JPH05331113A - Production of high-purity m-phenylenediamine - Google Patents

Production of high-purity m-phenylenediamine

Info

Publication number
JPH05331113A
JPH05331113A JP4136804A JP13680492A JPH05331113A JP H05331113 A JPH05331113 A JP H05331113A JP 4136804 A JP4136804 A JP 4136804A JP 13680492 A JP13680492 A JP 13680492A JP H05331113 A JPH05331113 A JP H05331113A
Authority
JP
Japan
Prior art keywords
dnb
phenylenediamine
reaction
pda
dinitrobenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4136804A
Other languages
Japanese (ja)
Other versions
JP3159522B2 (en
Inventor
Hideki Mizuta
秀樹 水田
Takeshi Nishimura
雄 西村
Masaru Wada
勝 和田
Teruyuki Nagata
輝幸 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP13680492A priority Critical patent/JP3159522B2/en
Publication of JPH05331113A publication Critical patent/JPH05331113A/en
Application granted granted Critical
Publication of JP3159522B2 publication Critical patent/JP3159522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain high-purity m-phenylenediamine with hardly any change with time, simultaneously remarkably reduce the amount of an alcohol used and improve the productivity at the same time. CONSTITUTION:The method for producing m-phenylenediamine is characterized by reacting crude dinitrobenzene containing o- and p-dinitrobenzenes with a lower alcohol in the presence of a basic compound and a phase-transfer catalyst to provide a reactional mixture, directly subjecting the resultant reactional mixture to hydrogenating reaction without separating the m-dinitrobenzene therefrom and then separating the obtained m-phenylenediamine by distillation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はm−フェニレンジアミン
(以下m−PDAと略記する)の製造方法に関する。さ
らに詳しくは、粗m−ジニトロベンゼン(以下m−DN
Bと略記する)を用いて、これより高純度のm−PDA
を製造する方法に関する。m−PDAは、工薬・染料の
中間体として、或いは、耐熱性樹脂原料としても重要な
化合物である。
TECHNICAL FIELD The present invention relates to a method for producing m-phenylenediamine (hereinafter abbreviated as m-PDA). More specifically, crude m-dinitrobenzene (hereinafter referred to as m-DN
Abbreviated as B), m-PDA of higher purity than
To a method of manufacturing. m-PDA is an important compound as an intermediate for chemicals and dyes or as a heat resistant resin raw material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】m−P
DAは通常、m−DNBを触媒の存在下接触水素化反応
にすることにより得られている。又、m−DNBは、ベ
ンゼン又はニトロベンゼンを強度の混酸でニトロ化する
ことにより得られるが、その際の異性体であるo−ジニ
トロベンゼン(以下o−DNBと略記する)及びp−ジ
ニトロベンゼン(以下p−DNBと略記する)が副生
し、通常m−DNBとしては約90%程度の純度であ
る。これら異性体の分離方法としては、アルコール又は
ベンゼンに対する溶解度差を利用する方法、苛性アルカ
リ水溶液で加熱処理する方法、亜硫酸ナトリウム及び亜
硫酸水素ナトリウムと加熱処理する方法等が知られてい
るが、いずれも得られるm−DNBの製品純度は99%
程度にとどまり、o−DNB及びp−DNBの完全な分
離は不可能であった。
PRIOR ART AND PROBLEM TO BE SOLVED BY THE INVENTION m-P
DA is usually obtained by subjecting m-DNB to a catalytic hydrogenation reaction in the presence of a catalyst. Further, m-DNB can be obtained by nitrating benzene or nitrobenzene with a strong mixed acid, and o-dinitrobenzene (hereinafter abbreviated as o-DNB) and p-dinitrobenzene (hereinafter abbreviated as isomers) at that time. (Hereinafter abbreviated as p-DNB) as a by-product, and usually has a purity of about 90% as m-DNB. As a method for separating these isomers, a method utilizing a solubility difference in alcohol or benzene, a method of heat treatment with an aqueous caustic alkali solution, a method of heat treatment with sodium sulfite and sodium hydrogen sulfite, etc. are known, but both are known. The product purity of the obtained m-DNB is 99%.
To a limited extent, complete separation of o-DNB and p-DNB was not possible.

【0003】従って、m−DNBを水素化反応して得ら
れるm−PDAには、o−及びp−異性体等の不純物が
含有されているので、精留等により精製の必要がある
が、異性体の沸点差が小さいため、数十段の精留塔を用
いた苛酷な精留や、さらにはこれを再結晶する等の後処
理工程が必要であった。微量でもo−及びp−異性体等
の不純物がm−PDAに含有されていれば、m−PDA
の経時着色の原因となるだけでなく、特に耐熱性樹脂原
料にm−PDAを用いる場合は品質の悪い樹脂しか得る
事ができずその改良が要請されている。
Therefore, since m-PDA obtained by hydrogenation of m-DNB contains impurities such as o- and p-isomers, it is necessary to purify it by rectification. Since the difference in boiling points of isomers is small, a severe rectification using a rectification column with several tens of stages and a post-treatment step such as recrystallization thereof are required. If impurities such as o- and p-isomers are contained in m-PDA even in a small amount, m-PDA
In addition to causing coloration over time, particularly when m-PDA is used as a heat-resistant resin raw material, only poor quality resin can be obtained, and its improvement is required.

【0004】[0004]

【課題を解決するための手段】本発明者等はこれらの課
題を解決するために鋭意検討した結果、粗m−DNBと
低級アルコールとを塩基化合物の存在下、o−及びp−
DNBのみを選択的に反応させて対応するアルコキシニ
トロベンゼンに転化し、これらの反応混合物からm−D
NBを分離する事なく常法によりこの反応混合物を水素
化し、常法の蒸留による分離操作を行えば、通常実施さ
れているm−PDAとo−及びp−異性体を分離するの
に比較して、はるかに容易にしかも高純度の精m−PD
Aを得られる事を見出し、先に出願した(特開昭59−
141542)。
Means for Solving the Problems As a result of intensive studies for solving these problems, the present inventors have found that crude m-DNB and a lower alcohol are used in the presence of a basic compound in o- and p-
Only DNB is selectively reacted to convert it to the corresponding alkoxynitrobenzene, and m-D
If the reaction mixture is hydrogenated by a conventional method without separating NB, and a separation operation by a conventional distillation is performed, it is compared with the usually practiced separation of m-PDA and o- and p-isomers. M-PD of high purity and much easier
We found that we could obtain A and filed an application first (Japanese Patent Laid-Open No. 59-59-
141542).

【0005】本発明者等はさらに検討を重ねた結果、ア
ルコキシ化反応を行う際、相間移動触媒を添加するとア
ルコキシ化反応速度が向上し、アルコールの使用量が少
なくて済むことを見出し本発明を完成した。即ち、本発
明はm−DNB中の異性体を塩基の存在下低級アルコー
ルとアルコキシ化反応を行う際、相間移動触媒を添加す
ることを特徴とし、得られた反応混合物を用いて、これ
の水素化反応により高純度の精m−PDAを得ることが
できる、工業的に経済性の高い高純度m−PDAの製造
方法を提供するものである。
As a result of further investigations by the present inventors, it was found that the addition of a phase transfer catalyst during the alkoxylation reaction improves the rate of the alkoxylation reaction and requires less alcohol. completed. That is, the present invention is characterized by adding a phase transfer catalyst when carrying out an alkoxylation reaction of an isomer in m-DNB with a lower alcohol in the presence of a base. It is intended to provide a method for producing highly pure m-PDA which is industrially highly economical and which can obtain highly purified pure m-PDA by a chemical reaction.

【0006】本発明で使用されるアルコールの種類とし
ては、メタノール、エタノール、イソプロパノール等の
低級脂肪族一価アルコールや、シクロヘキサノール等の
脂環状アルコール、ベンジルアルコール等の芳香族アル
コール、及びエチレングリコール等の低級多価アルコー
ル等も使用できるがアルコキシ化反応速度や、得られた
o−及びp−アルコキシニトロベンゼンとm−DNBと
の分離効率を考慮した場合、低級脂肪族一価アルコール
が好ましく、さらに好ましくは炭素数3以下の脂肪族一
価アルコールがよい。
The type of alcohol used in the present invention includes lower aliphatic monohydric alcohols such as methanol, ethanol and isopropanol, alicyclic alcohols such as cyclohexanol, aromatic alcohols such as benzyl alcohol, and ethylene glycol. Although lower polyhydric alcohols and the like can also be used, lower aliphatic monohydric alcohols are preferable, and more preferable when the alkoxylation reaction rate and the separation efficiency of the obtained o- and p-alkoxynitrobenzenes and m-DNB are taken into consideration. Is preferably an aliphatic monohydric alcohol having 3 or less carbon atoms.

【0007】使用されるアルコールの量は粗m−DNB
中に含まれるo−DNB及びp−DNBの合計量と等モ
ル以上なら特に限定はされない。少ない場合はo−及び
p−DNBが残存する可能性があり、多い場合は反応機
の容積効率が悪化し、又アルコールの回収に手間取り得
策ではなく、好ましくは、o−及びp−DNBの合計量
に対し2〜15倍モル、さらに好ましくは、3〜10倍
モル用いて反応を実施するのが好ましい。
The amount of alcohol used is crude m-DNB.
There is no particular limitation as long as it is at least equimolar to the total amount of o-DNB and p-DNB contained therein. When it is small, there is a possibility that o- and p-DNB may remain, when it is large, the volumetric efficiency of the reactor is deteriorated, and it is not a convenient measure for alcohol recovery, and preferably the sum of o- and p-DNB is used. It is preferable to carry out the reaction in an amount of 2 to 15 times mol, more preferably 3 to 10 times mol, based on the amount.

【0008】本発明での反応温度はその反応系での沸点
以下で適当な反応速度を与える様に選ばれる。好適には
常温付近から使用されるアルコールの沸点の範囲であ
る。加圧下にこれより高い温度で実施することもできる
が経済的ではなく、又m−DNBのタール化やアルコキ
シ化等によりm−DNBの収率の低下、さらには水素化
後のm−PDAの収率低下をきたす。
The reaction temperature in the present invention is selected so as to give an appropriate reaction rate below the boiling point of the reaction system. The boiling point of the alcohol used is preferably around room temperature. It can be carried out under pressure at a temperature higher than this, but it is not economical, and the yield of m-DNB is lowered due to tar-forming or alkoxylation of m-DNB. The yield is reduced.

【0009】本発明で使用される塩基性化合物としては
苛性ソーダ、苛性カリ及び水酸化カルシウム等のアルカ
リ金属、及びアルカリ土類金属の水酸化物もしくはそれ
らの炭酸塩、重炭酸塩、亜硫酸塩及び重亜硫酸塩等があ
げられる。特に好適には安価で塩基度の強い苛性ソーダ
が良い。使用されるこれら塩基性化合物の使用量は粗m
−DNB中に含まれるo−及びp−DNBの合計量と化
学量論的に当量以上あれば良い。使用量が多いとm−D
NBのタール化等を招き収率及び品質の低下をきたす結
果となり、好ましくは1.0〜2.0当量で十分であ
る。尚これらを添加する場合、固体のままでも水溶液で
使用しても問題はないが、分離精製法によっては残存塩
基化合物等の除去の為に水溶液で使用するのが有利であ
る。本発明に用いる相間移動触媒とは一般式(1)及び
(2)(化1)
Examples of the basic compound used in the present invention include hydroxides of alkali metals such as caustic soda, caustic potash and calcium hydroxide, and alkaline earth metals or their carbonates, bicarbonates, sulfites and bisulfites. Examples include salt. It is particularly preferable to use caustic soda which is inexpensive and has a strong basicity. The amount of these basic compounds used is roughly m
-It is sufficient that the total amount of o- and p-DNB contained in DNB is stoichiometrically equivalent or more. M-D when used in large quantities
As a result, NB is tarred and the yield and quality are deteriorated. Therefore, 1.0 to 2.0 equivalents are preferable. When these are added, there is no problem whether they are used as a solid or as an aqueous solution, but depending on the separation and purification method, it is advantageous to use them as an aqueous solution to remove residual base compounds and the like. The phase transfer catalyst used in the present invention is represented by the general formulas (1) and (2)

【0010】[0010]

【化1】 [Chemical 1]

【0011】〔式中、各Rはそれぞれアルキル基、フェ
ニル基、ベンジル基、アルコキシ基を示し、Xはハロゲ
ン原子、水酸基、サルフェート基、アセテート基を示
す。〕で表される四級アルキルアンモニウム塩類、及び
アミンオキシド類であり例えば、テトラメチルアンモニ
ウムクロライド、テトラメチルアンモニウムアセテー
ト、テトラエチルアンモニウムクロライド、テトラブチ
ルアンモニウムブロマイド、テトラエチルアンモニウム
アイオダイド、テトラエチルアンモニウムブロマイド、
テトラブチルアンモニウムヒドロキサイド、テトラブチ
ルアンモニウムアイオダイド、トリオクチルメチルアン
モニウムクロライド、トリドデシルメチルアンモニウム
クロライド、フェニルトリメチルアンモニウムクロライ
ド、ベンジルトリメチルアンモニウムクロライド、ベン
ジルトリメチルアンモニウムブロマイド、ベンジルトリ
エチルアンモニウムクロライド、ベンジルトリブチルア
ンモニウムクロライド、ベンジルトリブチルアンモニウ
ムブロマイド、セチルトリメチルアンモニウムクロライ
ド、ジメチルドデシルアミンオキシド、ジメチルテトラ
デシルアミンオキシド、ジメチルヘキサデシルアミンオ
キシド、ジメチルオクタデシルアミンオキシド等を挙げ
る事ができる。
[In the formula, each R represents an alkyl group, a phenyl group, a benzyl group or an alkoxy group, and X represents a halogen atom, a hydroxyl group, a sulfate group or an acetate group. ] Quaternary alkyl ammonium salts represented by, and amine oxides, for example, tetramethyl ammonium chloride, tetramethyl ammonium acetate, tetraethyl ammonium chloride, tetrabutyl ammonium bromide, tetraethyl ammonium iodide, tetraethyl ammonium bromide,
Tetrabutylammonium hydroxide, tetrabutylammonium iodide, trioctylmethylammonium chloride, tridodecylmethylammonium chloride, phenyltrimethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltriethylammonium chloride, benzyltributylammonium chloride, benzyl Examples thereof include tributylammonium bromide, cetyltrimethylammonium chloride, dimethyldodecylamine oxide, dimethyltetradecylamine oxide, dimethylhexadecylamine oxide, and dimethyloctadecylamine oxide.

【0012】この相間移動触媒は一種、または数種の組
合せで用いても何ら問題はなく、用いられる量は通常粗
m−DNBに対し0.1重量%以上なら特に限定されな
い。少ない場合はo−、及びp−DNBが残存する可能
性があり、多い場合は経済的に不利である。好ましくは
0.1〜10重量%であり、さらに好ましくは0.5〜
5重量%である。
There is no problem even if this phase transfer catalyst is used alone or in combination of several kinds, and the amount used is not particularly limited as long as it is 0.1% by weight or more based on the crude m-DNB. When it is small, o- and p-DNB may remain, and when it is large, it is economically disadvantageous. It is preferably 0.1 to 10% by weight, more preferably 0.5 to
It is 5% by weight.

【0013】次に本発明を実施するには、アルコキシ化
反応で得られたo−及びp−アルコキシニトロベンゼン
を含む粗m−DNBはそのまま公知の方法、例えば、貴
金属触媒の存在下常圧又は加圧下にアルコール、トルエ
ン等の有機溶媒を用い水素添加され、対応するアミン混
合物が混合した反応物に変換後、引き続き蒸留によりア
ルコキシアニリン類とm−PDAを分離すればよい。
To carry out the present invention, the crude m-DNB containing o- and p-alkoxynitrobenzene obtained by the alkoxylation reaction is used as it is in a known method, for example, in the presence of a noble metal catalyst under normal pressure or pressure. After hydrogenation using an organic solvent such as alcohol or toluene under pressure to convert the reaction product into a mixture of the corresponding amine mixture, the alkoxyanilines and m-PDA may be subsequently separated by distillation.

【0014】又、アルコールにエタノールやプロパノー
ル等を使用してエトキシアニリン、プロポキシアニリン
等にして分離する場合は、水素化反応時、若しくは終了
後非水系溶媒でこれらのアルコキシアニリン類を抽出し
て、次いでこれらを蒸留すれば分離効率を高めることが
できる。
When ethanol or propanol or the like is used as alcohol for separation into ethoxyaniline, propoxyaniline or the like, these alkoxyanilines are extracted with a non-aqueous solvent during the hydrogenation reaction or after completion of the reaction. Then, if these are distilled, the separation efficiency can be improved.

【0015】[0015]

【実施例】以下、本発明を実施例および比較例により、
具体的に説明する。尚、以下において用いる原料粗m−
DNBの組成は、m−DNB88.6%、o−DNB
9.0%、p−DNB2.4%であり、分析はガスクロ
マトグラフで行った。
EXAMPLES Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
This will be specifically described. The raw material m-
The composition of DNB is m-DNB 88.6%, o-DNB
It was 9.0% and p-DNB 2.4%, and the analysis was carried out by gas chromatography.

【0016】実施例1 粗m−DNB200.0g、メタノール20.0g,2
0%苛性ソーダ水32.0g,及びトリオクチルメチル
アンモニウムクロライド2.0gを攪拌機付反応機に仕
込み還流下(75〜78℃)で3時間反応させた。この
反応マスを分析したところ、o−,及びp−DNBは不
検出でありメタノールとの反応は完結している事、さら
に、m−DNB176.7g(回収率99.7%)、o
−ニトロアニソール16.0g(収率97.6%)、p
−ニトロアニソール4.1g(収率93.2%)が定量
され、m−DNBは損失なくほぼ定量的に回収できる事
を確認した。
Example 1 200.0 g of crude m-DNB, 20.0 g of methanol, 2
32.0 g of 0% caustic soda water and 2.0 g of trioctylmethylammonium chloride were charged into a reactor equipped with a stirrer and reacted under reflux (75 to 78 ° C.) for 3 hours. When this reaction mass was analyzed, o- and p-DNB were not detected, and the reaction with methanol was completed. Furthermore, 176.7 g of m-DNB (recovery rate 99.7%), o
-Nitroanisole 16.0 g (yield 97.6%), p
-4.1 g (yield 93.2%) of nitroanisole was quantified, and it was confirmed that m-DNB can be recovered almost quantitatively without loss.

【0017】引き続き、残存しているメタノールを留去
後、さらに残存している塩基性化合物を除去するため、
熱水約100gで溶融湯洗後油水分離して、油層をその
まま以下の水素添加工程の原料として使用した。
Subsequently, in order to remove the remaining basic compound after distilling off the remaining methanol,
After rinsing with hot water of about 100 g and separating from oil and water, the oil layer was used as it was as a raw material for the following hydrogenation step.

【0018】上記油層195.1g(この中のm−DN
Bは173.2gであった)、メタノール97.5g及
び5%Pd−炭素0.25gをステンレス製オートクレ
ーブに仕込み、反応温度100℃、水素圧40kg/c
2Gで水素添加した。反応は55分で終了した。放冷
後残存水素を放出し反応液を濾過して触媒と分離した。
195.1 g of the above oil layer (m-DN in this)
B was 173.2 g), methanol 97.5 g and 5% Pd-carbon 0.25 g were charged into a stainless steel autoclave, reaction temperature 100 ° C., hydrogen pressure 40 kg / c.
Hydrogenated at m 2 G. The reaction was completed in 55 minutes. After cooling, residual hydrogen was released and the reaction solution was filtered to separate it from the catalyst.

【0019】上記濾液(この中にm−PDA102.0
gを含んでいた)を脱溶媒後減圧度15mmHg、理論
段数10段の精留塔で還流比10〜20で回分蒸留し、
沸点121℃迄のo−及びp−メトキシアニリン(文献
値の常圧での沸点は、o−メトキシアニリン225℃、
p−メトキシアニリン240〜242℃)留分15.2
gと、沸点162℃のm−PDA(文献値での常圧での
沸点は282〜284℃)留分88.1g(蒸留工程で
の取り出し収率86.4%)を得た。このm−PDA留
分はメタノールを対照とした450nmに於ける光透過
率で98%を示し、純度は99.99%であった。
The above filtrate (in which m-PDA 102.0
g) was desolvated and then batch-distilled at a reflux ratio of 10 to 20 in a rectification column having a reduced pressure of 15 mmHg and a theoretical plate number of 10 plates,
O- and p-methoxyaniline up to a boiling point of 121 ° C (boiling point at atmospheric pressure of literature value is o-methoxyaniline at 225 ° C,
p-methoxyaniline 240-242 ° C) fraction 15.2
g, and m-PDA having a boiling point of 162 ° C. (boiling point at normal pressure in the literature is 282-284 ° C.), and 88.1 g of a fraction (removal yield in the distillation step was 86.4%). This m-PDA fraction showed a light transmittance of 98% at 450 nm with methanol as a control, and a purity of 99.99%.

【0020】比較例1 実施例1に記載の粗m−DNBをメタノールと反応させ
る工程なしに、そのまま実施例1と同一条件で水素添加
した。反応は60分で終了した。放冷後残存水素を放出
し反応液を濾過して触媒を分離した。
Comparative Example 1 Hydrogenation was carried out under the same conditions as in Example 1 as it was without the step of reacting the crude m-DNB described in Example 1 with methanol. The reaction was completed in 60 minutes. After cooling, residual hydrogen was released and the reaction solution was filtered to separate the catalyst.

【0021】上記濾液を実施例1と同一精留塔、同一蒸
留条件でm−PDAとo−及びp−異性体(これらの文
献値の常圧の沸点は、o−異性体256〜258℃、p
−異性体267℃)とを回分蒸留し純度99.98%の
m−PDAを得たが、蒸留時の取り出し収率は41.5
%に過ぎなかった。このm−PDAのメタノールを対照
とした450nmに於ける光透過率は86%を示したに
とどまった。又、蒸留時の取り出し収率を約85%とす
るためには、理論段数50段の精留塔を使用して還流比
20〜30が必要であった。
The above-mentioned filtrate was subjected to the same rectification column and the same distillation conditions as in Example 1 to obtain m-PDA and o- and p-isomers (both of these literature values have normal pressure boiling points of o-isomer 256 to 258 ° C.). , P
-Isomer (267 ° C) was batch-distilled to obtain m-PDA with a purity of 99.98%.
It was only%. The light transmittance of this m-PDA at 450 nm with methanol as a control was 86%. Further, in order to bring the extraction yield during distillation to about 85%, it was necessary to use a rectification column having 50 theoretical plates and a reflux ratio of 20 to 30.

【0022】実施例2 メタノールの替わりにエタノール28.7g、トリオク
チルメチルアンモニウムクロライドの替わりにドデシル
ジメチルアミンオキシド2.0gを使用する以外実施例
1と同様に、溶媒の沸点(約80℃)で6時間エトキシ
化を行った。この反応マスを分析したところ、o−及び
p−DNBは不検出で、m−DNB176.9g(回収
率99.8%)、o−ニトロフェネトール17.4g
(収率97.0%)、p−ニトロフェネトール4.4g
(収率93.2%)が存在していた。引き続き、残存す
るメタノールを留去後、さらに残存する塩基性化合物等
の除去の為、熱水約100gで溶融湯洗後油水分離して
油層をそのまま以下の水素添加工程の原料として使用し
た。
Example 2 As in Example 1, except that 28.7 g of ethanol was used instead of methanol and 2.0 g of dodecyldimethylamine oxide was used instead of trioctylmethylammonium chloride, at the boiling point of the solvent (about 80 ° C.). Ethoxylation was carried out for 6 hours. When the reaction mass was analyzed, o- and p-DNB were not detected, and 176.9 g of m-DNB (recovery rate 99.8%), 17.4 g of o-nitrophenetol
(Yield 97.0%), p-nitrophenetol 4.4 g
(Yield 93.2%) was present. Subsequently, after removing the remaining methanol by distillation, in order to remove the remaining basic compounds and the like, the molten oil was washed with about 100 g of hot water, the oil was separated, and the oil layer was directly used as a raw material for the hydrogenation step described below.

【0023】上記油層194.7g(この中のm−DN
Bは172.7gであった)、トルエン170g及び5
%Pd−炭素0.25gをステンレス製オートクレーブ
に仕込み、反応温度100℃、水素圧40kg/cm2
Gで水素添加した。反応は60分で終了した。放冷後残
存水素を放出し反応液を濾過して触媒と分離した。
194.7 g of the above oil layer (m-DN in this)
B was 172.7 g), toluene 170 g and 5
% Pd-carbon (0.25 g) was charged into a stainless steel autoclave, the reaction temperature was 100 ° C., and the hydrogen pressure was 40 kg / cm 2.
Hydrogenated at G. The reaction was completed in 60 minutes. After cooling, residual hydrogen was released and the reaction solution was filtered to separate it from the catalyst.

【0024】上記濾液(この中にm−PDA103.2
gを含んでいた)を分液し、新たに170gのトルエン
を加えてo−及びp−エトキシアニリンを抽出した。水
層を濃縮後減圧度15mmHg、理論段数10段の精留
塔使用下、還流比5〜10で回分蒸留し、精m−PDA
留分93.9g(蒸留工程での取り出し収率91.0
%)を得た。このm−PDA留分はメタノールを対照と
した450nmに於ける光透過率で96%を示し、純度
は99.99%であった。
The above filtrate (in which m-PDA 103.2
g) was separated and 170 g of toluene was newly added to extract o- and p-ethoxyaniline. After concentrating the aqueous layer, batch distillation was carried out at a reflux ratio of 5 to 10 using a rectification column with a reduced pressure of 15 mmHg and a theoretical plate number of 10 to obtain a purified m-PDA.
Fraction 93.9 g (removal yield in the distillation step 91.0
%) Was obtained. This m-PDA fraction showed a light transmittance of 96% at 450 nm with methanol as a control, and its purity was 99.99%.

【0025】[0025]

【発明の効果】本発明によれば、従来技術では達成され
なかった経時変化の少ない高純度のm−PDAを高収率
で得ることができ、品質及び経済的に有利な工業的製造
が達成される。即ち、本発明の範囲外である従来技術に
は、精m−PDAを得る際、例えば比較例に示す通り、
異性体を含むm−DNBを直接水素化し、苛酷な精留を
行っているが品質及び収率共満足いく技術ではなく、工
業的に不利な製造方法である。
Industrial Applicability According to the present invention, highly pure m-PDA with little change over time, which has not been achieved by the prior art, can be obtained in a high yield, and an industrial production which is advantageous in terms of quality and economy is achieved. To be done. That is, according to the prior art which is outside the scope of the present invention, when obtaining a pure m-PDA, for example, as shown in Comparative Examples,
Although m-DNB containing an isomer is directly hydrogenated and rigorous rectification is carried out, it is an industrially disadvantageous production method because it is not a satisfactory technique in terms of quality and yield.

【0026】これに対し、本発明は実施例に示す通り、
m−DNB中の異性体のみを塩基性化合物及び相間移動
触媒の存在下、低級アルコールでアルコキシ化反応を行
い対応するアルコキシニトロベンゼンに変換し、引き続
き水素化後分留を行えば、従来技術と比べはるかに容易
に高収率で、且つ高純度のm−PDAが得られる事、さ
らに、アルコキシ化の際相間移動触媒を添加することに
より、アルコール使用量の大幅な低減が可能になる事
等、従来技術と比べ工業的に極めて有利な発明であり、
その意義は大きい。
On the other hand, according to the present invention, as shown in Examples,
In the presence of a basic compound and a phase transfer catalyst, only the isomer in m-DNB is subjected to an alkoxylation reaction with a lower alcohol to convert it into a corresponding alkoxynitrobenzene, and then, after hydrogenation, fractional distillation is carried out, and it is compared with the conventional technique. It is much easier to obtain a high-yield and high-purity m-PDA, and by adding a phase transfer catalyst during the alkoxylation, it is possible to significantly reduce the amount of alcohol used. It is an industrially extremely advantageous invention compared to the prior art,
Its significance is great.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 輝幸 福岡県大牟田市浅牟田町30 三井東圧化学 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruyuki Nagata 30 Asmuta-cho, Omuta-shi, Fukuoka Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 o−及びp−ジニトロベンゼンを含有す
る粗m−ジニトロベンゼンを塩基性化合物及び相間移動
触媒の存在下、低級アルコールと反応させて実質的にo
−,及びp−異性体のみを選択的に対応するアルコキシ
ニトロベンゼンに転化し、得られた反応混合物からm−
ジニトロベンゼンを分離することなく、そのまま水素化
反応を行い、ついで、得られたm−フェニレンジアミン
を蒸留により分離することを特徴とするm−フェニレン
ジアミンの製造方法。
1. A crude m-dinitrobenzene containing o- and p-dinitrobenzene is reacted with a lower alcohol in the presence of a basic compound and a phase transfer catalyst to obtain substantially o.
Only the-, and p-isomers were selectively converted to the corresponding alkoxy nitrobenzenes and m- from the resulting reaction mixture.
A method for producing m-phenylenediamine, which comprises performing a hydrogenation reaction as it is without separating dinitrobenzene, and then separating the obtained m-phenylenediamine by distillation.
【請求項2】 低級アルコールが、炭素数3以下の脂肪
族一価アルコールである請求項1記載の方法。
2. The method according to claim 1, wherein the lower alcohol is an aliphatic monohydric alcohol having 3 or less carbon atoms.
JP13680492A 1992-05-28 1992-05-28 Method for producing high-purity m-phenylenediamine Expired - Fee Related JP3159522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13680492A JP3159522B2 (en) 1992-05-28 1992-05-28 Method for producing high-purity m-phenylenediamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13680492A JP3159522B2 (en) 1992-05-28 1992-05-28 Method for producing high-purity m-phenylenediamine

Publications (2)

Publication Number Publication Date
JPH05331113A true JPH05331113A (en) 1993-12-14
JP3159522B2 JP3159522B2 (en) 2001-04-23

Family

ID=15183906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13680492A Expired - Fee Related JP3159522B2 (en) 1992-05-28 1992-05-28 Method for producing high-purity m-phenylenediamine

Country Status (1)

Country Link
JP (1) JP3159522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200478673Y1 (en) 2015-08-24 2015-11-03 최제용 Knife supporting apparatus

Also Published As

Publication number Publication date
JP3159522B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
US4871875A (en) Process for producing diphenylamines or N,N'-diphenylphenylenediamines
US4387246A (en) Method of preparing orthotrifluoromethyl aniline
JP2003292476A (en) Method for producing diaminoresorcinol compound
US4067905A (en) Preparation of 2-amino-n-butanol
EP0041837B1 (en) Process for the purification of p-aminophenol
JP3159522B2 (en) Method for producing high-purity m-phenylenediamine
JP2984047B2 (en) Method for producing 1-amino-4-alkoxybenzenes
JP2526611B2 (en) Purification method of dialkylaminoethanol
JPS6210046A (en) Nitration of phenol compound
JPH05331109A (en) Method for purifying m-dinitrobenzene
JP3118318B2 (en) Method for producing high-purity m-phenylenediamine
EP0641765B1 (en) Process for producing n,n-disubstituted aminophenol
JPH034055B2 (en)
JPS6259247A (en) Production of aminophenyl ether compound
JPH07258239A (en) Purification of indene oxide
JP3234655B2 (en) Process for producing diphenylamine or its nuclear substituted product
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JPH0873417A (en) Production of 4,6-diaminoresorcinol
JPH069508A (en) Purification of m-dinitrobezene
JP3213502B2 (en) Method for producing triphenylamines
JP3080776B2 (en) Method for producing 4-alkoxyanilines
KR0145349B1 (en) Process for the preparation of 4-methoxy-2,2',6'-trimethyldiphenylamine
JPS61257950A (en) Method for purifying meta-dinitro aromatic hydrocarbon
JPH0237909B2 (en)
JPH0435452B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees