、およびアンチモ
ンとは、金属、およびそれらの元素を含む1100℃以
下に融点を有する化合物を意味するものとする。
That is, the method for producing a blue light-emitting phosphor of the present invention uses zinc sulfide, at least silver, and zinc sulfide of 0.1%.
It is characterized by mixing with 02% or less of antimony and firing in a reducing atmosphere containing sulfur. More specifically, first, a zinc sulfide precipitate obtained by blowing hydrogen sulfide gas into an aqueous solution containing Zn ions such as an aqueous zinc sulfate solution is separated, and dried zinc sulfide raw powder is mixed with AgCl, Ag.
A compound containing Ag such as NO 3 and a flux such as NH 4 Cl,
After adding and mixing antimony and antimony in a proportion of 0.02% or less with respect to the zinc sulfide raw powder,
Put in a crucible, and 750 ℃ ~ 11 in a reducing atmosphere containing sulfur
It can be obtained by baking in a temperature range of 00 ° C. for 30 minutes to 10 hours. In the manufacturing method of the present invention of claim 2, silver and antimony mixed with zinc sulfide mean a compound containing a metal and these elements and having a melting point of 1100 ° C. or lower.

【0010】このようにして得られた本発明の青色発光
蛍光体は、少なくとも銀が付活された硫化亜鉛蛍光体中
に、アンチモンが硫化亜鉛母体に対し、0.01%以下
含有されていることを特徴とするものであって、一般式
ZnS:Ag,Sb,Xとして表すことができる。この蛍
光体において、Ag量はZnS母体に対し、通常0.0
01%〜0.1%、共付活剤であるX量は同じく0.0
01%〜0.5%の範囲に調整される。X量を増加する
に従って蛍光体の残光性が向上することが知られている
が、Ag、Xの量を前記範囲外とすることは、発光輝
度、色度点の上で陰極線管用蛍光体として好ましいもの
ではない。
In the blue light emitting phosphor of the present invention thus obtained, at least 0.01% of antimony is contained in the zinc sulfide base material in the zinc sulfide phosphor activated with silver. It can be represented by the general formula ZnS: Ag, Sb, X. In this phosphor, the Ag amount is usually 0.0 with respect to the ZnS matrix.
01% to 0.1%, X amount which is a co-activator is 0.0
It is adjusted in the range of 01% to 0.5%. It is known that the afterglow property of the phosphor is improved as the amount of X is increased. However, setting the amounts of Ag and X out of the above range is effective in terms of emission brightness and chromaticity point. Is not preferable.

【0011】本発明の製造方法において、アンチモンは
Sb23を添加するのが最も好ましく、その他Sb
3、SbCl3等のハロゲン化アンチモン、Sb23
Sb2(SO43等、硫黄を含む雰囲気中で焼成する際
に、分解、反応してSb23となり得る低融点のアンチ
モン化合物を添加することができる。焼成雰囲気を硫黄
を含む還元性雰囲気とすることは重要であり、添加した
Sb化合物が熱により分解して、Sと反応してSb23
となって蛍光体に対する融剤として作用する。
In the production method of the present invention, it is most preferable to add Sb 2 S 3 to antimony, and to add other Sb.
Antimony halides such as F 3 and SbCl 3 , Sb 2 O 3 ,
When firing in an atmosphere containing sulfur, such as Sb 2 (SO 4 ) 3 , an antimony compound having a low melting point that can be decomposed and reacted to form Sb 2 S 3 can be added. It is important to set the firing atmosphere as a reducing atmosphere containing sulfur, and the added Sb compound is decomposed by heat and reacts with S to form Sb 2 S 3
And acts as a flux for the phosphor.

【0012】[0012]

【作用】一般に、従来法により得られる銀付活硫化亜鉛
蛍光体は、粒度分布が悪く、また結晶形も良いとはいい
難いものが多いのが実状であった。例えば、図2はAg
を0.02%と、Alを0.02%含有する平均粒径
7.5μmのZnS:Ag,Al蛍光体の結晶の構造を
示す電子顕微鏡写真(650倍)であるが、この図に示
すように、従来の蛍光体の結晶形状は、いわゆるおにぎ
り型、偏平型のものが多く存在し、またその粒度分布も
ブロードなものが多い。
In general, the silver-activated zinc sulfide phosphor obtained by the conventional method generally has a poor particle size distribution and a good crystal form. For example, FIG. 2 shows Ag
Is an electron micrograph (650 times) showing the crystal structure of ZnS: Ag, Al phosphor containing 0.02% of Al and 0.02% of Al and having an average particle diameter of 7.5 μm. As described above, many conventional phosphors have so-called onigiri-type and flat-type crystal shapes, and their particle size distribution is also broad.

【0013】それに対し、図1に本発明の銀付活硫化亜
鉛蛍光体の結晶の構造を示す電子顕微鏡写真(650
倍)を示す。この蛍光体は同じくAgを0.02%、A
lを0.02%と、さらにSbを0.001%含有する
平均粒径7.8μmのZnS:Ag,Sb,Al蛍光体で
あるが、図2と比較しても分かるように、本発明の蛍光
体は粒子が全体に丸い形状を有しており、従来のように
偏平型、おにぎり型の結晶が少なくなっている。
On the other hand, FIG. 1 is an electron micrograph (650 showing the crystal structure of the silver activated zinc sulfide phosphor of the present invention.
Times). This phosphor also has Ag of 0.02%, A
It is a ZnS: Ag, Sb, Al phosphor having an average particle size of 7.8 μm containing 0.02% of 1 and 0.001% of Sb. In the phosphor of No. 3, the particles have a round shape as a whole, and the number of flat type and rice ball type crystals is small as in the conventional case.

【0014】図3は、平均粒径2μmの硫化亜鉛生粉に
Agを0.02%、Alを0.02%含有するようにA
gClと、Al2(NO33と、融剤を5%混合し、さ
らに、Sb23の混合量を変えて、焼成条件960℃、
5時間でZnS:Ag,Sb,Al蛍光体を試作し、硫化
亜鉛生粉に対するSbの添加量と、蛍光体の粒径との関
係を示す図である。なお、横軸はSb換算値である。
FIG. 3 shows that zinc sulfide raw powder having an average particle size of 2 μm contains 0.02% of Ag and 0.02% of Al.
gCl, Al 2 (NO 3 ) 3 and a flux were mixed at 5%, and the mixing amount of Sb 2 S 3 was changed, and the firing conditions were set to 960 ° C.
It is a figure which shows the relationship between the addition amount of Sb with respect to zinc sulfide raw powder, and the particle size of a fluorescent substance by experimentally manufacturing a ZnS: Ag, Sb, Al fluorescent substance in 5 hours. The horizontal axis is the Sb conversion value.

【0015】この図に示すように、アンチモンを添加し
ない場合は、粒径はおよそ8μmぐらいにまでしか成長
しないが、アンチモン量を増加することにより、銀付活
硫化亜鉛蛍光体の粒径を大きくすることができ、しかも
その関係はほとんど比例に近い。以上よりアンチモンが
結晶成長のための融剤として作用していることが分か
る。焼成温度を750℃とすると、この図の傾きはほぼ
半分になり、Sb添加量が0.02%において粒径がほ
ぼ20μmにまで成長する。20μm以上の粒子は実用
的ではないため、0.02%を添加量の最大限とした。
As shown in the figure, when antimony is not added, the particle size grows up to about 8 μm, but by increasing the amount of antimony, the particle size of the silver activated zinc sulfide phosphor is increased. Can be done, and the relationship is almost proportional. From the above, it can be seen that antimony acts as a flux for crystal growth. When the firing temperature is 750 ° C., the slope of this figure is almost halved, and the grain size grows to almost 20 μm when the Sb addition amount is 0.02%. Since particles of 20 μm or more are not practical, 0.02% was made the maximum addition amount.

【0016】図4は、Agが0.02%、Alが0.0
2%付活された平均粒径9.4μm、d50値10.9μ
mのZnS:Ag,Sb,Al蛍光体において、直接付活
されたSb量と、蛍光体の粒度分布の関係を示す図であ
る。粒度分布は前記したようにlogσで表され、その
式は logσ=1/2(lnD84.13−lnD15.87) (ln=loge、またD84.13、D15.87は蛍光体の粒
度分布の積算分布における84.13%、および15.
87%の粒径値である。)で表すことができる。
In FIG. 4, Ag is 0.02% and Al is 0.0
2% activated average particle size 9.4 μm, d50 value 10.9 μ
FIG. 3 is a diagram showing the relationship between the amount of Sb directly activated and the particle size distribution of the phosphor in the ZnS: Ag, Sb, Al phosphor of m. The particle size distribution is expressed by log σ as described above, and its formula is log σ = 1/2 (lnD84.13-lnD15.87) (ln = loge, and D84.13 and D15.87 are the integration of the particle size distribution of the phosphor. 84.13% in distribution, and 15.
A particle size value of 87%. ) Can be represented.

【0017】この図を見ても分かるように、本発明のZ
nS:Ag,Sb,Al蛍光体はSbを含有していること
により、粒度分布が非常に優れており、Sb量0.01
%においてもその値は0.35であり非常にシャープな
粒度分布を有している。
As can be seen from this figure, Z of the present invention
Since the nS: Ag, Sb, Al phosphor contains Sb, the particle size distribution is very excellent, and the Sb content is 0.01
Even in%, the value is 0.35, and the particle size distribution is very sharp.

【0018】図5は、同じくAgが0.02%、Alが
0.02%付活されたZnS:Ag,Sb,Al蛍光体
に、直接付活されたSb量と、蛍光体の粉体輝度の関係
を示す図である。なお相対輝度100%はSbを含有し
ない蛍光体の輝度値とする。
FIG. 5 shows a ZnS: Ag, Sb, Al phosphor in which Ag is 0.02% and Al is in an amount of 0.02% and the amount of Sb directly activated and the phosphor powder. It is a figure which shows the relationship of brightness. The relative brightness of 100% is the brightness value of the phosphor containing no Sb.

【0019】ZnS:Ag,Al蛍光体にSbを付活さ
せてもその輝度はほとんど低下せず、Sb量が0.00
5%まではほぼ一定である。しかし0.01%を越した
あたりから急に低下する傾向にあるため、輝度95%以
上を保持できるSb付活量として0.01%を限定値と
した。
Even if ZnS: Ag, Al phosphor is activated with Sb, its brightness is hardly reduced, and the Sb content is 0.00
It is almost constant up to 5%. However, there is a tendency for the value to drop abruptly after exceeding 0.01%, so 0.01% was made the limiting value as the Sb activation amount that can maintain a brightness of 95% or more.

【0020】また、我々の実験によると、硫化亜鉛に添
加したアンチモン化合物は、焼成によりその一部が飛散
し、蛍光体中に付活されるのは、およそ1/10〜1/
2である。従って、硫化亜鉛生粉に混合するアンチモン
の量を0.02%以下に調整することにより、蛍光体に
直接付活するアンチモンの量を0.01%以下に調整す
ることができる。
According to our experiments, a part of the antimony compound added to zinc sulfide is scattered by firing, and it is activated in the phosphor by about 1/10 to 1 /.
It is 2. Therefore, by adjusting the amount of antimony mixed with the raw zinc sulfide powder to 0.02% or less, the amount of antimony that directly activates the phosphor can be adjusted to 0.01% or less.

【0021】ところで、本発明に類似した技術として、
特開昭53−141185号公報、特開昭53−141
186号公報において、Sbが0.01%以下の範囲で
含有されたZnS:Cu,Alで表される銅付活硫化亜
鉛緑色発光蛍光体が開示されている。しかしながら、銅
付活硫化亜鉛蛍光体にSbを含有させても、本発明のよ
うに結晶の形状を整え、粒度分布をシャープにするとい
う効果は得られなかった。
By the way, as a technique similar to the present invention,
JP-A-53-141185, JP-A-53-141
Japanese Patent No. 186 discloses a copper activated zinc sulfide green light emitting phosphor represented by ZnS: Cu, Al containing Sb in an amount of 0.01% or less. However, even if Sb was added to the copper-activated zinc sulfide phosphor, the effect of adjusting the crystal shape and sharpening the particle size distribution as in the present invention was not obtained.

【0022】[0022]

【実施例】【Example】

[実施例1] ZnS生粉(平均粒径2.5μm) 1kg AgCl 0.266g(Agとして0.
02%) Al2(SO4)3 0.634g(Alとして0.
01%) Sb23 0.029g(Sbとして0.
002%) KCl 2g NaCl 1g 硫黄 20g 以上の原料を十分に混合した後、石英坩堝に詰め、硫化
水素雰囲気中850℃で5時間焼成することにより、本
発明の蛍光体を得た。この蛍光体は平均粒径9.0μm
にまで成長しており、logσ0.26と非常にシャー
プな粒度分布を有していた。また、分析の結果、直接蛍
光体に付活されたアンチモン量は0.001%であっ
た。
[Example 1] ZnS raw powder (average particle diameter 2.5 μm) 1 kg AgCl 0.266 g (Ag: 0.
02%) Al 2 (SO 4 ) 3 0.634 g (as Al: 0.
01%) Sb 2 S 3 0.029 g (0.
(002%) KCl 2 g NaCl 1 g Sulfur 20 g After thoroughly mixing the above raw materials, the raw material was filled in a quartz crucible and fired at 850 ° C. for 5 hours in a hydrogen sulfide atmosphere to obtain a phosphor of the present invention. This phosphor has an average particle size of 9.0 μm.
And had a very sharp particle size distribution with a log σ of 0.26. As a result of analysis, the amount of antimony directly activated by the phosphor was 0.001%.

【0023】さらに、この蛍光体を用い、常法に従って
蛍光面を形成したところ、平均粒径6.5μm、log
σ0.42の従来のZnS:Ag,Al蛍光体で形成し
た蛍光面に比して、その面輝度はおよそ10%高かっ
た。
Further, using this phosphor, a phosphor screen was formed according to a conventional method. The average particle size was 6.5 μm, log
The surface brightness was approximately 10% higher than that of a phosphor screen formed of a conventional ZnS: Ag, Al phosphor having σ 0.42.

【0024】[実施例2] ZnS生粉(平均粒径2.5μm) 1kg AgCl 0.159g(Agとして0.
012%) Sb23 0.014g(Sbとして0.
001%) NaCl 5g KCl 1g 硫黄 20g 以上を原料を混合し、同じく硫化水素雰囲気中で、96
0℃で5時間焼成することにより本発明の蛍光体を得
た。この蛍光体は平均粒径9.5μmにまで成長してお
り、同じくlogσ0.26とシャープな粒度分布を有
していた。また直接蛍光体に付活されたアンチモン量は
0.0003%であった。
[Example 2] ZnS raw powder (average particle size 2.5 µm) 1 kg AgCl 0.159 g (Ag: 0.
012%) 0.014 g of Sb 2 S 3 (0.
001%) NaCl 5g KCl 1g Sulfur 20g The above materials were mixed and the same was carried out in a hydrogen sulfide atmosphere to obtain 96
The phosphor of the present invention was obtained by firing at 0 ° C. for 5 hours. This phosphor had grown to an average particle size of 9.5 μm and had a sharp particle size distribution with a log σ of 0.26. The amount of antimony activated directly on the phosphor was 0.0003%.

【0025】[実施例3] ZnS生粉(平均粒径2.5μm) 1kg AgCl 0.531g(Agとして0.
04%) Al2(SO4)3 1.902g(Alとして0.
03%) Sb23 0.070g(Sbとして0.
005%) NaCl 2g KCl 1g 硫黄 20g 以上の原料を混合し、同じく硫化水素雰囲気中で、96
0℃で5時間焼成することにより本発明の蛍光体を得
た。この蛍光体は平均粒径12.5μmにまで成長して
おり、同じくlogσ0.26とシャープな粒度分布を
有していた。また直接蛍光体に付活されたアンチモン量
は0.0018%であった。
Example 3 ZnS raw powder (average particle size 2.5 μm) 1 kg AgCl 0.531 g (Ag = 0.
04%) 1.902 g of Al 2 (SO 4 ) 3 (0.
03%) Sb 2 S 3 0.070 g (0.
005%) NaCl 2g KCl 1g Sulfur 20g The above raw materials are mixed and the same is carried out in a hydrogen sulfide atmosphere.
The phosphor of the present invention was obtained by firing at 0 ° C. for 5 hours. This phosphor had grown to an average particle size of 12.5 μm and also had a sharp particle size distribution with a log σ of 0.26. The amount of antimony activated directly on the phosphor was 0.0018%.

【0026】[実施例4] ZnS生粉(平均粒径2.5μm) 1kg AgCl 0.797g(Agとして0.
06%) Al2(SO4)3 3.170g(Alとして0.
05%) Sb23 0.279g(Sbとして0.
02%) KCl 5g NaCl 1g 硫黄 20g 以上の原料を混合し、同じく硫化水素雰囲気中で、75
0℃で5時間焼成することにより本発明の蛍光体を得
た。この蛍光体は平均粒径19.5μmにまで成長して
おり、同じくlogσ0.35とシャープな粒度分布を
有していた。また直接蛍光体に付活されたアンチモン量
は0.098%であった。
Example 4 Raw ZnS powder (average particle size 2.5 μm) 1 kg AgCl 0.797 g (Ag = 0.
06%) 3.170 g of Al 2 (SO 4 ) 3 (0.
05%) 0.279 g of Sb 2 S 3 (0.
02%) KCl 5 g NaCl 1 g Sulfur 20 g The above raw materials were mixed and the same was carried out in a hydrogen sulfide atmosphere at 75%.
The phosphor of the present invention was obtained by baking at 0 ° C. for 5 hours. This phosphor had grown to an average particle size of 19.5 μm and also had a sharp particle size distribution with a log σ of 0.35. The amount of antimony activated directly on the phosphor was 0.098%.

【0027】[比較例1]実施例1においてSb23
添加しない他は同様にして銀付活硫化亜鉛蛍光体を得
た。この蛍光体は平均粒径が7.2μmにまでしか成長
しておらず、logσは0.45とブロードな粒度分布
であった。
Comparative Example 1 A silver-activated zinc sulfide phosphor was obtained in the same manner as in Example 1 except that Sb 2 S 3 was not added. This phosphor grew only to an average particle size of 7.2 μm and had a log σ of 0.45, which was a broad particle size distribution.

【0028】[0028]

【発明の効果】以上述べたように、本発明の製造方法に
よる銀付活硫化亜鉛蛍光体は粒子形状が全体に丸く、ま
た粒度分布が非常にシャープである。そのためブラウン
管塗布時においても、蛍光体粒子の詰まり(密度)の良
い蛍光面を形成することができる。従って、本発明の蛍
光体は従来の蛍光体に比して、粉体輝度はほぼ同一であ
るが、蛍光面を形成した場合に、ドット、ストライプを
形成する蛍光体の詰まりがよいため面輝度が向上する。
As described above, the silver activated zinc sulfide phosphor produced by the method of the present invention has a round particle shape and a very sharp particle size distribution. Therefore, even when the cathode ray tube is applied, it is possible to form a phosphor screen in which the phosphor particles are well clogged (density). Therefore, the phosphor of the present invention has almost the same powder brightness as the conventional phosphor, but when the phosphor screen is formed, the phosphors forming dots and stripes are easily clogged, and thus the surface brightness is improved. Is improved.

【0029】さらに本発明の製造方法によると、アンチ
モンの添加量と、成長する蛍光体の粒径がほぼ比例関係
にあることを明らかにしたため、容易に目的とする粒径
の銀付活硫化亜鉛蛍光体を得ることができる。しかも得
られた蛍光体の粒度分布は前記したように非常にシャー
プで陰極線管用として、好適な蛍光体を提供することが
できる。
Further, according to the production method of the present invention, it was revealed that the amount of antimony added and the grain size of the growing phosphor are in a substantially proportional relationship, and therefore, the silver activated zinc sulfide having the target grain size can be easily obtained. A phosphor can be obtained. Moreover, the particle size distribution of the obtained phosphor is very sharp as described above, and it is possible to provide a suitable phosphor for a cathode ray tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例による銀付活硫化亜鉛蛍光
体の結晶の構造を示す電子顕微鏡写真図。
FIG. 1 is an electron micrograph showing a crystal structure of a silver-activated zinc sulfide phosphor according to an example of the present invention.

【図2】 従来の銀付活硫化亜鉛蛍光体の結晶の構造を
示す電子顕微鏡写真図。
FIG. 2 is an electron micrograph showing a crystal structure of a conventional silver-activated zinc sulfide phosphor.

【図3】 硫化亜鉛に対するSbの添加量と、蛍光体の
粒径との関係を示す図。
FIG. 3 is a diagram showing the relationship between the amount of Sb added to zinc sulfide and the particle size of a phosphor.

【図4】 銀付活硫化亜鉛蛍光体に直接付活されたSb
量と、蛍光体の粒度分布との関係を示す図。
FIG. 4 Sb directly activated on silver activated zinc sulfide phosphor
The figure which shows the relationship between quantity and the particle size distribution of fluorescent substance.

【図5】 銀付活硫化亜鉛蛍光体に直接付活されたSb
量と、蛍光体の粉体輝度との関係を示す図。
FIG. 5: Sb directly activated on silver activated zinc sulfide phosphor
The figure which shows the relationship between quantity and the powder brightness of a fluorescent substance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも銀が付活された硫化亜鉛蛍光
体中に、アンチモンが硫化亜鉛母体に対し、0.01%
以下含有されていることを特徴とする青色発光蛍光体。
1. Antimony is contained in a zinc sulfide phosphor activated with at least silver in an amount of 0.01% based on the zinc sulfide matrix.
A blue-emitting phosphor containing the following:
【請求項2】 硫化亜鉛に、少なくとも銀と、硫化亜鉛
に対し0.02%以下のアンチモンとを混合し、硫黄を
含む還元性雰囲気中で焼成することを特徴とする青色発
光蛍光体の製造方法。
2. A blue light-emitting phosphor prepared by mixing zinc sulfide with at least silver and 0.02% or less of antimony with respect to zinc sulfide and firing the mixture in a reducing atmosphere containing sulfur. Method.
JP16844592A 1992-06-02 1992-06-02 Blue light emitting phosphor and method of manufacturing the same Expired - Fee Related JP2762846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16844592A JP2762846B2 (en) 1992-06-02 1992-06-02 Blue light emitting phosphor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16844592A JP2762846B2 (en) 1992-06-02 1992-06-02 Blue light emitting phosphor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05331463A true JPH05331463A (en) 1993-12-14
JP2762846B2 JP2762846B2 (en) 1998-06-04

Family

ID=15868251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16844592A Expired - Fee Related JP2762846B2 (en) 1992-06-02 1992-06-02 Blue light emitting phosphor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2762846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455213B1 (en) * 2000-01-04 2002-09-24 Lg Electronics, Inc. Method for manufacturing phosphor layer for image display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455213B1 (en) * 2000-01-04 2002-09-24 Lg Electronics, Inc. Method for manufacturing phosphor layer for image display apparatus

Also Published As

Publication number Publication date
JP2762846B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US4874985A (en) Phosphor and electron excited fluorescent display device using the same
US4208299A (en) Method of preparing zinc sulfide phosphor coactivated with copper and gold
JP2762846B2 (en) Blue light emitting phosphor and method of manufacturing the same
JP2535218B2 (en) Self-activated zinc oxide phosphor
US4316816A (en) Method for preparing copper-aluminum-gold-activated zinc-sulfide phosphors
JPS6038431B2 (en) color cathode ray tube
JPH0458518B2 (en)
EP0034059A1 (en) Cathode ray tube, a copper and aluminum activated zinc sulfide phosphor, a process for preparing said phosphor, and a color television incorporating said cathode ray tube
CN101168664A (en) Method for preparing blue phosphor
US6610217B2 (en) ZnS:Ag,A1 phosphor and method of making same
JPS6021676B2 (en) Blue-emitting phosphors and color television cathode ray tubes
KR19980019750A (en) Method for producing Y2O3S-based small particle phosphor
JPH0625350B2 (en) Sulphide phosphor
JPS6295378A (en) Fluorescent substance
KR100300393B1 (en) Color luminous fluorescent material and high brightness cathode ray tube using the same
JPS64999B2 (en)
JPS6121582B2 (en)
JPH044288A (en) Production of zinc sulfide phosphor activated with silver
KR20010077792A (en) Method for preparing green zinc sulfide phosphors having spherical shape by gas phase fluxes
JPH03143985A (en) Preparation of phosphor
KR900001954B1 (en) Process for the preparation of fluorescent substance
JPS6146028B2 (en)
KR850000900B1 (en) Cathode ray tube
JPS6144116B2 (en)
JPH044287A (en) Blue luminous fluorescent substance and cathode ray tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090327

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090327

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090327

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100327

LAPS Cancellation because of no payment of annual fees