JPH0532998B2 - - Google Patents

Info

Publication number
JPH0532998B2
JPH0532998B2 JP58039434A JP3943483A JPH0532998B2 JP H0532998 B2 JPH0532998 B2 JP H0532998B2 JP 58039434 A JP58039434 A JP 58039434A JP 3943483 A JP3943483 A JP 3943483A JP H0532998 B2 JPH0532998 B2 JP H0532998B2
Authority
JP
Japan
Prior art keywords
value
induction motor
setting value
angular frequency
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58039434A
Other languages
Japanese (ja)
Other versions
JPS59165982A (en
Inventor
Kohei Oonishi
Tadashi Ashikaga
Masayuki Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP58039434A priority Critical patent/JPS59165982A/en
Priority to US06/585,598 priority patent/US4509003A/en
Priority to DE8484102581T priority patent/DE3480979D1/en
Priority to EP84102581A priority patent/EP0121792B1/en
Publication of JPS59165982A publication Critical patent/JPS59165982A/en
Publication of JPH0532998B2 publication Critical patent/JPH0532998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、誘導電動機のベクトル制御装置に関
する。 近年、誘導電動機の速応性を向上する制御方式
として、電動機の一次電流を励磁電流と二次電流
とに分けて制御し、二次磁束と二次電流ベクトル
を常に直交させることで直流機と同等の応答性を
得ようとするベクトル制御方式が提案されてい
る。しかし、実際に使用する電力変換装置にパル
ス幅変調(PWM)方式インバータなどの電圧形
インバータを使用すると、一次電流を制御すると
言つても電圧が操作量となるため、周波数を高く
した高速運転時に設定通りの一次電流が流れなく
なつて応答性が悪くなり、精度良い可変速制御が
難しくなる問題があつた。 本発明は、電動機の一次電圧制御において、二
次磁束分と二次電流分との間に互いの干渉分をキ
ヤンセルできるベクトル制御とすることにより、
従来の問題点を解消すると共に後述の効果も奏す
るベクトル制御装置を提供することを目的とす
る。 以下、本発明の原理的な説明に続いて実施例を
詳細に説明する。 まず、誘導電動機を一次電圧に同期して回転す
るα−β軸で表わした電圧方程式は、以下の第(1)
式になるし、発生トルクTは第(2)式になる。
The present invention relates to a vector control device for an induction motor. In recent years, as a control method to improve the quick response of induction motors, the primary current of the motor is controlled by dividing it into an excitation current and a secondary current, and the secondary magnetic flux and secondary current vector are always orthogonal, so that the motor is equivalent to a DC motor. A vector control method has been proposed that attempts to obtain high responsiveness. However, when a voltage source inverter such as a pulse width modulation (PWM) inverter is used in the power converter that is actually used, the voltage becomes the manipulated variable even though the primary current is controlled. There was a problem in that the primary current did not flow as per the settings, resulting in poor response and making accurate variable speed control difficult. In the primary voltage control of the electric motor, the present invention uses vector control that can cancel mutual interference between the secondary magnetic flux and the secondary current.
It is an object of the present invention to provide a vector control device that solves conventional problems and also provides the effects described below. EMBODIMENT OF THE INVENTION Hereinafter, following the principle explanation of the present invention, embodiments will be explained in detail. First, the voltage equation expressed by the α-β axis that rotates the induction motor in synchronization with the primary voltage is the following equation (1).
The generated torque T is expressed as Equation (2).

【表】【table】

【表】 上述の(1),(2)式はブロツク線図で表わすと第1
図に示すようになり、二相電圧e1〓,e1〓に対して
一次電流と二次磁束のα軸,β軸成分i1〓,i1〓,
λ′2〓,λ′2〓及びトルクTを発生する誘導電動機の
等価ブロツク図になる。 ここで、一次電圧に同期して回るα,β軸はど
のような位相に定めても良いが、α軸を二次磁束
の方向に定めると、二次電流がβ軸に一致する条
件,すなわち、二次電流が磁束と直交する条件は
ベクトル制御理論で明らかにされているように、 λ′2〓=一定 λ′2〓0 ……(3) であり、かつ一次周波数ω0は ω0=ωr+Mr2/L1λ′2〓・i1〓 ……(4) である。 このように、α、β軸を定めると、一次電流i1
のα軸成分i1〓(=一定)は磁束λ′2に相当する一次
電流であり、β軸成分i1〓は二次電流i′2に相当する
一次電流となる。 次に、上述の(3),(4)式の条件を第1図のブロツ
ク線図に入れると第2図に示すブロツク線図にな
る。すなわち、第1図におけるa点は(4)式の関係
から零に制御される。c点はλ′2〓=0であるから
この点につながる量は全て零であり、同様にi′2
=0からd点につながる量も零であるしλ′2〓=一
定であるからその微分であるb点も零である。そ
して、第1図の破線ブロツクAの部分を同様の条
件下で計算すると、 L2/r2=r2,L〓=〔(L1L2−M2)/L3〕として、 (L〓+M/L2r2・L2/L2P+r2・M/L2)ω0i1〓 =(L〓+M2/L2/τ2P+1)ω0i1〓 =L〓τ2P+L1L2−M2/L3+M2/L2/τ2P+1ω0i1
〓 =L〓/L1τ2P+1/τ2P+1L1ω0i1〓 ここでi1〓=一定であるからP=0とおいて =L1ω0i1〓 このようにして、第1図のブロツク線図は第2
図のブロツク線図になる。第2図から明らかなよ
うに、二次磁束λ′2〓はα相一次電圧e1〓によつて一
義的に設定できずにβ相一次電流i1〓による+L〓
ω0i1〓分の干渉があるし、二次電流i2〓はβ相一次
電圧e1〓によつて一義的に設定できずにα相一次
電流i1〓による−L1ω0i1〓分の干渉がある。そこで、
本発明においては、一次電流i1〓及びi1〓による干
渉分を予め補償した制御になるよう一次電圧e1〓,
e1〓を補正する。この補正には一次電圧e1〓に加算
されるL〓ω0i1〓を見込んで該電圧e1〓の設定にL〓
ω0i1〓を減算しておき、一次電圧e1〓に減算される
L1ω0i1〓を見込んで該電圧e1〓の設定にL1ω0i1〓を加
算しておく。この補正により、二次磁束λ′2〓と二
次電流i2〓を非干渉に制御する一次電圧e1〓,e1〓を
設定することができる。 第3図は本発明の一実施例を示すブロツク図で
ある。電動機1にPWM方式インバータ2から電
圧制御による一次電圧を供給して該電動機1に磁
束と二次電流とが互いに直交するよう制御するに
おいて、α,β相電圧e1〓,e1〓の設定に補正演算
回路3において前述の補正を施す。補正演算回路
3は、α相一次電圧e1〓の設定に電動機の二次磁
束λ′2を一定に制御するためのα相一次電流設定
値i* 1〓に一次抵抗r1の係数器31を通した値に対し
てβ相一次電流i1〓による第2図に示す干渉分を
補正するための補正値を減算しておく。この補正
値は二次電流i′2を制御するためのβ相一次電流設
定値i* 1〓に電源角周波数ω0を乗算器32で乗算し、
この乗算結果に係数として等価漏れインダクタン
スL〓を持つ係数器32を通して得る。 また、補正演算回路3は、β相一次電圧e1〓の
設定に設定値i* 1〓に一次抵抗r1の係数器34を通し
た値に対して、α軸一次電流i1〓による第2図に
示す干渉分を補正するための補正値を加算してお
く。この補正値は電流設定値i* 1〓に電源角周波数
ω0を乗算器35で乗算し、この乗算結果に係数と
して一次インダクタンスL1を持つ係数器36を通
して得る。 β相一次電流設定値i* 1〓は速度設定値V*sと電
動機1に結合する速度検出器4の検出値(ロータ
角周波数ωr)との偏差を比例積分演算(PI)す
る速度調節器5の出力として得る。電源角周波数
ω0は角周波数演算回路6によつて得る。この演
算回路6は、設定値i* 1〓とi* 1〓の除算をする割算
器61と、この割算結果i* 1〓/i* 1〓に係数1/τ2
掛算する係数器62とを有してすべり角周波数ωs
を算出し、このすべり角周波数ωsにロータ角周
波数ωrを加算して電源角周波数ω0を得る。この
割算器61と係数器62によるすべり角周波数ωs
算出は、前述の(4)式右辺第2項中に前述の次の条
件及び第2図からλ′2〓=i1〓・Mを代入してi* 1〓/
(i* 1〓・τ2)に置換される。 L〓=L1L2−M2/L2 τ2=L2/r2 このように干渉分が補正されたα,β相の一次
電圧e1〓,e1〓は相電圧演算回路7において2相−
3相変換がなされ、インバータ2の3相電圧設定
値e* a,e* b,e* cが取出され、この設定値による
PWM波形の一次電圧制御によつて電動機1には
磁束と二次電流を非干渉にした速度又はトルク制
御が実現される。 次に、相電圧演算回路7における2相−3相変
換のために、電源角周波数ω0を使つた三角関数
発生回路8から正弦波SINω0tを得ている。また、
インバータ2におけるPWM波形を得るために、
電源角周波数ω0を使つた三角波発生回路9から
該ω0に同期した定数倍の三角波を取出し、この
三角波を設定電圧e* a,e* b,e* cとのレベル比較
によつてPWM波形を得ている。なお、相電圧演
算回路4の演算は次の(5),(6)式に基づいた回路に
なる。
[Table] Equations (1) and (2) above are expressed as the first block diagram.
As shown in the figure, for the two-phase voltages e 1 〓, e 1 〓, the α-axis and β-axis components of the primary current and secondary magnetic flux i 1 〓, i 1 〓,
This is an equivalent block diagram of an induction motor that generates λ' 2 〓, λ' 2 〓 and torque T. Here, the α and β axes, which rotate in synchronization with the primary voltage, may be set at any phase, but if the α axis is set in the direction of the secondary magnetic flux, the condition that the secondary current matches the β axis, that is, , the conditions for the secondary current to be orthogonal to the magnetic flux are λ′ 2 〓=constant λ′ 2 〓0 ……(3), and the primary frequency ω 0 is ω 0 as clarified by vector control theory. =ω r +Mr 2 /L 1 λ′ 2 〓・i 1 〓 ...(4). In this way, when the α and β axes are determined, the primary current i 1
The α-axis component i 1 〓 (=constant) is a primary current corresponding to the magnetic flux λ′ 2 , and the β-axis component i 1 〓 is a primary current corresponding to the secondary current i′ 2 . Next, when the conditions of equations (3) and (4) above are inserted into the block diagram of FIG. 1, the block diagram shown in FIG. 2 is obtained. That is, point a in FIG. 1 is controlled to zero from the relationship of equation (4). Since point c is λ′ 2 〓=0, all the quantities connected to this point are zero, and similarly i′ 2
The quantity connected from =0 to point d is also zero, and since λ' 2 = constant, its differential at point b is also zero. Then, when calculating the part of the broken line block A in Fig. 1 under the same conditions, L 2 /r 2 = r 2 , L = [(L 1 L 2 - M 2 )/L 3 ], and (L 〓+M/L 2 r 2・L 2 /L 2 P+r 2・M/L 20 i 1 〓 = (L〓+M 2 /L 22 P+1)ω 0 i 1 〓 =L〓τ 2 P+L 1 L 2 −M 2 /L 3 +M 2 /L 2 /τ 2 P+1ω 0 i 1
〓 =L〓/L 1 τ 2 P+1/τ 2 P+1L 1 ω 0 i 1 〓 Here, since i 1 〓=constant, let P=0 =L 1 ω 0 i 1 〓 In this way, the first The block diagram in the figure is
This becomes the block diagram shown in the figure. As is clear from Fig. 2, the secondary magnetic flux λ′ 2 〓 cannot be uniquely set by the α-phase primary voltage e 1 〓, but is set by +L 〓 by the β-phase primary current i 1 〓.
There is interference of ω 0 i 1 〓, and the secondary current i 2 〓 cannot be uniquely set by the β-phase primary voltage e 1 〓, but −L 1 ω 0 i due to the α-phase primary current i 1 〓. There is an interference of 1 〓. Therefore,
In the present invention, the primary voltage e 1 ,
Correct e 1 〓. For this correction, L〓ω 0 i 1 〓 which is added to the primary voltage e 1 〓 is taken into account and L〓 is added to the setting of the voltage e 1 〓.
Subtract ω 0 i 1 〓 and it will be subtracted to the primary voltage e 1
Considering L 1 ω 0 i 1 〓, L 1 ω 0 i 1 〓 is added to the setting of the voltage e 1 〓. By this correction, it is possible to set the primary voltages e 1 〓 and e 1 〓 that control the secondary magnetic flux λ′ 2 〓 and the secondary current i 2 〓 in a non-interfering manner . FIG. 3 is a block diagram showing one embodiment of the present invention. In controlling the motor 1 by supplying a voltage-controlled primary voltage from the PWM inverter 2 so that the magnetic flux and secondary current of the motor 1 are orthogonal to each other, the settings of α and β phase voltages e 1 〓 and e 1 〓 The correction calculation circuit 3 performs the above-described correction. The correction calculation circuit 3 includes a coefficient unit 3 of a primary resistance r 1 for setting the α-phase primary voltage e 1 〓 and an α-phase primary current setting value i * 1 〓 for controlling the secondary magnetic flux λ′ 2 of the motor to be constant. A correction value for correcting the interference shown in FIG. 2 due to the β-phase primary current i 1 〓 is subtracted from the value passed through 1 . This correction value is obtained by multiplying the β-phase primary current setting value i * 1 〓 for controlling the secondary current i′ 2 by the power supply angular frequency ω 0 using a multiplier 3 2 .
This multiplication result is obtained by passing it through a coefficient unit 32 having an equivalent leakage inductance L as a coefficient. In addition, the correction calculation circuit 3 sets the β-phase primary voltage e 1 〓 by applying the α - axis primary current i 1 〓 to the value obtained by passing the set value i * 1 〓 through a coefficient unit 3 4 of the primary resistance r 1 〓. A correction value for correcting the interference shown in FIG. 2 is added in advance. This correction value is obtained by multiplying the current setting value i * 1 〓 by the power source angular frequency ω 0 in a multiplier 35 , and passing this multiplication result through a coefficient multiplier 36 having a primary inductance L1 as a coefficient. The β-phase primary current set value i * 1 〓 is a speed adjustment that performs proportional integral calculation (PI) of the deviation between the speed set value V * s and the detected value (rotor angular frequency ω r ) of the speed detector 4 coupled to the motor 1. It is obtained as the output of the device 5. The power supply angular frequency ω 0 is obtained by the angular frequency calculation circuit 6. This arithmetic circuit 6 includes a divider 61 that divides the set value i * 1 〓 and i * 1 〓, and multiplies this division result i * 1 〓/i * 1 〓 by a coefficient 1/τ 2 coefficient multiplier 6 2 and slip angular frequency ω s
is calculated, and the rotor angular frequency ω r is added to this slip angular frequency ω s to obtain the power supply angular frequency ω 0 . Calculation of the slip angular frequency ω s by the divider 6 1 and the coefficient unit 6 2 is based on the following conditions mentioned above in the second term on the right side of equation (4) and from FIG . Substitute 〓・M and get i * 1 〓/
It is replaced by (i * 1 〓・τ 2 ). L〓=L 1 L 2 −M 2 /L 2 τ 2 =L 2 /r 2The primary voltages e 1 〓 and e 1 〓 of the α and β phases with the interference corrected in this way are calculated by the phase voltage calculation circuit 7 2 phase -
Three-phase conversion is performed, the three-phase voltage setting values e * a , e * b , e * c of inverter 2 are taken out, and according to this setting value
By controlling the primary voltage of the PWM waveform, speed or torque control is realized in the motor 1 with magnetic flux and secondary current not interfering with each other. Next, for 2-phase to 3-phase conversion in the phase voltage calculation circuit 7, a sine wave SINω 0 t is obtained from the trigonometric function generation circuit 8 using the power supply angular frequency ω 0 . Also,
To obtain the PWM waveform in inverter 2,
A constant multiplied triangular wave synchronized with the power source angular frequency ω 0 is extracted from the triangular wave generation circuit 9 using the power supply angular frequency ω 0 , and this triangular wave is converted into PWM by comparing the level with the set voltages e * a , e * b , e * c I am getting a waveform. Note that the phase voltage calculation circuit 4 performs calculations based on the following equations (5) and (6).

【表】 〓 〓 〓 2 2 〓
こうした相電圧演算と三角波による変調によつ
てPWM信号波形を得るのに、両信号が同期して
いないと変調による直流成分や偶数次高調波が発
生し、電動機1にトルク変動を生じる。この相電
圧設定値と三角波に同期を得るには相電圧演算に
使用する正弦波SINω0と余弦波CCSω0tを三角波
Triと同期されれば良い。これには三角関係発生
回路8と三角波発生回路9として示す関数発生装
置として、電源角周波数ω0に比例する同じパル
ス信号を基準とするクロツクパルスにより正・余
弦波と三角波を発生させ、正・余弦波の一周期中
の三角波の数を一定とする等パルスPWM制御方
式が考えられる。しかし、この等パルスPWM制
御方式によると、電源角周波数ω0が小さくなる
に従つて(低速運転)、三角波の周波数も一定比
で低下する。この三角波の周期は制御上むだ時間
に相当するため、ω0を低下させるほど応答が遅
くなるし高調波電流も増加する問題がある。 そこで、本発明による三角関数発生回路8及び
三角波発生回路9は、夫々の正・余弦波と三角波
に同期を取りながら正・余弦波周波数と三角波周
波数の比を電源角周波数ω0の変化に対応させて
適当に切換えるようにしている。 第4図は三角関数発生回路8と三角波発生回路
9の一実施例を示す。絶対値回路11は電源角周
波数ω0が電動機1の正逆転によつて正負に変わ
るためその絶対値|ω0|を得る。電圧−周波数
変換器(V/F変換器)12は絶対値回路11の
出力|ω0|に対応する周波数のパルスを発生す
る。1/2分周回路13,14,15は縦続接続さ
れてV/F変換器12の出力パルスを夫々1/2分
周する。パルス数切換スイツチ16はV/F変換
器12及び各分周回路13〜15の出力パルスを
切換信号AS0に応じて切換出力する。パルス切換
回路17は絶対値回路11の出力|ω0|に応じ
て上述の切換信号AS0を発生する。アツプダウン
カウンタ18は切換スイツチ16の出力パルスを
計数入力とし、所定値までの計数加算(UP)と
計数減算(DOWN)を交互に繰り返し、この加
算と減算の繰り返しのためにキヤリー信号
(CURRY)を入力とする1/2分周回路19の出力
が加算減算切換信号として与えられる。デイジタ
ル−アナログ変換器(D/A変換器)20はカウ
ンタ18の内容をアナログ信号に変換する。反転
増幅器21はD/A変換器20の出力を反転増幅
(利得1)する。正負切換スイツチ22は正負切
換信号AS1によつてD/A変換器20と反転増幅
器21の出力を切換えて三角波(搬送波)Tri
して出力する。正負切換信号AS1は分周回路19
の出力を入力とする1/2分周回路23の出力によ
り与えられる。 次に、正負検出回路24は電源角周波数ω0
正負(電動機の正逆回転)をオン・オフ信号とし
て検出する。アツプダウンカウンタ25は、分周
回路15の出力パルスを1/6分周する分周回路2
6の出力を計数入力とし、正負検出回路24の正
負検出出力に応じて計数加算と減算を切換える。
リードオンリーメモリ(ROM)27は、カウン
タ25の計数内容をアドレスとして余弦波の半周
期サンプルデータとは別のビツト桁(図示では8
ビツト目の07にcos(π/2)のサンプルデータまで の読出しを意味する符号(“1”又は“0”)を持
つてcos(π/2)のサンプルデータと他のサンプル データとを区別している。同様に、ROM28は
カウンタ25の計数内容をアドレスとして正弦波
の半周期分サンプルデータを順次出力し、sinπサ
ンプルデータを意味するビツト桁も有する。D/
A変換器29,30は夫々ROM27,28のサ
ンプルデータ出力を入力として対応するアナログ
信号に変換する。反転増幅器31,32は夫々
D/A変換器29,30のアナログ出力を反転増
幅(利得1)する。正負切換スイツチ33,34
は夫々正負切換信号AS2,AS3によつてD/A変
換器と反転増幅器の出力を切換えて余弦波
cosω0t0正弦波SINω0tとして出力する。正負切換
信号AS2,AS3は夫々ROM27,28のcos
(π/2),sinπのサンプルデータを意味するビツト 桁の信号を1/2分周する分周回路35,36の出
力にされる。ROM28のsinπのサンプルデータ
を意味するビツト桁の信号は分周回路36の入力
のほかにカウンタ25のクリア(リセツト)信号
CLにもされる。 こうした構成の関数発生装置の動作を以下に説
明する。電動機1の正,逆転駆動に応じて正負に
切換わる電源角周波数ω0に対して、絶対値回路
11とV/F変換器12及び分周回路13,15
の構成では絶対値|ω0|に対応した周波数のパ
ルスを発生し、V/F変換器12の出力パルスに
対して分周回路13の出力が1/2周波数になるし、
分周回路14の出力は1/4周波数,分周回路15
の出力は1/3数になる。これらパルス信号は切換
回路17と切換スイツチ16によつて周波数ω0
の大小によつて選択されアツプダウンカウンター
18に入力される。この切換えは周波数ω0が低
くなるほど低い分周のものが選択される。切換ス
イツチ16を通したパルスを計数するカウンタ1
8は周波数ω0に対応して計数速度が変り最終値
より最高値まで計数されその時点より最高値から
最低値までの計数が行なわれ、この動作をくり返
す。従つて、カウンタ18の出力は切換スイツチ
16を通したパルス入力周波数の速度で段階的に
増減を繰り返す。このカウンタ18の出力をD/
A変換器20によりアナログ信号への変換を行い
D/A変換器20と反転増巾器21の出力をカウ
ンタ18の増減の1/2周期で切換えることによつ
て切換スイツチ22の出力には第5図に示す正負
極性の三角波信号Triを得ることができる。なお、
第5図はカウンタ18が3ビツト構成の場合で示
す。 従つて、電源角周波数|ω0|を複数の範囲
(図示では4)に分けて、|ω0|と三角波周波数
の比をそれぞれの範囲ごとに変えることができ
る。このため従来の等パルスPWM制御と異なつ
て分周回路13〜15の分周比と切換回路17の
切換範囲設定によつて三角波周波数の変化範囲を
任意に決めることができ、低周波域にあつても三
角波周波数をある程度高くして応答性の向上,高
調波電流の低減を図ることができる。 次に、正・余弦波発生の動作を説明する。正負
検出回路24は電源角周波数ω0の正負検出から
電動機の正逆転に応じてカウンタ25の加算と減
算を設定しておく。カウンタ25は分周回路15
側から|ω0|に比例したパルスの計数入力を得
ている。これより正弦波作成用カウンター25,
三角波作成用カウンター18ともにV/F変換器
12の出力パルスを分周した信号が入力されるた
め正・余弦波と三角波は同期することになる。カ
ウンタ25の計数加算又は減算によつてROM2
7は余弦波のサンプル値を出力し、ROM28は
正弦波のサンプル値を出力する。これらROM2
7,28の出力を夫々D/A変換器29,30で
アナログ信号に変換し、さらに反転増幅器31,
32で反転したアナログ信号を得て半周期毎に切
換えること及びカウンタ25をクリヤすることに
より一周期分の正弦波,余弦波信号COSω0t,
SINω0tを得ることができる。正弦波の例を第6
図に示す。 従つて、正・余弦波の角周波数は電源角周波数
|ω0|となりかつ三角波に同期した信号になる。
また、カウンタ25の計数加算と減算の切換えに
より加算時はSINω0tとCOSω0t、減算時には−
SINω0tとCOSω0tが出力される。これを3相変換
すると相電圧演算出力e* a,e* b,e* cの相回転は
加算時には正相,減算時には逆相となる。これよ
り正逆転が可能となる。また、正逆転の切換時の
正・余弦波の初期値は変化しないため、正逆の切
換えがスムーズに行なわれる。 次に、正弦波(余弦波)と三角波の関係を説明
する。ROM28に正弦波の半周期分を112分割
して量子化したサンプルデータを書込んでおくと
すると、カウンタ25が224回計数することによ
り正弦波の一周期分が出力される。三角波はカウ
ンタ18を4ビツト構成とすると16回のカウント
で1/4周期分が出力され、一周期分としては64カ
ウントになる。これより、カウンタ18と25の
計数入力同期が同じなら三角波と正弦波の周波数
比は2対7になる。しかし、カウンタ18の計数
入力は切換スイツチ16によつて切換えられるた
め、三角波と正弦波の周波数比は電源角周波数に
よつて変えられる。例えば、切換スイツチ16の
接点161が閉じられてV/F変換器12の出力
がカウンタ18の入力になると、カウンタ18の
入力に対してカウンタ25の入力が1/48分周され
たパルスになり、正弦波の一周期中に168回(48
×7/2)の三角波が存在する。同様に、切換スイ
ツチ16の接点162が閉じられると正弦波と三
角波の周波数比は84,接点163では42,接点1
4では21の周波数比になる。 以上のとおり、本発明によれば、電圧形インバ
ータを使つて誘導電動機をベクトル制御するにお
いて、電動機の励磁電流設定値i* 1〓と二次電流設
定値i* 1〓からインバータの設定電圧e1〓,e1〓を得る
のに電動機の一次電流i1〓,i1〓による相互干渉分
をキヤンセルする補正をするため、電源角周波数
ω0による干渉分変動も含めて磁束と二次電流ベ
クトルを常に直交させる制御が可能となり、、広
い制御範囲に渡つて正確なベクトル制御ができる
効果がある。また、相電圧演算のための正・余弦
波とPWM信号発生のための三角波を同期させな
がら正・余弦波周波数と三角波周波数比を電源角
周波数ω0の変化に対応させて切換えることがで
き、PWMインバータによるベクトル制御方式に
適用して低速度域での応答性向上や高調波電流の
低減を図ることができる。また、正・余弦波発生
用カウンタ25の計数加算と減算を切換えること
により簡単に電動機の正・逆転を切換えることが
できる。
[Table] 〓 〓 〓 2 2 〓
Although a PWM signal waveform is obtained by such phase voltage calculation and triangular wave modulation, if both signals are not synchronized, DC components and even harmonics will be generated due to the modulation, causing torque fluctuations in the motor 1. To synchronize this phase voltage setting value with the triangular wave, convert the sine wave SINω 0 and cosine wave CCSω 0 t used for phase voltage calculation to the triangular wave.
It would be fine if it was synchronized with Tri . This includes function generators shown as a triangular relation generating circuit 8 and a triangular wave generating circuit 9, which generate sine/cosine waves and triangular waves using clock pulses based on the same pulse signal proportional to the power supply angular frequency ω 0 . An equal pulse PWM control method can be considered in which the number of triangular waves in one wave cycle is constant. However, according to this equal pulse PWM control method, as the power supply angular frequency ω 0 becomes smaller (low speed operation), the frequency of the triangular wave also decreases at a constant ratio. Since the period of this triangular wave corresponds to dead time in terms of control, there is a problem that the lower ω 0 is, the slower the response is and the higher the harmonic current is. Therefore, the trigonometric function generating circuit 8 and the triangular wave generating circuit 9 according to the present invention adjust the ratio of the sine/cosine wave frequency and the triangular wave frequency to the change in the power supply angular frequency ω 0 while synchronizing the sine/cosine wave and the triangular wave, respectively. I'm trying to change it appropriately. FIG. 4 shows an embodiment of the trigonometric function generating circuit 8 and the triangular wave generating circuit 9. The absolute value circuit 11 obtains the absolute value |ω 0 | since the power source angular frequency ω 0 changes to positive or negative as the motor 1 rotates forward or backward. A voltage-frequency converter (V/F converter) 12 generates a pulse at a frequency corresponding to the output |ω 0 | of the absolute value circuit 11 . The 1/2 frequency divider circuits 13, 14, and 15 are connected in series and divide the output pulse of the V/F converter 12 by 1/2, respectively. The pulse number switching switch 16 switches and outputs the output pulses of the V/F converter 12 and each of the frequency dividing circuits 13 to 15 in accordance with the switching signal AS0 . The pulse switching circuit 17 generates the above-mentioned switching signal AS 0 in response to the output |ω 0 | of the absolute value circuit 11. The up-down counter 18 uses the output pulse of the changeover switch 16 as a counting input, and alternately repeats counting addition (UP) and counting subtraction (DOWN) up to a predetermined value, and sends a carry signal (CURRY) to repeat this addition and subtraction. The output of the 1/2 frequency divider circuit 19, which inputs , is given as an addition/subtraction switching signal. A digital-to-analog converter (D/A converter) 20 converts the contents of counter 18 into an analog signal. The inverting amplifier 21 inverts and amplifies the output of the D/A converter 20 (gain of 1). The positive/negative switching switch 22 switches the outputs of the D/A converter 20 and the inverting amplifier 21 in response to the positive/negative switching signal AS1 , and outputs it as a triangular wave (carrier wave) Tri . The positive/negative switching signal AS 1 is the frequency divider circuit 19
It is given by the output of the 1/2 frequency divider circuit 23 which receives the output of . Next, the positive/negative detection circuit 24 detects the positive/negative (positive/reverse rotation of the motor) of the power supply angular frequency ω 0 as an on/off signal. The up-down counter 25 is a frequency divider circuit 2 that divides the output pulse of the frequency divider circuit 15 by 1/6.
The output of 6 is used as a counting input, and counting addition and subtraction are switched according to the positive/negative detection output of the positive/negative detection circuit 24.
The read-only memory (ROM) 27 uses the count contents of the counter 25 as an address and stores it in a different bit digit (8 in the figure) from the half-cycle sample data of the cosine wave.
Bits 0 to 7 have a code (“1” or “0”) that means reading up to the cos (π/2) sample data, and the cos (π/2) sample data and other sample data are It is differentiated. Similarly, the ROM 28 sequentially outputs sample data corresponding to a half period of a sine wave using the count contents of the counter 25 as an address, and also has a bit digit indicating sinπ sample data. D/
The A converters 29 and 30 input the sample data outputs of the ROMs 27 and 28, respectively, and convert them into corresponding analog signals. Inverting amplifiers 31 and 32 invert and amplify (gain 1) the analog outputs of D/A converters 29 and 30, respectively. Positive/negative switch 33, 34
is a cosine wave by switching the outputs of the D/A converter and the inverting amplifier by the positive/negative switching signals AS 2 and AS 3 , respectively.
Output as cosω 0 t 0 sine wave SINω 0 t. The positive/negative switching signals AS 2 and AS 3 are the cos of the ROMs 27 and 28, respectively.
(π/2), sinπ sample data is output from frequency dividing circuits 35 and 36 which divide the frequency of the bit-digit signal by 1/2. The bit-digit signal representing the sample data of sinπ in the ROM 28 is input to the frequency divider circuit 36 as well as to the clear (reset) signal of the counter 25.
Also made into CL. The operation of the function generator having such a configuration will be explained below. The absolute value circuit 11, the V/F converter 12, and the frequency dividing circuits 13 and 15 are connected to the power supply angular frequency ω 0 , which switches between positive and negative depending on the positive and reverse driving of the electric motor 1.
In the configuration, a pulse with a frequency corresponding to the absolute value |ω 0 | is generated, and the output of the frequency dividing circuit 13 becomes 1/2 frequency with respect to the output pulse of the V/F converter 12,
The output of frequency divider circuit 14 is 1/4 frequency, frequency divider circuit 15
The output will be 1/3 the number. These pulse signals are changed to a frequency ω 0 by a switching circuit 17 and a switching switch 16.
It is selected based on the magnitude of , and is input to the up-down counter 18 . In this switching, a lower frequency division is selected as the frequency ω 0 becomes lower. Counter 1 that counts the pulses passed through the changeover switch 16
8, the counting speed changes in accordance with the frequency ω 0 and counts from the final value to the highest value. From that point on, counting is performed from the highest value to the lowest value, and this operation is repeated. Therefore, the output of the counter 18 repeats increasing and decreasing in steps at the speed of the pulse input frequency through the changeover switch 16. The output of this counter 18 is
The A converter 20 converts the output into an analog signal, and the outputs of the D/A converter 20 and inverting amplifier 21 are switched at half the cycle of increase/decrease of the counter 18. A triangular wave signal T ri of positive and negative polarity shown in FIG. 5 can be obtained. In addition,
FIG. 5 shows a case where the counter 18 has a 3-bit configuration. Therefore, it is possible to divide the power supply angular frequency |ω 0 | into a plurality of ranges (four in the figure) and change the ratio between |ω 0 | and the triangular wave frequency for each range. Therefore, unlike conventional equal-pulse PWM control, the range of change in the triangular wave frequency can be arbitrarily determined by setting the division ratios of the frequency dividers 13 to 15 and the switching range of the switching circuit 17. However, it is possible to increase the triangular wave frequency to some extent to improve response and reduce harmonic current. Next, the operation of generating sine and cosine waves will be explained. The positive/negative detection circuit 24 detects the positive/negative of the power supply angular frequency ω 0 and sets the counter 25 to add or subtract depending on whether the motor is in the forward or reverse direction. The counter 25 is the frequency dividing circuit 15
A counting input of pulses proportional to |ω 0 | is obtained from the side. From this, the counter 25 for creating a sine wave,
Since the triangular wave generation counter 18 receives a signal obtained by frequency-dividing the output pulse of the V/F converter 12, the sine/cosine wave and the triangular wave are synchronized. By addition or subtraction of the counter 25, the ROM2
7 outputs a sample value of a cosine wave, and ROM 28 outputs a sample value of a sine wave. These ROM2
The outputs of 7 and 28 are converted into analog signals by D/A converters 29 and 30, respectively, and are further converted to analog signals by inverting amplifiers 31 and 30, respectively.
By obtaining the inverted analog signal at step 32 and switching it every half period and clearing the counter 25, one period's worth of sine wave and cosine wave signals COSω 0 t,
SINω 0 t can be obtained. The sixth example is a sine wave.
As shown in the figure. Therefore, the angular frequency of the sine/cosine wave becomes the power source angular frequency |ω 0 | and becomes a signal synchronized with the triangular wave.
In addition, by switching the count addition and subtraction of the counter 25, SINω 0 t and COSω 0 t are obtained during addition, and - during subtraction.
SINω 0 t and COSω 0 t are output. When this is converted into three phases, the phase rotation of the phase voltage calculation outputs e * a , e * b , e * c becomes positive phase during addition and negative phase during subtraction. This allows forward and reverse rotation. Furthermore, since the initial values of the positive and cosine waves do not change when switching between forward and reverse directions, switching between forward and reverse directions is performed smoothly. Next, the relationship between sine waves (cosine waves) and triangular waves will be explained. If sample data obtained by dividing a half period of a sine wave into 112 and quantizing the data is written in the ROM 28, one period of the sine wave is output when the counter 25 counts 224 times. As for the triangular wave, if the counter 18 has a 4-bit configuration, 1/4 cycle is output in 16 counts, and one cycle is 64 counts. From this, if the counting input synchronization of the counters 18 and 25 is the same, the frequency ratio of the triangular wave and the sine wave will be 2:7. However, since the counting input of the counter 18 is switched by the changeover switch 16, the frequency ratio of the triangular wave and the sine wave can be changed depending on the power supply angular frequency. For example, when the contact 161 of the changeover switch 16 is closed and the output of the V/F converter 12 becomes the input of the counter 18, the input of the counter 25 becomes a pulse whose frequency is divided by 1/48 with respect to the input of the counter 18. 168 times (48
×7/2) triangular wave exists. Similarly, when contact 162 of changeover switch 16 is closed, the frequency ratio of the sine wave and triangular wave is 84, 42 at contact 163 , and 42 at contact 1.
6 4 gives a frequency ratio of 21. As described above, according to the present invention, when performing vector control of an induction motor using a voltage source inverter, the inverter set voltage e is determined from the motor's excitation current set value i * 1 〓 and the secondary current set value i * 1 〓. 1 〓, e 1 〓, in order to cancel the mutual interference due to the motor's primary currents i 1 〓, i 1 〓, the magnetic flux and secondary current including the interference variation due to the power source angular frequency ω 0 are It is possible to control the vectors so that they are always orthogonal, and this has the effect of allowing accurate vector control over a wide control range. In addition, the sine/cosine wave frequency and triangular wave frequency ratio can be switched in response to changes in the power supply angular frequency ω 0 while synchronizing the sine/cosine wave for phase voltage calculation and the triangular wave for PWM signal generation. It can be applied to vector control methods using PWM inverters to improve responsiveness in low speed ranges and reduce harmonic current. Further, by switching between addition and subtraction of the sine/cosine wave generation counter 25, the motor can be easily switched between forward and reverse directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2相電圧e1〓,e1〓に対する誘導電動機
の等価ブロツク図、第2図は誘導電動機のベクト
ル制御における等価ブロツク図、第3図は本発明
の一実施例を示す制御装置ブロツク図、第4図は
第3図における三角関数発生回路と三角波発生回
路の一実施例を示す回路図、第5図及び第6図は
第4図における三角波と正・余弦波の発生動作を
説明するための波形図である。 1……誘導電動機、2……PWM方式電圧形イ
ンバータ、3……補正演算回路、4……速度検出
器、5……速度調節器、6……角周波数演算回
路、7……相電圧演算回路、8……三角関数発生
回路、9……三角波発生回路、11…絶対値回
路、12……電圧一周波数変換器、13,14,
15,19,23,26,35,36……分周回
路、16,22,23,24……切換スイツチ、
18,25……アツプダウンカウンタ、20,2
9,30……デイジタル−アナログ変換器、2
1,31,32……反転増幅器、24……正負検
出回路、27,28……リードオンリーメモリ。
Fig. 1 is an equivalent block diagram of an induction motor with respect to two-phase voltages e 1 〓, e 1 〓, Fig. 2 is an equivalent block diagram of vector control of an induction motor, and Fig. 3 is a control device showing an embodiment of the present invention. 4 is a circuit diagram showing an example of the trigonometric function generation circuit and the triangular wave generation circuit in FIG. It is a waveform diagram for explanation. 1... Induction motor, 2... PWM type voltage source inverter, 3... Correction calculation circuit, 4... Speed detector, 5... Speed regulator, 6... Angular frequency calculation circuit, 7... Phase voltage calculation Circuit, 8... Trigonometric function generation circuit, 9... Triangular wave generation circuit, 11... Absolute value circuit, 12... Voltage-frequency converter, 13, 14,
15, 19, 23, 26, 35, 36... Frequency divider circuit, 16, 22, 23, 24... Changeover switch,
18, 25...Up-down counter, 20, 2
9, 30...Digital-to-analog converter, 2
1, 31, 32... Inverting amplifier, 24... Positive/negative detection circuit, 27, 28... Read only memory.

Claims (1)

【特許請求の範囲】 1 誘導電動機を電圧形インバータで駆動し、誘
導電動機の磁速分を設定するα相電圧e1〓と二次
電流を設定するβ相電圧e1〓から2相3相変換に
よつて上記電圧形インバータのa,b,c相3相
電圧設定値ea*,eb*,ec*を得る誘導電動機の
ベクトル制御装置において、誘導電動機の磁束分
を設定するα相一次電流設定値i1〓*を一次抵抗r1
に設定する係数器を通した値から誘導電動機の二
次電流分を設定するβ相一次電流設定値i1〓*に
電圧形インバータの角周波数設定値ω0を乗算し
かつ等価漏れインダクタンスLσに設定する係数
器を通した値を減算して上記電圧e1〓を求め、上
記設定値i1〓*を一次抵抗r1に設定する係数器を通
した値に上記設定値i1〓*に上記角周波数設定値
ω0を乗算しかつ一次インダクタンスL1に設定す
る係数器を通した値を加算して上記電圧e1〓を求
める補正演算回路を備えたことを特徴とする誘導
電動機のベクトル制御装置。 2 上記設定値i1〓*を設定値i1〓*で割算した値
を二次インダクタンスL2と二次抵抗r2の比r2/L2
に設定する係数器を通した値に誘導電動機のロー
タ角周波数検出値ωrを加算して上記角周波数設
定値ω0を求める角周波数演算回路を備えたこと
を特徴とする特許請求の範囲第1項記載の誘導電
動機のベクトル制御装置。 3 誘導電動機をパルス幅変調方式電圧形インバ
ータで駆動し、誘導電動機の磁束分を設定するα
相電圧e1〓と二次電流分を設定するβ相電圧e1〓と
正弦波信号及び余弦波信号から二相三相変換によ
つて上記パルス幅変調方式電圧形インバータの
a,b,c相3相電圧設定値ea*,eb*,ec*を
得、この設定値ea*,eb*,ec*と三角波信号か
らパルス幅変調信号を得る誘導電動機のベクトル
制御装置において、 誘導電動機の磁束分を設定するα相一次電流設
定値i1〓*を一次抵抗r1に設定する係数器を通した
値から誘導電動機の二次電流分を設定するβ相一
次電流設定値i1〓*に上記電圧形インバータの角
周波数設定値ω0を乗算しかつ等価漏れインダク
タンスLσに設定する係数器を通した値を減算し
て上記電圧e1〓を求め、上記設定値i1〓*を一次抵
抗r1に設定する係数器を通した値に上記設定値i1
*に上記角周波数設定値ω0を乗算しかつ一次イ
ンダクタンスL1に設定する係数器を通した値を
加算して上記電圧e1〓を求める補正演算回路と、 上記設定値i1〓*を設定値i1〓*で割算した値を
二次インダクタンスL2と二次抵抗r2の比r2/L2
設定する係数器を通した値に誘導電動機のロータ
角周波数検出値ωrを加算して上記角周波数設定
値ω0を求める角周波数演算回路と、 上記角周波数設定値ω0に対応しかつその周波
数範囲に応じて異なる周波数比になるパルスを
得、このパルスの設定値までの計数加算と該設定
値からの計数減算を繰り返した計数値を得、この
計数値に対応したアナログ信号とその反転アナロ
グ信号とを交互に切り換えて上記三角波信号を得
る三角波発生回路と、 上記角周波数設定値ω0に対応しかつ誘導電動
機の正逆転駆動による正負極性に応じて設定値ま
での加算と減算の繰り返しを切り換えた計数値を
得、この計数値を時間軸として正弦波と余弦波の
半周期分のサンプルデータを得、このサンプルデ
ータに対応したアナログ信号とその反転アナログ
信号とを交互に切り換えて上記正弦波信号と余弦
波信号とを得る三角関数発生回路とを備えたこと
を特徴とする誘導電動機のベクトル制御装置。
[Claims] 1. An induction motor is driven by a voltage-type inverter, and two-phase three-phase voltage is generated from the α-phase voltage e 1 〓 that sets the magnetic velocity component of the induction motor and the β-phase voltage e 1 〓 that sets the secondary current. In the induction motor vector control device that obtains the a, b, c three-phase voltage set values e a *, e b *, e c * of the voltage source inverter through conversion, α is used to set the magnetic flux component of the induction motor. Phase primary current setting value i 1 〓* as primary resistance r 1
Set the secondary current of the induction motor from the value passed through the coefficient unit set to β-phase primary current setting value i 1 〓 * Multiply the angular frequency setting value ω 0 of the voltage source inverter and equalize the equivalent leakage inductance Lσ Find the above voltage e 1 〓 by subtracting the value passed through the coefficient machine to be set, and add the above setting value i 1 〓* to the value passed through the coefficient machine that sets the primary resistance r 1 to the above setting value i 1 〓*. An induction motor vector characterized in that it is equipped with a correction calculation circuit that multiplies the angular frequency setting value ω 0 and adds a value passed through a coefficient unit to set the primary inductance L 1 to obtain the voltage e 1 〓. Control device. 2 The value obtained by dividing the above setting value i 1 〓* by the setting value i 1 〓* is the ratio of secondary inductance L 2 and secondary resistance r 2 r 2 /L 2
Claim 1, further comprising: an angular frequency calculation circuit that calculates the angular frequency setting value ω 0 by adding a detected rotor angular frequency value ω r of the induction motor to a value passed through a coefficient unit set to ω 0 . A vector control device for an induction motor according to item 1. 3 Drive the induction motor with a pulse width modulation type voltage source inverter and set the magnetic flux of the induction motor α
A, b, c of the above-mentioned pulse width modulation type voltage source inverter are obtained by two-phase three-phase conversion from the phase voltage e 1 , the β-phase voltage e 1 〓 that sets the secondary current, and the sine wave signal and cosine wave signal. A vector control device for an induction motor that obtains three-phase voltage set values e a *, e b *, e c * and obtains a pulse width modulation signal from these set values e a *, e b *, e c * and a triangular wave signal. In this case, α-phase primary current setting value i 1 〓 * is set to the primary resistance r 1 which sets the magnetic flux component of the induction motor. β-phase primary current setting which sets the secondary current component of the induction motor from the value passed through the coefficient machine. The value i 1 〓 * is multiplied by the angular frequency setting value ω 0 of the voltage source inverter, and the value passed through the coefficient machine set to the equivalent leakage inductance Lσ is subtracted to find the voltage e 1 〓, and the above setting value i 1 〓 * is set to the primary resistance r 1 The above setting value i 1
A correction calculation circuit that multiplies * by the above angular frequency setting value ω 0 and adds the value passed through a coefficient unit set to the primary inductance L 1 to obtain the above voltage e 1 〓, and the above setting value i 1 〓 *. The rotor angular frequency detection value ω r of the induction motor is determined by dividing the set value i 1 〓* and passing it through a coefficient machine set to the ratio r 2 /L 2 of secondary inductance L 2 and secondary resistance r 2 . An angular frequency calculation circuit that calculates the above angular frequency setting value ω 0 by adding the above angular frequency setting value ω 0 , and obtains a pulse that corresponds to the above angular frequency setting value ω 0 and has a different frequency ratio depending on its frequency range, and obtains a set value of this pulse. A triangular wave generation circuit obtains a counted value by repeating counting addition and subtraction from the set value, and alternately switches an analog signal corresponding to this counted value and its inverted analog signal to obtain the triangular wave signal; A count value that corresponds to the angular frequency set value ω 0 and that switches between repeating addition and subtraction up to the set value according to the positive and negative polarity due to forward and reverse driving of the induction motor is obtained, and this count value is used as a time axis to generate a sine wave and a cosine wave. A trigonometric function generating circuit that obtains sample data for half a period of a wave and alternately switches between an analog signal corresponding to this sample data and an inverted analog signal thereof to obtain the sine wave signal and cosine wave signal. A vector control device for an induction motor characterized by:
JP58039434A 1983-03-10 1983-03-10 Vector control system of induction motor Granted JPS59165982A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58039434A JPS59165982A (en) 1983-03-10 1983-03-10 Vector control system of induction motor
US06/585,598 US4509003A (en) 1983-03-10 1984-03-01 Vector control method and system for an induction motor
DE8484102581T DE3480979D1 (en) 1983-03-10 1984-03-09 VECTOR CONTROL METHOD AND SYSTEM FOR AN INDUCTION MOTOR.
EP84102581A EP0121792B1 (en) 1983-03-10 1984-03-09 Vector control method and system for an induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039434A JPS59165982A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Publications (2)

Publication Number Publication Date
JPS59165982A JPS59165982A (en) 1984-09-19
JPH0532998B2 true JPH0532998B2 (en) 1993-05-18

Family

ID=12552887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039434A Granted JPS59165982A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Country Status (1)

Country Link
JP (1) JPS59165982A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144769A (en) * 2002-06-17 2008-06-26 Techno Takatsuki Co Ltd Electromagnetic vibration pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING=1982 *

Also Published As

Publication number Publication date
JPS59165982A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
US7403404B2 (en) Power inverter system and method of correcting supply voltage of the same
US5206575A (en) Device for controlling an AC motor
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
US5965995A (en) Transient inductance tuner for motor control
KR920000835B1 (en) Pwm pulse generating apparatus
US5502360A (en) Stator resistance detector for use in electric motor controllers
US4991429A (en) Torque angle and peak current detector for synchronous motors
EP0089208B1 (en) A.c. motor drive apparatus
JPS6031196B2 (en) Variable speed driving device for induction motor
JP2000505638A (en) Direct torque control inverter device
JPS5911271B2 (en) Control method of induction motor
US5619114A (en) Signal averager for use with motor controller
JP2002136197A (en) Sensorless vector control apparatus and method
US4510430A (en) Vector control method and system for an induction motor
EP0121792A2 (en) Vector control method and system for an induction motor
JPH0532998B2 (en)
JP2644750B2 (en) Control method of voltage source inverter
JP2702936B2 (en) Method and apparatus for controlling voltage source inverter
JP3536114B2 (en) Power converter control method and power converter
KR102133181B1 (en) Apparatus for controlling inverter
KR920011005B1 (en) Nector control method and system for an induction motor
JPS5915266Y2 (en) Induction motor slip frequency control device
SU734607A1 (en) Digital follow-up drive
JP2909736B2 (en) Induction motor control device
JPH0777519B2 (en) Control method of PWM control inverter