JPH0533042A - Method for controlling heating of metallic material - Google Patents

Method for controlling heating of metallic material

Info

Publication number
JPH0533042A
JPH0533042A JP3186657A JP18665791A JPH0533042A JP H0533042 A JPH0533042 A JP H0533042A JP 3186657 A JP3186657 A JP 3186657A JP 18665791 A JP18665791 A JP 18665791A JP H0533042 A JPH0533042 A JP H0533042A
Authority
JP
Japan
Prior art keywords
heating
time
temperature
constant
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3186657A
Other languages
Japanese (ja)
Other versions
JP2592553B2 (en
Inventor
Shinji Ueno
伸二 上野
Yasuyuki Nishiyama
泰行 西山
Yuichi Hiraishi
勇一 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3186657A priority Critical patent/JP2592553B2/en
Publication of JPH0533042A publication Critical patent/JPH0533042A/en
Application granted granted Critical
Publication of JP2592553B2 publication Critical patent/JP2592553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To appropriately control the heating of a metallic material even when the molten scale is generated by obtaining a corrected time to adjust the heating time when the surface temp. of the material is lowered from the temp. at the preceding sampling by a specified temp. CONSTITUTION:A desired temp. theta0 and a heating time t0 are set, and a material is induction-heated or electrically heated while comparing the detected surface temp. theta or the material with the theta0. In this case, the surface temp. is detected at the sampling pitch of DELTAt while keeping the voltage or current constant. When thetan-thetan-1<0 where thetan is the detected temp. at the time t and its absolute value is larger than the limiting temp. difference set value alpha, the appropriate heating time DELTAtn between thetan and theta0 is obtained at the actual heating velocity V up to that time. When the remaining time DELTAt0=t0-tn after the time t0 is DELTAt0<DELTAtn, DELTAt0 is heated by the constat heating power, voltage or current. Meanwhile, when DELTAt0>DELTAtn, the DELTAtn is heated by the constant heating voltage or current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、方向性電磁鋼スラブ
などの金属材料の誘導または通電加熱において、加熱温
度を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a heating temperature in induction or electric heating of a metallic material such as a grain-oriented electrical steel slab.

【0002】[0002]

【従来の技術】金属材料を1000℃以上の高温に加熱
し、熱処理することが行われている。加熱材料によって
は、加熱温度誤差を20〜30℃以内に押さえなければ
ならない。このような高温熱処理には誘導加熱炉または
通電加熱炉が用いられている。たとえば、方向性電磁鋼
スラブは、1250℃程度までガス燃焼型加熱炉で予備
加熱し、その後の不活性雰囲気に制御された誘導加熱炉
で1300〜1400℃の高温加熱を短時間行う。
2. Description of the Related Art A metal material is heated to a high temperature of 1000 ° C. or higher to be heat treated. Depending on the heating material, the heating temperature error must be kept within 20 to 30 ° C. An induction heating furnace or an electric heating furnace is used for such high temperature heat treatment. For example, the grain-oriented electrical steel slab is preheated to about 1250 ° C. in a gas combustion type heating furnace, and then heated at a high temperature of 1300 to 1400 ° C. for a short time in an induction heating furnace controlled to an inert atmosphere.

【0003】従来では、予め昇温速度および加熱時間を
設定し、一定電圧(または一定電流)で加熱材料を加熱
する。加熱段階では、加熱材料の表面温度を検出して目
標温度と比較する。そして、表面温度検出値が目標温度
を超えるか、または加熱時間が設定加熱時間を超えた場
合に、目標温度に達したと判断し、昇温を停止して均熱
段階に移行する。
Conventionally, the heating rate and the heating time are set in advance, and the heating material is heated at a constant voltage (or constant current). In the heating stage, the surface temperature of the heating material is detected and compared with the target temperature. Then, when the surface temperature detection value exceeds the target temperature or the heating time exceeds the set heating time, it is determined that the target temperature has been reached, the temperature increase is stopped, and the process proceeds to the soaking stage.

【0004】[0004]

【発明が解決しようとする課題】上記高温熱処理では加
熱材料の表面温度の検出に放射温度計が用いられてい
る。また、加熱材料によっては、高温熱処理中に溶融ス
ケールが発生する。溶融スケールの表面温度は加熱材料
の表面温度よりもたとえば30〜50℃程度低い。した
がって、加熱材料の表面温度は実際の温度よりも低く検
出されるので、加熱材料は過熱される。このような溶融
スケール発生に起因する過熱を防止するためには、加熱
時間を適正な値に設定し、過熱や加熱不足にならないよ
うに配慮する必要がある。しかし、加熱材料の初期温度
は材料ごとに異なり、また加熱材料寸法や炉況(炉の蓄
熱状態)が一定でないなどで、適正な加熱時間を予め設
定することは困難である。この結果、過熱や加熱不足に
なるのは避け難いという問題があった。
In the above high temperature heat treatment, a radiation thermometer is used to detect the surface temperature of the heating material. Further, depending on the heating material, molten scale is generated during the high temperature heat treatment. The surface temperature of the molten scale is lower than the surface temperature of the heating material by, for example, about 30 to 50 ° C. Therefore, the surface temperature of the heating material is detected lower than the actual temperature, so that the heating material is overheated. In order to prevent overheating due to the generation of such molten scale, it is necessary to set the heating time to an appropriate value and take care not to cause overheating or insufficient heating. However, it is difficult to preset an appropriate heating time because the initial temperature of the heating material differs depending on the material, and the heating material size and the furnace condition (heat storage state of the furnace) are not constant. As a result, there is a problem that it is difficult to avoid overheating or insufficient heating.

【0005】この発明は、溶融スケールが発生しても、
過熱または加熱不足を生ずることがない金属材料の加熱
制御方法を提供しようとするものである。
In the present invention, even if molten scale is generated,
An object of the present invention is to provide a heating control method for a metal material that does not cause overheating or insufficient heating.

【0006】[0006]

【課題を解決するための手段】この発明の加熱制御方法
は、予め目標温度θo および加熱時間to を設定し、加
熱材料の表面温度θを検出して目標温度θo と比較しな
がら加熱材料を誘導または通電加熱する方法において、
加熱電力、加熱電圧または加熱電流を一定に保持した状
態で加熱材料の表面温度を一定のサンプリングピッチΔ
tで検出し、サンプリング時点ti (i=1,2…)で
の温度検出値θi とサンプリング時点ti-1 での温度検
出値θi-1 との温度差θi −θi-1 を逐次求める。
According to the heating control method of the present invention, the target temperature θ o and the heating time t o are set in advance, the surface temperature θ of the heating material is detected, and the heating is performed while comparing with the target temperature θ o. In the method of induction or electric heating of the material,
Sampling pitch Δ with a constant surface temperature of the heating material with the heating power, heating voltage or heating current kept constant.
detected by t, the sampling instants t i the temperature difference between the temperature detection value theta i-1 in (i = 1,2 ...) and the detected temperature theta i at sampling instant t i-1 θ ii- Sequentially obtain 1 .

【0007】サンプリング時点tn で温度差θn −θ
n-1 が負であってその絶対値が予め定めた限界温度差α
より大きくなった場合に、そのときのサンプリング時点
n で温度検出値θn-k ,θn-k-1 …θn-1 に基づいて
平均昇温速度を求めて実績昇温速度vとするとともに、
前記サンプリング時点tn における検出温度θn から目
標温度θo に到達するまでの修正加熱時間Δtn を前記
実績昇温速度vに基づいて求める。
Temperature difference θ n −θ at sampling time t n
n-1 is negative and its absolute value is a predetermined limit temperature difference α
If it becomes larger, with the actual Atsushi Nobori rate v seek average heating rate on the basis of temperature detection value theta nk, the θ nk-1 ... θ n- 1 at the sampling time t n at that time,
A corrected heating time Δt n from the detection temperature θ n at the sampling time t n until the target temperature θ o is reached is calculated based on the actual temperature increase rate v.

【0008】そして、設定加熱時間to から前記サンプ
リング時点tn までの加熱時間を差し引いた残り時間Δ
o が前記修正加熱時間Δtn よりも短い場合には、サ
ンプリング時点tn からその残り時間Δto を前記一定
加熱電力、一定加熱電圧または一定加熱電流で加熱す
る。
The remaining time Δ obtained by subtracting the heating time up to the sampling time t n from the set heating time t o
When t o is shorter than the modified heating time Δt n , the remaining time Δt o is heated with the constant heating power, constant heating voltage or constant heating current from the sampling time t n .

【0009】また、前記残り時間Δto が前記修正加熱
時間Δtn よりも長い場合には、サンプリング時点tn
から前記修正加熱時間Δtn を前記一定加熱電力、一定
加熱電圧または一定加熱電流で加熱する。
Further, when the remaining time Δt o is longer than the corrected heating time Δt n , the sampling time t n
Therefore, the correction heating time Δt n is heated with the constant heating power, the constant heating voltage or the constant heating current.

【0010】加熱材料の材質および寸法,加熱温度,加
熱精度ならびに加熱炉の応答性などによって異なるが、
サンプリングピッチは10〜30秒程度であり、限界温
度差αは3〜5℃程度である。限界温度差αは、溶融ス
ケール発生温度のばらつきを考慮したものである。ま
た、実績昇温速度vを求めるサンプリング数kは、2〜
5程度である。
It depends on the material and size of the heating material, the heating temperature, the heating accuracy, the response of the heating furnace, etc.
The sampling pitch is about 10 to 30 seconds, and the limit temperature difference α is about 3 to 5 ° C. The limit temperature difference α takes into consideration the variation in the molten scale generation temperature. The sampling number k for obtaining the actual temperature increase rate v is 2 to
It is about 5.

【0011】上記加熱制御は、通常のプロセスコンピュ
ータや制御用シーケンサにより行われる。サンプリング
ピッチ,限界温度差α,実績昇温速度vを求めるサンプ
リング数kなどは、実機について実験で求め、プロセス
コンピュータに記憶させておく。
The above heating control is performed by an ordinary process computer or control sequencer. The sampling pitch, the limit temperature difference α, the number of samplings k for obtaining the actual temperature increase rate v, and the like are obtained by experiments on an actual machine and stored in the process computer.

【0012】なお、温度差θn −θn-1 が負とならない
場合、または温度差θn −θn-1 が負であってもその絶
対値が限界温度差αより大きくならない場合には、その
まま目標温度θo まで加熱する。この場合には、溶融ス
ケールは発生しないので、溶融スケールによる加熱誤差
は生じない。
When the temperature difference θ nn-1 does not become negative, or when the temperature difference θ nn-1 is negative but its absolute value does not become larger than the limit temperature difference α, , As it is, is heated to the target temperature θ o . In this case, since the molten scale does not occur, the heating error due to the molten scale does not occur.

【0013】[0013]

【作用】前述のように、溶融スケールの表面温度は加熱
材料の表面温度よりも低い。したがって、温度差θi
θi-1 が負であってその絶対値が予め定めた限界温度差
αより大きくなると、溶融スケールが発生したと判断さ
れる。一般に、溶融スケールが発生する温度は加熱目標
温度θo に近い。このために、前記実績昇温速度vによ
り求めた修正加熱時間Δtn のあいだ加熱材料を加熱す
ることにより、大きな加熱誤差を生じることなくほぼ目
標温度θo に加熱することができる。
As described above, the surface temperature of the molten scale is lower than the surface temperature of the heating material. Therefore, the temperature difference θ i
When θ i-1 is negative and the absolute value thereof is larger than the predetermined limit temperature difference α, it is determined that melt scale has occurred. Generally, the temperature at which the molten scale is generated is close to the heating target temperature θ o . Therefore, by heating the heating material for the corrected heating time Δt n obtained by the actual heating rate v, it is possible to heat the heating material substantially to the target temperature θ o without causing a large heating error.

【0014】[0014]

【実施例】以下、誘導加熱炉による方向性電磁鋼スラブ
の高温加熱を実施例として説明する。
[Example] Hereinafter, high temperature heating of a grain-oriented electrical steel slab by an induction heating furnace will be described as an example.

【0015】高温加熱するスラブはガス燃焼型加熱炉に
より1150℃まで比較的低い昇温速度で予備加熱す
る。スラブの寸法は、長さ9000〜11000mm、幅
900〜1100mm、厚み190〜240mmである。つ
いで、上記スラブを誘導加熱炉に装入し、1350℃ま
で高温加熱する。高温加熱は、図2に示すように加熱段
階と均熱段階とからなっている。
The slab to be heated at a high temperature is preheated to a temperature of 1150 ° C. at a relatively low heating rate by a gas combustion type heating furnace. The dimensions of the slab are 9000 to 11000 mm in length, 900 to 1100 mm in width, and 190 to 240 mm in thickness. Then, the slab is charged into an induction heating furnace and heated to a high temperature of 1350 ° C. The high temperature heating includes a heating step and a soaking step as shown in FIG.

【0016】スラブSは、図3に示すように垂直姿勢
(スラブ側面が水平となる姿勢)で誘導加熱炉1内に装
入する。加熱コイル2に供給する電力は、電源3よりイ
ンバータ4を介して供給する。加熱制御装置は、プロセ
スコンピュータ5,制御用シーケンサ6およびインバー
タ4により構成されている。プロセスコンピュータ5に
は、加熱目標温度θo ,インバータ出力電圧,加熱時間
o などが予め記憶されており、これらデータは制御用
シーケンサ6に出力される。また、制御用シーケンサ6
には、図1にフローチャートで示す加熱制御のプログラ
ムが設定されている。スラブ表面の3箇所について、放
射温度計7により表面温度を検出する。加熱制御は次の
ようにして行われる。
As shown in FIG. 3, the slab S is loaded into the induction heating furnace 1 in a vertical posture (a posture in which the side surface of the slab is horizontal). The power supplied to the heating coil 2 is supplied from the power supply 3 via the inverter 4. The heating control device comprises a process computer 5, a control sequencer 6 and an inverter 4. The heating target temperature θ o , the inverter output voltage, the heating time t o, etc. are stored in advance in the process computer 5, and these data are output to the control sequencer 6. In addition, the control sequencer 6
A heating control program shown in the flow chart of FIG. 1 is set in. The radiation thermometer 7 detects the surface temperature at three points on the surface of the slab. The heating control is performed as follows.

【0017】スラブSの初期温度、寸法、目標温度、加
熱時間などから出力電圧を求め、インバータ4を調整す
る。また、スラブSの表面温度を放射温度計7により3
0秒のサンプリングピッチΔtで検出する。検出した表
面温度は、制御用シーケンサ6に入力される。このと
き、3箇所の検出値のうち最大値を採用する。制御シー
ケンサ6のデータテーブルはk+1個(この実施例では
5個)のデータを保存し、データテーブルはサンプリン
グごとに更新される。サンプリング時点ti (i=1,
2…)での温度検出値θi とサンプリング時点ti-1
の温度検出値θi- 1 との温度差θi −θi-1 を逐次求め
る。
The output voltage is calculated from the initial temperature, size, target temperature, heating time, etc. of the slab S, and the inverter 4 is adjusted. Moreover, the surface temperature of the slab S is measured by the radiation thermometer 7 to 3
The sampling pitch Δt of 0 seconds is used for detection. The detected surface temperature is input to the control sequencer 6. At this time, the maximum value of the detected values at the three locations is adopted. The data table of the control sequencer 6 stores k + 1 pieces (five pieces in this embodiment) of data, and the data table is updated every sampling. Sampling time t i (i = 1,
2 ...) sequentially obtaining the temperature difference θ i i-1 of the detected temperature theta i-1 at the temperature detection value theta i sampling time point t i-1 at.

【0018】サンプリング時点tn で温度差θn −θ
n-1 が負であってその絶対値が予め定めた限界温度差α
より大きくなった場合に、そのときのサンプリング時点
n で温度検出値θn-k ,θn-k-1 …θn-1 に基づいて
平均昇温速度を求めて実績昇温速度vとする.すなわ
ち、実績昇温速度vは、Σθi /kΔtとなる。つい
で、前記サンプリング時点tn における検出温度θn
ら目標温度θo に到達するまでの修正加熱時間Δtn
前記実績昇温速度vに基づいて求める。図2において、
破線は溶融スケールが発生したときの昇温曲線を示して
いる。この昇温曲線において、温度がいったん下がって
上昇しているのは、溶融スケールがスラブSの表面を流
れ落ち、放射温度計7の視野から外れてスラブ表面が現
れたことによる。
Temperature difference θ n −θ at sampling time t n
n-1 is negative and its absolute value is a predetermined limit temperature difference α
When it becomes larger, the average heating rate is obtained based on the detected temperature values θ nk , θ nk-1 ... θ n-1 at the sampling time t n at that time, and is set as the actual heating rate v. That is, the actual temperature increase rate v is Σθ i / kΔt. Next, the corrected heating time Δt n from the detection temperature θ n at the sampling time t n until the target temperature θ o is reached is calculated based on the actual temperature increase rate v. In FIG.
The broken line shows the temperature rising curve when molten scale occurs. In the temperature rising curve, the temperature once drops and rises because the molten scale flows down the surface of the slab S, and the slab surface appears outside the field of view of the radiation thermometer 7.

【0019】そして、設定加熱時間to から前記サンプ
リング時点tn までの加熱時間を差し引いた残り時間Δ
o が前記修正加熱時間Δtn よりも短い場合には、サ
ンプリング時点tn からその残り時間Δto を前記出力
電圧で加熱する。
The remaining time Δ obtained by subtracting the heating time up to the sampling time t n from the set heating time t o
If t o is shorter than the modified heating time Δt n , the remaining time Δt o is heated with the output voltage from the sampling time t n .

【0020】また、残り時間Δto が前記修正加熱時間
Δtn よりも長い場合には、サンプリング時点tn から
修正加熱時間Δtn を前記出力電圧で加熱する。
Further, when the remaining time Delta] t o is greater than the corrected heating time Delta] t n heats the modified heating time Delta] t n from a sampling point t n at the output voltage.

【0021】温度差θn −θn-1 が負とならない場合、
または温度差θn −θn-1 が負であってもその絶対値が
限界温度差αより大きくならない場合には、設定昇温速
度vo でそのまま目標温度θo まで加熱する。
When the temperature difference θ n −θ n-1 does not become negative,
Alternatively, if the absolute value of the temperature difference θ n −θ n-1 is not larger than the limit temperature difference α even if the temperature difference θ n −θ n−1 is negative, the temperature is heated up to the target temperature θ o at the set temperature increase rate v o .

【0022】この実施例では、目標温度1350℃から
の過熱度は3〜5℃であった。これに対して、従来法に
よる場合、目標温度1350℃からの過熱度は20〜3
0℃であった。
In this example, the degree of superheat from the target temperature of 1350 ° C. was 3 to 5 ° C. On the other hand, according to the conventional method, the degree of superheat from the target temperature of 1350 ° C. is 20 to 3
It was 0 ° C.

【0023】[0023]

【発明の効果】この発明によれば、溶融スケールを検出
して加熱時間を調整するようにしている。したがって、
溶融スケールが発生しても過熱または加熱不足を生じる
ことなく加熱材料を目標温度に加熱することができ、製
品の品質および歩留りの向上を図ることができる。
According to the present invention, the heating time is adjusted by detecting the molten scale. Therefore,
Even if the molten scale occurs, the heating material can be heated to the target temperature without causing overheating or insufficient heating, and product quality and yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の加熱制御方法の一例を示すフローチ
ャートである。
FIG. 1 is a flowchart showing an example of a heating control method of the present invention.

【図2】スラブの昇温曲線の一例である。FIG. 2 is an example of a temperature rising curve of a slab.

【図3】この発明の加熱制御方法を実施する装置の一例
を示す装置構成図である。
FIG. 3 is an apparatus configuration diagram showing an example of an apparatus for implementing the heating control method of the present invention.

【符号の説明】[Explanation of symbols]

1 誘導加熱炉 2 加熱コイル 3 電源 4 インバータ 5 プロセスコンピュータ 6 制御用シーケンサ 7 放射温度計 S スラブ 1 induction heating furnace 2 heating coil 3 power supply 4 inverter 5 process computer 6 control sequencer 7 radiation thermometer S slab

Claims (1)

【特許請求の範囲】 【請求項1】 予め目標温度θo および加熱時間to
設定し、加熱材料の表面温度θを検出して目標温度θo
と比較しながら加熱材料を誘導または通電加熱する方法
において、 加熱電力、加熱電圧または加熱電流を一定に保持した状
態で加熱材料の表面温度を一定のサンプリングピッチΔ
tで検出し、サンプリング時点ti (i=1,2…)で
の温度検出値θi とサンプリング時点ti-1での温度検
出値θi-1 との温度差θi −θi-1 を逐次求めること、 サンプリング時点tn で温度差θn −θn-1 が負であっ
てその絶対値が予め定めた限界温度差αより大きくなっ
た場合に、そのときのサンプリング時点tn で温度検出
値θn-k ,θn-k-1 …θn-1 に基づいて昇温速度の平均
値を求めて実績昇温速度vとするとともに、前記サンプ
リング時点tn における検出温度θn から目標温度θo
に至るまでの修正加熱時間Δtn を前記実績昇温速度v
に基づいて求めること、 前記設定加熱時間to から前記サンプリング時点tn
での加熱時間を差し引いた残り時間Δto が前記修正加
熱時間Δtn よりも短い場合には、サンプリング時点t
n からその残り時間Δto を前記一定加熱電力、一定加
熱電圧または一定加熱電流で加熱すること、 前記残り時間Δto が前記修正加熱時間Δtn よりも長
い場合には、サンプリング時点tn から修正加熱時間Δ
n を前記一定加熱電力、一定加熱電圧または一定加熱
電流で加熱すること、 よりなることを特徴とする金属材料の加熱制御方法。
1. The target temperature θ o and the heating time t o are set in advance, and the surface temperature θ of the heating material is detected to detect the target temperature θ o.
In the method of inductively or electrically heating the heating material, the surface temperature of the heating material is kept constant while the heating power, heating voltage or heating current is kept constant.
detected by t, the sampling instants t i the temperature difference between the temperature detection value theta i-1 in (i = 1,2 ...) and the detected temperature theta i at sampling instant t i-1 θ ii- 1 is sequentially obtained, and when the temperature difference θ n −θ n-1 is negative at the sampling time t n and its absolute value becomes larger than a predetermined limit temperature difference α, the sampling time t n at that time is calculated. in the temperature detection value theta nk, with the actual Atsushi Nobori rate v by the average value of the heating rate on the basis of θ nk-1 ... θ n- 1, the target temperature from the detected temperature theta n in the sampling time point t n θ o
To the corrected heating time Δt n until the actual heating rate v
When the remaining time Δt o obtained by subtracting the heating time from the set heating time t o to the sampling time t n is shorter than the corrected heating time Δt n , the sampling time t
heating from n to the remaining time Δt o with the constant heating power, constant heating voltage or constant heating current, and if the remaining time Δt o is longer than the modified heating time Δt n , correct from the sampling time t n Heating time Δ
A heating control method for a metal material, comprising heating t n with the constant heating power, the constant heating voltage or the constant heating current.
JP3186657A 1991-07-25 1991-07-25 Heat control method for metal materials Expired - Lifetime JP2592553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186657A JP2592553B2 (en) 1991-07-25 1991-07-25 Heat control method for metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186657A JP2592553B2 (en) 1991-07-25 1991-07-25 Heat control method for metal materials

Publications (2)

Publication Number Publication Date
JPH0533042A true JPH0533042A (en) 1993-02-09
JP2592553B2 JP2592553B2 (en) 1997-03-19

Family

ID=16192407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186657A Expired - Lifetime JP2592553B2 (en) 1991-07-25 1991-07-25 Heat control method for metal materials

Country Status (1)

Country Link
JP (1) JP2592553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111543B2 (en) * 2018-07-23 2022-08-02 中央発條株式会社 Heating device and heating method

Also Published As

Publication number Publication date
JP2592553B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
US20230087979A1 (en) Plasma processing apparatus, temperature control method, and temperature control program
JPH0533042A (en) Method for controlling heating of metallic material
JP3096743B2 (en) Lamp annealing furnace temperature controller
EP3637219B1 (en) Industrial temperature control device having automatic soak time correction and self-diagnosing heating anomaly function, and method therefor
JP3369603B2 (en) Heat treatment method for steel
JP2748611B2 (en) Melting furnace temperature control method and apparatus
US4359210A (en) Temperature control apparatus
JP2000181549A (en) Method for controlling temperature of heat treating furnace
JPH07197135A (en) Temperature controller
JP6536495B2 (en) Temperature rising apparatus, crystal growing apparatus, temperature control method for resistance heater, and crystal growing method
JPH09260294A (en) Temperature control method of electric furnace
JP2005002444A (en) Nitriding treatment method and apparatus
JP2635265B2 (en) Rolling material heating method
JP4965031B2 (en) Temperature control method in high frequency heating
JP2729283B2 (en) Lamp annealing furnace temperature controller
JP6433375B2 (en) Temperature correction method for hot isostatic pressurizer
JP2010190526A (en) Method of operating heat treatment furnace and control device
JPS6047881B2 (en) Induction hardening method
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPS6141725A (en) Method for controlling hearth roll temperature of continuous annealing furnace
JP2006152429A (en) High-frequency heat treatment method, high-frequency heat treatment apparatus, and high-frequency heat treated article
SU764898A1 (en) Method of automatic measuring and control of electric heating
JP3116491B2 (en) Arc furnace input power control device
JP2021187690A (en) Crucible shape correction method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15