JPH05329945A - Manufacture of continuous fiber reinforced thermoplastic composite material - Google Patents

Manufacture of continuous fiber reinforced thermoplastic composite material

Info

Publication number
JPH05329945A
JPH05329945A JP4138481A JP13848192A JPH05329945A JP H05329945 A JPH05329945 A JP H05329945A JP 4138481 A JP4138481 A JP 4138481A JP 13848192 A JP13848192 A JP 13848192A JP H05329945 A JPH05329945 A JP H05329945A
Authority
JP
Japan
Prior art keywords
polyamide
fiber
composite material
temperature
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4138481A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishio
俊幸 西尾
Tsuyoshi Murata
ツヨシ 村田
Masatsugu Mochizuki
政嗣 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP4138481A priority Critical patent/JPH05329945A/en
Publication of JPH05329945A publication Critical patent/JPH05329945A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To provide a method of manufacturing industrially efficiently and economically a continuous fiber reinforced thermoplastic composite material sufficiently impregnated with resin in its reinforced fiber bundle. CONSTITUTION:By the use of fiber with high strength and high elasticity having higher melting point and/or decomposing point than that of at least one or more kinds of matrix components to be a reinforcing component and polyamide to be a matrix component or thermoplastic resin fiber having a compatibility with polyamide, knitted fabric is formed and subsequently treated, and then dried, by a polyamide solution, and it is laminated as desired to subsequently be molded at a higher temperature than the melting of polyamide or the thermoplastic resin having compatibility with polyamide, and at a lower temperature than the melting of the fiber with high strength and high elasticity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続繊維強化熱可塑性複
合材料、さらに詳しくは、強化繊維束中に樹脂が十分含
浸した連続繊維強化熱可塑性複合材料を、工業的に効率
よく、しかも経済的に製造する方法に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a continuous fiber-reinforced thermoplastic composite material, and more particularly to a continuous fiber-reinforced thermoplastic composite material in which a resin is sufficiently impregnated in a reinforcing fiber bundle, which is industrially efficient and economical. The present invention relates to a method of manufacturing.

【0002】[0002]

【従来の技術】近年、要求物性の多様化により、従来よ
り複合材料に使用されている熱硬化樹脂に加え熱可塑性
樹脂がいろいろな分野で用いられるようなってきた。こ
こで用いられている繊維強化熱可塑性複合材料は、それ
を得るために経由する中間体において大きく二つに分類
できる。その一つは、中間体において既に熱可塑性樹脂
と強化繊維とが十分に接着しており、この中間体を積層
した後の成形は主に賦形であり、一般的にはテープ材と
呼ばれているものである。もう一つは中間体が強化繊維
と熱可塑性樹脂の繊維よりなる編織材料である場合であ
る。
2. Description of the Related Art In recent years, due to diversification of required physical properties, thermoplastic resins have come to be used in various fields in addition to thermosetting resins conventionally used for composite materials. The fiber-reinforced thermoplastic composite material used here can be roughly classified into two types in the intermediates through which it is obtained. One of them is that the thermoplastic resin and the reinforcing fiber are already sufficiently adhered in the intermediate body, and the molding after laminating the intermediate body is mainly shaping, and is generally called a tape material. It is what The other is when the intermediate is a knitting material consisting of reinforcing fibers and thermoplastic resin fibers.

【0003】ここで前者の場合は、得られる中間体にお
いてはすでに強化繊維束内に十分樹脂が含浸しているた
め、成形の行程では、ただ賦形を行う程度で良いことか
ら熱可塑性樹脂の融点以上の温度で比較的低圧力、短時
間の成形サイクルが可能である。しかし、この中間体は
剛直であり、これを積層したものを金型に入れ成形を行
うためには特殊な成形法及びバギング法に工夫を凝らす
必要があり、このため作業全般が複雑となり、また技術
と経験を必要とするようになる。
In the former case, since the reinforcing fiber bundle has already been sufficiently impregnated with the resin in the obtained intermediate, it is sufficient to perform shaping in the molding process. A molding cycle of a relatively low pressure and a short time at a temperature above the melting point is possible. However, this intermediate body is rigid, and it is necessary to devise a special molding method and bagging method in order to insert the laminated product into a mold and perform molding, which complicates the overall work, and You will need skill and experience.

【0004】これに対し、後者の場合、編織材料自身が
フレキシブルであるため、複雑な金型に対しても前者ほ
どの困難を伴わず使用することができる。しかし、この
方法では成形するときに前者の場合と異なり、強化繊維
束内への樹脂の含浸と賦形を同時に行う必要があり、ま
た、一般的に熱可塑性樹脂は溶融粘度が高いため、強化
繊維束内への樹脂の含浸を十分に行わせるためには熱可
塑性樹脂の融点以上の温度で比較的高圧力、長時間の成
形サイクルが必要となる。
On the other hand, in the latter case, since the knitting and weaving material itself is flexible, it can be used in a complicated mold without the difficulty of the former case. However, in this method, unlike the former case when molding, it is necessary to simultaneously impregnate the resin into the reinforcing fiber bundle and perform shaping, and since thermoplastic resins generally have high melt viscosity, they are reinforced. In order to sufficiently impregnate the fiber bundle with the resin, a relatively high pressure and a long molding cycle are required at a temperature equal to or higher than the melting point of the thermoplastic resin.

【0005】また、これらの連続繊維強化熱可塑性複合
材料において、比強度・比剛性が高いのは強化繊維の方
向に限られており、板状・曲面状などに成形して実用に
供された場合には、繊維方向以外に発生する応力に対し
ては弱いという欠点も合わせ持っている。編織材料とし
て二次元織物または編物を用いた場合には、その層間強
度も繊維方向に比べて著しく低い。これらの欠点を補う
ための一つの方法として補強基材に三次元織物、三次元
編物または組み紐を用いる方法が提案されている。しか
し、強化繊維束内への樹脂の含浸を十分に行わせるため
には、特に三次元織物、三次元編物、組み紐のような複
雑に強化繊維が絡み合っているような組織の場合、特殊
な、例えばRIM成形法のような方法を用いたり、ま
た、プレス成形においては熱可塑性樹脂の融点以上の温
度で比較的高圧・長時間での成形が必要となる。
Further, in these continuous fiber reinforced thermoplastic composite materials, the high specific strength and high specific rigidity are limited to the direction of the reinforcing fibers, and they are put into practical use after being formed into a plate shape or a curved surface shape. In some cases, it also has a drawback that it is weak against stress generated in directions other than the fiber direction. When a two-dimensional woven fabric or knitted fabric is used as a weaving material, its interlaminar strength is also significantly lower than that in the fiber direction. As one method for compensating for these drawbacks, a method of using a three-dimensional woven fabric, a three-dimensional knitted fabric or a braid for the reinforcing base material has been proposed. However, in order to sufficiently impregnate the reinforcing fiber bundle with the resin, in the case of a structure in which the reinforcing fibers are intricately entangled intricately, such as a three-dimensional woven fabric, a three-dimensional knitted fabric, or a braid, a special, For example, a method such as the RIM molding method is used, and in press molding, molding at a temperature higher than the melting point of the thermoplastic resin and at a relatively high pressure for a long time is required.

【0006】これを解決するため、例えば、織物、編物
または組み紐を構成している糸が強化繊維と熱可塑性樹
脂繊維を混繊したものを用いる、あるいは、強化繊維に
熱可塑性樹脂の粉末を分散させたものを用いる等が提案
されている。しかし、前者の場合、混繊行程での強化繊
維の破損およびそれによるコストアップ、また、後者の
場合、粉末化行程および粉末を強化繊維に付与する行程
によるコストアップ等の問題があり、スーパーエンジニ
アリングプラスチックほどの高付加価値が望めない有機
繊維或いはガラス繊維強化ポリアミド複合材料におい
は、経済性の点で問題があった。
In order to solve this, for example, the yarns constituting the woven fabric, the knitted fabric or the braid are made by mixing the reinforcing fibers and the thermoplastic resin fibers, or the thermoplastic fibers are dispersed in the reinforcing fibers. It has been proposed to use such a thing. However, in the former case, there are problems such as breakage of the reinforcing fiber in the mixed fiber process and the resulting cost increase, and in the latter case, there are problems such as the cost increase due to the powdering process and the process of applying the powder to the reinforcing fiber. The organic fiber or glass fiber reinforced polyamide composite material, which cannot be expected to have the added value as high as that of plastic, has a problem in economical efficiency.

【0007】また、溶液で処理する方法も提案されてい
るが、溶液のみの処理ではマトリックス樹脂の体積容量
を30%から40%にするためには含浸行程と乾燥行程
を何回も繰り返す必要があり、非常に煩雑な作業とな
る。
Although a method of treating with a solution has been proposed, it is necessary to repeat the impregnation step and the drying step many times in order to increase the volume capacity of the matrix resin from 30% to 40% in the case of treating with only the solution. Yes, it is very complicated work.

【0008】[0008]

【発明が解決しようとする課題】本発明は、マトリック
スがポリアミドまたはポリアミドと相溶性のある樹脂で
あり、強化繊維中に樹脂が十分に含浸した連続繊維強化
複合材料を工業的に効率よく、しかも経済的に生産する
ための製造方法を提供することを課題とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a continuous fiber reinforced composite material in which a matrix is a polyamide or a resin compatible with a polyamide, and a reinforcing fiber is sufficiently impregnated with the resin in an industrially efficient manner. It is an object of the present invention to provide a manufacturing method for economical production.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、強
化成分となる一種以上の少なくともマトリックス成分よ
り高い融点および/または分解点を有する高強度高弾性
繊維と、マトリックス成分となるポリアミドまたはポリ
アミドと相溶性を有する熱可塑性樹脂の繊維とから構成
される編織材料を、予めポリアミド溶液で処理して乾燥
させ、これを積層した後、ポリアミドまたはポリアミド
と相溶性を有する熱可塑性樹脂が溶融する温度以上、高
強度高弾性繊維が溶融する温度以下で成形することを特
徴とする連続繊維強化熱可塑性複合材料の製造方法を提
供する。
That is, the present invention provides a high-strength and high-elasticity fiber having at least one melting point and / or a decomposition point higher than that of a matrix component, which is a reinforcing component, and a polyamide or a polyamide, which is a matrix component. A weaving material composed of compatible thermoplastic resin fibers is previously treated with a polyamide solution and dried, and after laminating this, a temperature at which the thermoplastic resin compatible with polyamide or polyamide is melted or higher. Provided is a method for producing a continuous fiber-reinforced thermoplastic composite material, which comprises molding at a temperature equal to or lower than a temperature at which high-strength and high-elasticity fibers melt.

【0010】本発明は、また、強化成分となる一種以上
の少なくともマトリックス成分より高い融点および/ま
たは分解点を有する高強度高弾性繊維からなる編織材料
を、予めポリアミド溶液で処理して乾燥させ、これと、
マトリックス成分となるポリアミドまたはポリアミドと
相溶性を有する熱可塑性樹脂の繊維からなる編織材料ま
たはフィルムとを一定の割合で積層した後、ポリアミド
またはポリアミドと相溶性を有する熱可塑性樹脂が溶融
する温度以上、高強度高弾性繊維が溶融する温度以下で
成形することを特徴とする連続繊維強化熱可塑性複合材
料の製造方法を提供する。
The present invention also relates to a textile material made of high-strength and high-elasticity fibers having a melting point and / or a decomposition point higher than that of at least one matrix component, which is a reinforcing component, and is previously treated with a polyamide solution and dried, This and
After laminating a weaving material or film made of fibers of a thermoplastic resin having compatibility with polyamide or a polyamide serving as a matrix component at a fixed ratio, a temperature at which a thermoplastic resin having compatibility with polyamide or polyamide is melted, Provided is a method for producing a continuous fiber-reinforced thermoplastic composite material, which is characterized in that the high-strength and high-elasticity fiber is molded at a temperature below the melting temperature.

【0011】本発明において用いる、強化成分となるマ
トリックス成分より高い融点および/または分解点を有
する高強度高弾性繊維は、通常繊維強化材料として用い
られるいずれの繊維でもよく、例えば、炭素繊維、ガラ
ス繊維、アラミド繊維、金属繊維等を挙げられる。ま
た、その形態は連続繊維である。
The high-strength and high-elasticity fiber having a higher melting point and / or decomposition point than the matrix component serving as a reinforcing component used in the present invention may be any fiber usually used as a fiber reinforcing material, for example, carbon fiber or glass. Fibers, aramid fibers, metal fibers and the like can be mentioned. Moreover, the form is a continuous fiber.

【0012】本明細書中、「ポリアミド」とは、ポリマ
ー構造中に−CO−NH−の繰り返し単位を有するもの
を意味し、例えば、ナイロン6、ナイロン66、ナイロ
ン46等を挙げることができる。また、これらは単独で
も、2種以上組み合わせて用いても良い。
In the present specification, "polyamide" means one having a repeating unit of -CO-NH- in the polymer structure, and examples thereof include nylon 6, nylon 66, nylon 46 and the like. These may be used alone or in combination of two or more.

【0013】本明細書中、「ポリアミドと相溶性を有す
る樹脂」とは、相溶化剤を併用することによりポリアミ
ドと相溶化される樹脂も含み、例えばポリエチレン、ポ
リプロピレン、ポリカーボネート、ポリフェニレンスル
フィド、ポリエーテルエーテルケトン等が挙げられる。
相溶化剤を用いる場合、予め熱可塑性樹脂繊維を作成す
る段階で練り込んでおくか、または、それを用いて繊維
を表面処理する等の方法をとることができる。
In the present specification, the "resin having compatibility with polyamide" includes a resin which is compatibilized with polyamide by using a compatibilizing agent together, such as polyethylene, polypropylene, polycarbonate, polyphenylene sulfide and polyether. Examples thereof include ether ketone.
When a compatibilizer is used, it can be kneaded in advance at the stage of preparing the thermoplastic resin fiber, or the fiber can be used for surface treatment.

【0014】本明細書中、「織物」とは、通常の二次元
織物または編物三元組織およびその変形のみならず、三
次元織物、三次元編物および組み紐を包含する。「三次
元織物」とは、基本的にはX軸、Y軸、Z軸よりなり、
それぞれ直交または90°で行絡しているものを意味す
るが、X軸、Y軸、Z軸がどのような角度で接している
かまたは交絡しているかを限定しない。さらに、「三次
元編物または組紐」とは、例えば、日本繊維機械学会産
業資材研究会、第8回産業資材研究会公開講座資料に記
載のような構造を有するものを示すが、これに限定する
ものではない。
In the present specification, the term "woven fabric" includes not only ordinary two-dimensional woven fabric or knitted ternary structure and its deformation, but also three-dimensional woven fabric, three-dimensional knitted fabric and braid. "Three-dimensional fabric" basically consists of X-axis, Y-axis and Z-axis,
It means that they are orthogonal or entangled at 90 °, respectively, but it does not limit at what angle the X-axis, Y-axis, and Z-axis are in contact or entangled. Furthermore, the "three-dimensional knitted or braided" refers to, for example, one having a structure as described in the material for the Society of Industrial Materials, Japan, and the 8th Industrial Materials Research Society open lecture material, but is not limited to this. Not a thing.

【0015】ポリアミドの溶剤としては、メタノール、
エチレングリコール、ハロゲン化アルコール、フェノー
ル、クレゾール、レゾルシノール、ギ酸、酢酸、グルタ
ル酸、DMSO、DMF、塩酸、硫酸、リン酸等が挙げ
られるが、これらは、いずれも高温を必要としたり、溶
解度が低かったり、また、ポリアミド自身が変質してし
まったりするため本発明に使用するには好ましくない。
これに対し、各種金属ハライド−アルコール系溶剤は常
温で使用でき、また、溶解度も高いため、本発明に使用
するには好ましい。従ってこのような溶剤にポリアミド
を常温で溶解させることによりポリアミド溶液を得るこ
とができる。溶剤に溶解させるポリアミドは繊維状、チ
ップ状、パウダー状、フィルム状のいずれであっても良
い。また、ポリアミド溶液の濃度は、好ましくは5〜3
0重量%、さらに好ましくは、1020重量%である。
ポリアミド溶液の濃度が5重量%より小さいと、最終的
に析出するポリアミドの量が少なく、よって効果が小さ
なものとなり、また、30重量%を超えると、溶液の粘
度が高くなり、短時間での繊維束内部への含浸が不完全
となる。
As the solvent for the polyamide, methanol,
Examples thereof include ethylene glycol, halogenated alcohols, phenol, cresol, resorcinol, formic acid, acetic acid, glutaric acid, DMSO, DMF, hydrochloric acid, sulfuric acid, phosphoric acid, etc., all of which require high temperature or low solubility. In addition, the polyamide itself may be deteriorated, which is not preferable for use in the present invention.
On the other hand, various metal halide-alcohol-based solvents can be used at room temperature and have high solubility, which is preferable for use in the present invention. Therefore, a polyamide solution can be obtained by dissolving polyamide in such a solvent at room temperature. The polyamide dissolved in the solvent may be in the form of fiber, chips, powder or film. The concentration of the polyamide solution is preferably 5 to 3
It is 0% by weight, more preferably 1020% by weight.
When the concentration of the polyamide solution is less than 5% by weight, the amount of polyamide finally precipitated is small, and thus the effect is small. On the other hand, when it exceeds 30% by weight, the viscosity of the solution becomes high, and the effect is short. Impregnation into the fiber bundle is not complete.

【0016】以下、本発明の連続繊維強化熱可塑性複合
材料の製造方法についてさらに詳しく説明する。まず、
常法により、強化繊維と熱可塑性樹脂繊維からなる編織
材料また強化繊維のみからなる編織材料を形成し、これ
を、ポリアミド溶液(常温)に1〜2分間浸漬する。こ
の場合、溶液はそれぞれの編織材料を貫通するような液
流であることが好ましく、また、この段階で開繊効果を
同時に付与することは更に好ましい。ここで、強化繊維
と熱可塑性樹脂繊維からなる編織材料の場合、浸漬時間
を長くし過ぎないことが大切である。その後、溶液で処
理したものを軽く絞り、水洗する。水洗方法としては、
シャワーを当てる方法が最も効果的である。この段階で
金属ハライドおよびアルコールが洗い落とされてポリア
ミドが再生する。ここで再生するポリアミドに金属ハラ
イドが残留しないよう十分洗浄することが肝要である。
更に、これを絞り、乾燥させる。
The method for producing the continuous fiber-reinforced thermoplastic composite material of the present invention will be described in more detail below. First,
A conventional method is used to form a weaving material composed of reinforcing fibers and thermoplastic resin fibers, or a weaving material composed only of reinforcing fibers, and this is dipped in a polyamide solution (normal temperature) for 1 to 2 minutes. In this case, it is preferable that the solution is a liquid flow that penetrates each textile material, and it is more preferable that the opening effect is simultaneously imparted at this stage. Here, in the case of a knitting material composed of reinforcing fibers and thermoplastic resin fibers, it is important that the immersion time is not too long. Then, the product treated with the solution is lightly squeezed and washed with water. As a washing method,
The most effective way is to apply a shower. At this stage, the metal halide and alcohol are washed off and the polyamide is regenerated. It is important to wash thoroughly the polyamide to be regenerated here so that the metal halide does not remain.
Further, this is squeezed and dried.

【0017】ポリアミド溶液で処理した後、強化繊維と
熱可塑性樹脂繊維からなる編織材料の場合、これを10
〜20枚積層し、強化繊維のみからなる編織材料の場合
は、強化繊維編織材料と、ポリアミドまたはポリアミド
と相溶性を有する熱可塑性樹脂繊維編織材料を一定の割
合で積層し、また、三次元織物、三次元編物または組み
紐のような編織材料の場合は、そのままの状態で次の工
程に付す。次に、これを金型に入れ、圧力10〜50kg
/cm2、温度240〜290℃の条件で10〜30分間
成形して複合材料を得る。
After treatment with a polyamide solution, in the case of a textile material consisting of reinforcing fibers and thermoplastic resin fibers, this is
In the case of a knitting material consisting of ˜20 sheets and consisting only of reinforcing fibers, a reinforcing fiber knitting material and a thermoplastic resin fiber knitting material having compatibility with polyamide or polyamide are laminated at a fixed ratio, and a three-dimensional woven fabric In the case of a knitting material such as a three-dimensional knitted fabric or a braid, it is subjected to the next step as it is. Next, put this in the mold, pressure 10-50kg
/ Cm 2 , and the temperature is 240 to 290 ° C for 10 to 30 minutes to obtain a composite material.

【0018】次に、本発明を実施例により具体的に説明
する。 実施例1 強化繊維として1150テックス、2000フィラメン
トのガラス繊維を用い、熱可塑性樹脂繊維として189
0デニール、320フィラメントのナイロン6繊維を用
い、10本/インチの経糸(ガラス繊維)と10本/イ
ンチの緯糸(ナイロン6繊維)とから構成される織物
(50cm×50cm×0.20cm)を作成した。ガラス繊
維に付着している糊剤を除去するため、この織物を予め
酸化糊抜き剤で処理した。つぎに、メタノール30gに
塩化カリウム10gを完全に溶解させ、これにナイロン
6フィルム5gを徐々に加え、完全に溶解させてポリア
ミド溶液とした。得られた溶液は無色透明で若干粘性を
有する溶液であった。この溶液をバットに入れ、これに
先ほどの織物を一定の大きさ(15cm×15cm)に切断
したものを入れて、繊維束を解すような程度で攪拌し
た。これをバットから取り出した後、シャワー状の水で
十分洗浄した。この段階で、織物の表面および繊維束内
にナイロン6が再生されて、表面に白いものが付着し
た。その後、乾燥機で十分乾燥させ、次の成形工程に付
した。
Next, the present invention will be specifically described with reference to examples. Example 1 Glass fibers of 1150 tex and 2000 filaments were used as reinforcing fibers, and 189 was used as thermoplastic resin fibers.
A woven fabric (50 cm x 50 cm x 0.20 cm) composed of 0 denier and 320 filaments of nylon 6 fiber and composed of 10 yarns / inch warp (glass fiber) and 10 yarns / inch weft (nylon 6 fiber) Created. The fabric was previously treated with an oxidizing desizing agent to remove the sizing agent adhering to the glass fibers. Next, 10 g of potassium chloride was completely dissolved in 30 g of methanol, and 5 g of nylon 6 film was gradually added thereto to completely dissolve it to obtain a polyamide solution. The obtained solution was colorless and transparent and had a slight viscosity. This solution was put in a vat, and the woven fabric was cut into a certain size (15 cm × 15 cm), and the mixture was stirred to such an extent that the fiber bundle was loosened. After taking this out of the vat, it was thoroughly washed with shower water. At this stage, nylon 6 was regenerated on the surface of the woven fabric and in the fiber bundle, and white matter was attached to the surface. Then, it was sufficiently dried with a dryer and subjected to the next molding step.

【0019】この織物を、強化繊維の方向を考えた場
合、繊維の方向が0°、90°、1枚交互になるよう
に、6枚積層したものを、金型(縦150mm、横150
mm)に入れ、以下に示す2つの成形条件で行った。
Considering the direction of the reinforcing fibers, 6 pieces of this woven fabric were laminated so that the directions of the fibers were alternately 0 °, 90 °, and a mold (150 mm long, 150 horizontal)
mm) and performed under the following two molding conditions.

【0020】(成形条件1)プレス機内に金型をセット
した後、10Torrまで脱気を行い、5kg/cm2で加圧を
行いながら昇温を開始する。昇温速度は10℃/分とし
た。その後、金型の温度が200℃になった時点で金型
に加える圧力を10〜50kg/cm2の範囲で変化させ、
この状態で金型温度が250℃になった時点より5分
後、降温を開始する。降温速度は7℃/分で行い、金型
温度が50℃になった時点で空気を導入すると共に、除
荷し、金型より成形物(15cm×15cm×0.1cm)を
取り出した。
(Molding condition 1) After setting a mold in a press machine, deaeration is performed up to 10 Torr, and heating is started while applying a pressure of 5 kg / cm 2 . The heating rate was 10 ° C./min. After that, when the temperature of the mold reaches 200 ° C., the pressure applied to the mold is changed within the range of 10 to 50 kg / cm 2 ,
In this state, cooling is started 5 minutes after the mold temperature reaches 250 ° C. The temperature lowering rate was 7 ° C./min. When the mold temperature reached 50 ° C., air was introduced and the load was removed, and a molded product (15 cm × 15 cm × 0.1 cm) was taken out from the mold.

【0021】(成形条件2)金型の温度が200℃にな
った時点で金型に加える圧力を30kg/cm2とし、この
状態で金型温度が250℃になった時点より降温を開始
するまでの時間を0〜20分の範囲で変化させる以外は
成形条件1と同一とした。
(Molding condition 2) When the temperature of the mold reaches 200 ° C., the pressure applied to the mold is set to 30 kg / cm 2, and in this state the cooling is started from the time when the mold temperature reaches 250 ° C. Was the same as molding condition 1 except that the time until was changed in the range of 0 to 20 minutes.

【0022】次に、得られた成形物の空洞率を測定し
(JIS−K7053)、成形性の目安とした。成形条
件1により得られた結果を表1に示し、成形条件2によ
り得られた結果を表2に示す。
Next, the void ratio of the obtained molded product was measured (JIS-K7053) and used as a measure of moldability. The results obtained under molding condition 1 are shown in Table 1, and the results obtained under molding condition 2 are shown in Table 2.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】実施例2 1150テックス、2000フィラメントのガラス繊維
を経糸および緯糸に用い、経密度10本/インチ、緯密
度10本/インチの予め糊抜きされた織物(50cm×5
0cm×0.2cm)を作成した。これを実施例1と同様の
方法によりポリアミド溶液処理を行い、水洗後ナイロン
6を再生させ、乾燥させた。この織物と、経緯糸が18
90デニール、20フィラメントのナイロン66繊維か
らなり、経緯密度が10本/インチである織物(50cm
×50cm×0.2cm)とを交互に3枚ずつ積層し、実施
例1と同様にして成形を行い、複合材料(15cm×15
cm×0.1cm)を得た。得られた複合材料の空洞率を
測定した。結果を表1および表2に示す。
Example 2 1150 tex, 2000 filament glass fiber was used for warp and weft, and pre-sized fabric (50 cm × 5) with warp density of 10 yarns / inch and weft density of 10 yarns / inch.
0 cm x 0.2 cm) was prepared. This was treated with a polyamide solution in the same manner as in Example 1, and after washing with water, nylon 6 was regenerated and dried. 18 pieces of this fabric and warp and weft threads
90 denier, 20 filament nylon 66 fiber with a weft density of 10 fibers / inch (50 cm
X 50 cm x 0.2 cm) are alternately laminated by 3 sheets and molded in the same manner as in Example 1 to obtain a composite material (15 cm x 15 cm).
cm × 0.1 cm) was obtained. The void ratio of the obtained composite material was measured. The results are shown in Tables 1 and 2.

【0026】比較例1 ポリアミド溶液処理を行わず、糊抜き処理だけを行った
以外は実施例1と同様にして複合材料を得た。得られた
複合材料の空洞率を測定した。結果を表1および表2に
示す。
Comparative Example 1 A composite material was obtained in the same manner as in Example 1 except that the desizing treatment was performed without the polyamide solution treatment. The void ratio of the obtained composite material was measured. The results are shown in Tables 1 and 2.

【0027】表1から明らかなように、実施例1および
実施例2は、比較例1に比べて低い圧力で成形した場合
においても空洞率がかなり低くなっており、含浸性が良
好である。また、表2から明らかなように、実施例1お
よび実施例2は、比較例1に比べて短い時間で成形した
場合においても空洞率がかなり低くなっており、含浸性
が良好である。
As is clear from Table 1, in Examples 1 and 2, even when molded at a lower pressure than in Comparative Example 1, the porosity was considerably low and the impregnability was good. Further, as is clear from Table 2, in Examples 1 and 2, the void ratio is considerably lower than in Comparative Example 1 even when molding is performed for a shorter time, and the impregnation property is good.

【0028】実施例3 強化繊維として1150テックス、2000フィラメン
トのガラス繊維を用い、熱可塑性樹脂繊維として189
0デニール、320フィラメントのナイロン6繊維を用
い、X軸として該ガラス繊維2本および該ナイロン6繊
維2本よりなる密度4本/インチ、Y軸として該ガラス
繊維2本および該ナイロン6繊維2本よりなる密度4本
/インチ、さらにZ軸として該ガラス繊維2本および該
ナイロン6繊維2本よりなる密度7本/インチで構成さ
れる三次元織物(15cm×15cm×0.5cm)を作成し
た。この三次元織物は、ガラス繊維に付着している糊剤
を除去するために予め酸化糊抜き剤で処理した。次に、
メタノール30gに塩化カリウム10gを完全に溶解さ
せ、これにナイロン6フィルム5gを徐々に加えてゆ
き、完全に溶解させた。得られたポリアミド溶液は無色
透明で若干粘性を有する溶液であった。この溶液をバッ
トに入れ、これに先ほどの三次元織物で一定の大きさ
(15cm×15cm)に切断したものを入れ、繊維束を解
すような程度攪拌する。次にこれをバットから取り出
し、シャワー状の水で十分洗浄する。この段階で織物の
表面及び繊維束内にナイロン6が再生されて、表面に白
いものが付着した。次に、乾燥機にて十分乾燥させ、実
施例1と同様にして成形し、複合材料( 15cm×15
cm×0.2cm)を得た。成形条件1で得た複合材料の空
洞率測定結果を表3に示し、成形条件2で得た複合材料
の空洞率測定結果を表4に示す。
Example 3 Glass fiber of 1150 tex and 2000 filaments was used as the reinforcing fiber, and 189 was used as the thermoplastic resin fiber.
Nylon 6 fiber of 0 denier and 320 filaments is used, the density of 4 glass / inch consisting of 2 glass fibers and 2 nylon 6 fibers as X axis, 2 glass fibers and 2 nylon 6 fiber as Y axis. A three-dimensional fabric (15 cm × 15 cm × 0.5 cm) having a density of 4 fibers / inch and a density of 7 fibers / inch composed of two glass fibers and two nylon 6 fibers as the Z axis was prepared. . This three-dimensional woven fabric was previously treated with an oxidizing desizing agent in order to remove the sizing agent adhering to the glass fibers. next,
10 g of potassium chloride was completely dissolved in 30 g of methanol, and 5 g of nylon 6 film was gradually added thereto to completely dissolve it. The obtained polyamide solution was colorless and transparent and had a slight viscosity. This solution is placed in a vat, and the three-dimensional woven fabric previously cut into a certain size (15 cm × 15 cm) is placed in the vat and stirred to such an extent that the fiber bundle is loosened. Next, this is taken out from the vat and thoroughly washed with shower water. At this stage, nylon 6 was regenerated on the surface of the woven fabric and in the fiber bundle, and a white one was attached to the surface. Next, it was sufficiently dried in a dryer and molded in the same manner as in Example 1 to obtain a composite material (15 cm × 15
cm × 0.2 cm) was obtained. Table 3 shows the void content measurement results of the composite material obtained under molding condition 1, and Table 4 shows the void content measurement results of the composite material obtained under molding condition 2.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】比較例2 ポリアミド溶液処理を行わず、糊抜き処理だけを行った
以外は実施例3と同様にして複合材料を得た。複合材料
の空洞率の測定結果を表3および表4に示す。
Comparative Example 2 A composite material was obtained in the same manner as in Example 3 except that the desizing treatment was performed without the polyamide solution treatment. The measurement results of the void ratio of the composite material are shown in Tables 3 and 4.

【0032】表3から明らかなように、実施例3は、比
較例2に比べて低い圧力で成形した場合においても空洞
率がかなり低くなっており、含浸性が良好である。ま
た、表4から明らかなように、実施例3は、比較例2に
比べて短い時間で成形した場合においても空洞率がかな
り低くなっており、含浸性が良好である。
As is clear from Table 3, Example 3 has a considerably low void ratio even when molded at a lower pressure than Comparative Example 2, and has a good impregnation property. Further, as is clear from Table 4, Example 3 has a considerably low void ratio even when molded in a shorter time than Comparative Example 2, and has good impregnability.

【0033】[0033]

【発明の効果】本発明によれば、編織材料を成形中間体
とした連続繊維強化複合材料の成形において、成形時間
を短縮することおよび成形圧力を軽減することが可能と
なり、これにより、複合材料が工業的に効率よく、しか
も経済的に製造することができる。
According to the present invention, in molding a continuous fiber-reinforced composite material using a textile material as a molding intermediate, it becomes possible to shorten the molding time and reduce the molding pressure. Can be manufactured industrially efficiently and economically.

【手続補正書】[Procedure amendment]

【提出日】平成5年1月7日[Submission date] January 7, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】ポリアミドの溶剤としては、メタノール、
エチレングリコール、ハロゲン化アルコール、フェノー
ル、クレゾール、レゾルシノール、ギ酸、酢酸、グルタ
ル酸、DMSO、DMF、塩酸、硫酸、リン酸等が挙げ
られるが、これらは、いずれも高温を必要としたり、溶
解度が低かったり、また、ポリアミド自身が変質してし
まったりするため本発明に使用するには好ましくない。
これに対し、各種金属ハライド−アルコール系溶剤は常
温で使用でき、また、溶解度も高いため、本発明に使用
するには好ましい。従ってこのような溶剤にポリアミド
を常温で溶解させることによりポリアミド溶液を得るこ
とができる。溶剤に溶解させるポリアミドは繊維状、チ
ップ状、パウダー状、フィルム状のいずれであっても良
い。また、ポリアミド溶液の濃度は、好ましくは5〜3
0重量%、さらに好ましくは、10〜20重量%であ
る。ポリアミド溶液の濃度が5重量%より小さいと、最
終的に析出するポリアミドの量が少なく、よって効果が
小さなものとなり、また、30重量%を超えると、溶液
の粘度が高くなり、短時間での繊維束内部への含浸が不
完全となる。
As the solvent for the polyamide, methanol,
Examples thereof include ethylene glycol, halogenated alcohols, phenol, cresol, resorcinol, formic acid, acetic acid, glutaric acid, DMSO, DMF, hydrochloric acid, sulfuric acid, phosphoric acid, etc., all of which require high temperature or low solubility. In addition, the polyamide itself may be deteriorated, which is not preferable for use in the present invention.
On the other hand, various metal halide-alcohol-based solvents can be used at room temperature and have high solubility, which is preferable for use in the present invention. Therefore, a polyamide solution can be obtained by dissolving polyamide in such a solvent at room temperature. The polyamide dissolved in the solvent may be in the form of fiber, chips, powder or film. The concentration of the polyamide solution is preferably 5 to 3
It is 0% by weight, more preferably 10 to 20% by weight. When the concentration of the polyamide solution is less than 5% by weight, the amount of polyamide finally precipitated is small, and thus the effect is small. On the other hand, when it exceeds 30% by weight, the viscosity of the solution becomes high, and the effect is short. Impregnation into the fiber bundle is not complete.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強化成分となる一種以上の少なくともマ
トリックス成分より高い融点および/または分解点を有
する高強度高弾性繊維と、マトリックス成分となるポリ
アミドまたはポリアミドと相溶性を有する熱可塑性樹脂
の繊維とから構成される編織材料を、予めポリアミド溶
液で処理して乾燥させ、これを積層した後、ポリアミド
またはポリアミドと相溶性を有する熱可塑性樹脂が溶融
する温度以上、高強度高弾性繊維が溶融する温度以下で
成形することを特徴とする連続繊維強化熱可塑性複合材
料の製造方法。
1. A high-strength and high-elasticity fiber having a melting point and / or a decomposition point higher than that of at least one matrix component, which is a reinforcing component, and polyamide or a fiber of a thermoplastic resin having compatibility with the polyamide, which is a matrix component. The textile material composed of the above is treated with a polyamide solution in advance and dried, and after laminating this, the temperature at which the polyamide or the thermoplastic resin having compatibility with the polyamide is melted or higher, and the temperature at which the high strength and high elasticity fiber is melted A method for producing a continuous fiber-reinforced thermoplastic composite material, characterized by being molded as follows.
【請求項2】 強化成分となる一種以上の少なくともマ
トリックス成分より高い融点および/または分解点を有
する高強度高弾性繊維からなる編織材料を、予めポリア
ミド溶液で処理して乾燥させ、これと、マトリックス成
分となるポリアミドまたはポリアミドと相溶性を有する
熱可塑性樹脂の繊維からなる編織材料またはフィルムと
を一定の割合で積層した後、ポリアミドまたはポリアミ
ドと相溶性を有する熱可塑性樹脂が溶融する温度以上、
高強度高弾性繊維が溶融する温度以下で成形することを
特徴とする連続繊維強化熱可塑性複合材料の製造方法。
2. A textile material made of high-strength and high-elasticity fibers having a melting point and / or a decomposition point higher than that of at least one matrix component as a reinforcing component is previously treated with a polyamide solution and dried. After laminating a weaving material or film made of fibers of a thermoplastic resin having compatibility with polyamide or polyamide as a component at a constant ratio, a temperature at which a thermoplastic resin having compatibility with polyamide or polyamide is melted,
A method for producing a continuous fiber-reinforced thermoplastic composite material, characterized in that the high-strength and high-elasticity fiber is molded at a temperature not higher than its melting temperature.
【請求項3】 編織材料が二次元織物または編物、三次
元織物または編物もしくは組み紐である請求項1または
2記載の連続繊維強化熱可塑性複合材料の製造方法。
3. The method for producing a continuous fiber-reinforced thermoplastic composite material according to claim 1, wherein the knitting material is a two-dimensional woven fabric or knitted fabric, a three-dimensional woven fabric, a knitted fabric or a braid.
JP4138481A 1992-05-29 1992-05-29 Manufacture of continuous fiber reinforced thermoplastic composite material Pending JPH05329945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4138481A JPH05329945A (en) 1992-05-29 1992-05-29 Manufacture of continuous fiber reinforced thermoplastic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4138481A JPH05329945A (en) 1992-05-29 1992-05-29 Manufacture of continuous fiber reinforced thermoplastic composite material

Publications (1)

Publication Number Publication Date
JPH05329945A true JPH05329945A (en) 1993-12-14

Family

ID=15223089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4138481A Pending JPH05329945A (en) 1992-05-29 1992-05-29 Manufacture of continuous fiber reinforced thermoplastic composite material

Country Status (1)

Country Link
JP (1) JPH05329945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120878A (en) * 2005-10-28 2007-05-17 Kobe Steel Ltd Heat transfer tube for open rack type carburetor and header tube
JP2015114627A (en) * 2013-12-13 2015-06-22 富士ゼロックス株式会社 Resin tubular body, fixing device, and image formation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120878A (en) * 2005-10-28 2007-05-17 Kobe Steel Ltd Heat transfer tube for open rack type carburetor and header tube
JP2015114627A (en) * 2013-12-13 2015-06-22 富士ゼロックス株式会社 Resin tubular body, fixing device, and image formation device

Similar Documents

Publication Publication Date Title
KR930008403B1 (en) Reinforcing material
JP4180520B2 (en) COMPOSITE MATERIAL, ITS MANUFACTURING METHOD AND USE THEREOF
JP5864172B2 (en) Polyparaphenylene terephthalamide fiber composite, its production method and its use
KR101437212B1 (en) Continuous carbon fiber reinforced thermoplastic composites with well-impregnated and method for manufacturing of the same
EP0216518A2 (en) Fiber having thermoplastic resin coating
EP3533915A1 (en) Woven article for carbon fiber reinforced plastic and molded product formed therefrom
GB2168361A (en) Impregnating fibres reinforcement with polymer materials
JPH049816B2 (en)
CN110114393A (en) Carbon fiber prepreg or carbon fibre reinforced plastic and inside and outside material comprising it
FI73233B (en) FORMBARA LOESNINGAR AV CELLULOSA OCH EN POLYMER PAO BASIS AV ACRYLNITRIL, FOERFARANDE FOER FRAMSTAELLNING AV DESSA LOESNINGAR OCH FIBRER, FILAMENT OCH TRAODAR FRAMSTAELLDA AV DESSA LOESNINGAR SAMT FOERFARE
JP2019155634A (en) Method for producing composite intermediate material
JPH05329945A (en) Manufacture of continuous fiber reinforced thermoplastic composite material
DE1938282A1 (en) New fiber-reinforced composites
JP2020531707A (en) Aramid woven fabric with excellent adhesion and tensile strength to polyurethane matrix resin, its manufacturing method, prepreg of aramid woven fabric containing it, and aramid woven fabric / thermoplastic polyurethane resin composite material containing it.
EP0368412A2 (en) Method for the production of flexible, polymer-impregnated reinforcing materials, the polymer-impregnated reinforcing materials produced and shaped articles produced on the basis of these reinforcing materials
KR20200106506A (en) Molded article containing elastane contained in cellulose, and manufacturing method
JPS6356330B2 (en)
JP2018001464A (en) Fiber-reinforced resin member and method for producing the same
JP2002371141A (en) Fiber-reinforced molding material, molded article and method for producing the both
JP2587785B2 (en) Manufacturing method of prepreg
WO2002042235A2 (en) Epoxy urethane string binder
JPH0343216Y2 (en)
JP2870994B2 (en) Fiber reinforced composite and molding method
WO2002042363A2 (en) Polyester resin string binder
US6828024B1 (en) Epoxy film former string binder