JPH05329599A - Method for controlling molten steel flow in continuous casting mold - Google Patents
Method for controlling molten steel flow in continuous casting moldInfo
- Publication number
- JPH05329599A JPH05329599A JP13490292A JP13490292A JPH05329599A JP H05329599 A JPH05329599 A JP H05329599A JP 13490292 A JP13490292 A JP 13490292A JP 13490292 A JP13490292 A JP 13490292A JP H05329599 A JPH05329599 A JP H05329599A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- flow
- meniscus
- magnetic field
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は連続鋳造モールド内溶鋼
流動制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling molten steel flow in a continuous casting mold.
【0002】[0002]
【従来の技術】連続鋳造に際し、鋳片の未凝固部分を電
磁撹拌することによって、鋳片内部の偏析を軽減し、良
好な鋳片を得ることは、一般に行われている。例えば特
公昭64−10305号公報では鋳型の少なくとも1方
の長辺側のメニスカス近傍に、2つの電磁撹拌装置を対
向して設置し、長辺側に設置した電磁撹拌装置によっ
て、鋳型内溶鋼に巾方向の中心に向う流れを付与し、浸
漬ノズルからの溶鋼流の鋳型内溶鋼への浸透深さを浅く
して、良好な品質の鋳片を製造することが開示されてい
る。2. Description of the Related Art In continuous casting, it is common practice to electromagnetically stir the unsolidified portion of the slab to reduce segregation inside the slab and obtain a good slab. For example, in JP-B-64-10305, two electromagnetic stirrers are installed facing each other near the meniscus on the long side of at least one side of the mold, and the molten steel in the mold is melted by the electromagnetic stirrer installed on the long side. It is disclosed that a slab of good quality is produced by imparting a flow toward the center in the width direction to reduce the depth of penetration of the molten steel flow from the immersion nozzle into the molten steel in the mold.
【0003】又特開昭64−2771号公報では浸漬ノ
ズルの左右吐出口からの溶鋼吐出流の強さに応じて移動
磁界を作用させて適正な大きさの湯面変動を実現して異
常な湯面変動にともなうモールドパウダー巻込み及び鋳
片の表面割れによる表面欠陥を防止することが開示され
ている。Further, in Japanese Unexamined Patent Publication No. 64-2771, a moving magnetic field is applied in accordance with the strength of the molten steel discharge flow from the left and right discharge ports of the immersion nozzle to realize an appropriate level fluctuation of the molten metal surface, which is abnormal. It is disclosed to prevent surface defects due to mold powder entrainment and surface cracking of a cast piece due to fluctuations in the molten metal surface.
【0004】[0004]
【発明が解決しようとする課題】連続鋳造モールド内の
溶鋼の流動は鋳片品質を左右する重要な要素である。本
発明はモールド内のメニスカス流速を制御して表面性状
の優れた鋳片を得る連続鋳造モールド内溶鋼流動制御方
法を提供するものである。The flow of molten steel in a continuous casting mold is an important factor that affects the quality of cast slabs. The present invention provides a method for controlling molten steel flow in a continuous casting mold for controlling the meniscus flow velocity in the mold to obtain a slab having excellent surface properties.
【0005】[0005]
【課題を解決するための手段】本発明の要旨は、連続鋳
造モールドの溶鋼にノズルを浸漬して連続鋳造するに当
り、ノズル吐出孔角度が上向き45°〜下向き180°
のノズルを、浸漬深さが50mm〜400mmの範囲に設け
て、モールド幅方向に2分割以上に区分されたコイルに
より、下記式により定まる移動磁界を溶鋼に印加して、
吐出反転流を加速、減速し、10cm/sec〜60cm/secの
メニスカス流速を溶鋼に付与して、図4に示す所望の撹
拌パターンを溶鋼に形成することを特徴とする連続鋳造
モールド内溶鋼流動制御方法である。 50≦L×f≦40000 ただし L:コイルピッチ(mm) f:磁界周波数(Hz)SUMMARY OF THE INVENTION The gist of the present invention is that when a nozzle is immersed in molten steel of a continuous casting mold for continuous casting, the nozzle discharge hole angle is 45 ° upward to 180 ° downward.
Nozzle No. is provided in a range of immersion depth of 50 mm to 400 mm, and a moving magnetic field determined by the following formula is applied to the molten steel by a coil divided into two or more parts in the mold width direction,
A molten steel flow in a continuous casting mold, characterized by accelerating and decelerating the discharge reversal flow and applying a meniscus flow velocity of 10 cm / sec to 60 cm / sec to the molten steel to form the desired stirring pattern shown in FIG. 4 in the molten steel. It is a control method. 50 ≦ L × f ≦ 40000 However, L: Coil pitch (mm) f: Magnetic field frequency (Hz)
【0006】以下本発明を詳述する。図1は本発明に係
る連続鋳造用の鋳型要部を見易くするため一部破断して
示した図である。鋳型は長辺鋳型銅板1−1,1−2と
短辺鋳型銅板1−3,1−4からなり、図示しないタン
ディッシュに取付けられた浸漬ノズル2の下部が挿入さ
れている。この浸漬ノズル2の下部に設けられた吐出孔
は鋳型短辺方向に対向して浸漬ノズルの両側に1個ずつ
開口しているが格別限定されない。この浸漬ノズルを介
してタンディッシュから鋳型内に溶鋼3が注入される
が、浸漬ノズルから吐出した吐出流5は短辺方向に向か
い短辺に当って上,下に別れ、上方に向かった溶鋼流は
吐出反転流aとなりメニスカス流6を形成する。一方下
方に向かった溶鋼流bは下降流となる。The present invention will be described in detail below. FIG. 1 is a partially cutaway view showing a main part of a continuous casting mold according to the present invention so as to be easily seen. The mold is composed of long-side mold copper plates 1-1 and 1-2 and short-side mold copper plates 1-3 and 1-4, and the lower part of the immersion nozzle 2 attached to a tundish (not shown) is inserted. The discharge holes provided in the lower portion of the immersion nozzle 2 are opposed to each other in the direction of the shorter side of the mold and are opened one by one on both sides of the immersion nozzle, but there is no particular limitation. Molten steel 3 is injected into the mold from the tundish through this dipping nozzle, and the discharge flow 5 discharged from the dipping nozzle is directed toward the short side, hits the short side, is divided into upper and lower parts, and is directed upward. The flow becomes the discharge reversal flow a, and the meniscus flow 6 is formed. On the other hand, the molten steel flow b directed downward becomes a downward flow.
【0007】本発明は鋳型の相対向する長辺側面1−
1,1−2の外側にモールド幅方向に2分割以上に区分
された撹拌用コイル7−1,7−2が設けられ移動磁界
を発生する。又鋳型から離れた制御室10に移動磁界の
方向を変える相順切換器と電流制御器が設けられ、交流
電源に導通される。図3のLはコイルのポールピッチで
ある。According to the present invention, the long side surfaces of the mold facing each other 1-
Agitating coils 7-1 and 7-2, which are divided into two or more sections in the mold width direction, are provided outside the elements 1 and 1-2 to generate a moving magnetic field. In addition, a phase sequence switching device that changes the direction of the moving magnetic field and a current controller are provided in the control chamber 10 away from the mold, and they are connected to an AC power source. L in FIG. 3 is the pole pitch of the coil.
【0008】本発明者らの実験によると浸漬ノズルから
注湯された溶鋼の凝固シェルへの衝突強さを確保しつ
つ、かつ吐出反転流により形成されるメニスカス流を一
定範囲に制御することは鋳片の表面性状向上に極めて有
効なる知見を得た。即ち本発明においては50≦L×f
≦40000(ただしコイルピッチ:Lmm、磁界周波
数:fHzとする)を満足する移動磁界を溶鋼に印加して
10cm/sec〜60cm/secのメニスカス流速を得るもので
あるが、これは次の理由による。According to the experiments conducted by the present inventors, it is possible to control the meniscus flow formed by the discharge reversal flow within a certain range while ensuring the collision strength of the molten steel poured from the immersion nozzle to the solidified shell. We have found that it is extremely effective in improving the surface properties of cast slabs. That is, in the present invention, 50 ≦ L × f
A moving magnetic field satisfying ≤40,000 (coil pitch: Lmm, magnetic field frequency: fHz) is applied to molten steel to obtain a meniscus flow velocity of 10 cm / sec to 60 cm / sec, for the following reason. ..
【0009】即ちモールド内溶鋼に移動磁界を印加する
とき、磁界移動速度Vは(1)式で表される。 V=C1 ×L×f+C2 …………………(1) (L:コイルのポールピッチ、f:磁界周波数、C1 ,
C2 :調整係数) 又、メニスカス流速Vpによって磁界移動速度を決定す
るため、磁界移動速度VはVpの関数となる。このと
き、関数は1次式(2)、又は2次式(3)で考える。 V=f(Vp)=C3 ×Vp+C4 …………………(2) =C3 ×Vp2 +C4 ×Vp+C5 …………………(3)That is, when a moving magnetic field is applied to the molten steel in the mold, the magnetic field moving speed V is expressed by equation (1). V = C 1 × L × f + C 2 (1) (L: coil pole pitch, f: magnetic field frequency, C 1 ,
C 2: adjustment factors) In addition, in order to determine the magnetic field moving speed by the meniscus flow speed Vp, the magnetic field moving velocity V is a function of Vp. At this time, the function is considered by the linear expression (2) or the quadratic expression (3). V = f (Vp) = C 3 × Vp + C 4 …………… (2) = C 3 × Vp 2 + C 4 × Vp + C 5 …………… (3)
【0010】(1)式と(2)式又は(3)式を連立さ
せてVpについて解くと、(4)式又は(5)式とな
る。 Vp=C6 ×L×f+C7 …………………(4) =C6 ×L0.5 ×f0.5 +C7 …………………(5) 又、V=f(Vp)を高次式で表す場合を考えるとVp
は一般的には(6)式のようになる(C7 =1/次
数)。 Vp=C6 ×LC7×fC7+C8 …………………(6) このとき、L,fと同様にVpに影響を与えるコイル電
流Iの変動は、C6 ,C8 の変化範囲に含まれる。実際
には0〜2500mAの範囲で操業を行った。If equations (1) and (2) or (3) are combined and solved for Vp, equation (4) or (5) is obtained. Vp = C 6 × L × f + C 7 ……………… (4) = C 6 × L 0.5 × f 0.5 + C 7 ……………… (5) Moreover, V = f (Vp) is increased. Considering the case of the following formula, Vp
Is generally expressed by the equation (6) (C 7 = 1 / degree). Vp = C 6 × L C7 × f C7 + C 8 (6) At this time, the fluctuation of the coil current I, which affects Vp similarly to L and f, is the change of C 6 and C 8 . Included in the range. Actually, the operation was performed in the range of 0 to 2500 mA.
【0011】ここで、メニスカス流速Vpの適正値範囲
(Vpmin ,Vpmax )と(6)式より(7)式が得ら
れる。 Vpmin ≦C6 ×LC7×fC7+C8 ≦Vpmax …………………(7) これを変形すると(8)式が得られる。 C9 ≦L×f≦C10 …………………(8)Here, the formula (7) is obtained from the proper value range (Vp min , Vp max ) of the meniscus flow velocity Vp and the formula (6). Vp min ≤ C 6 × L C7 × f C7 + C 8 ≤Vp max (7) When this is modified, the formula (8) is obtained. C 9 ≦ L × f ≦ C 10 …………………… (8)
【0012】以上の導出より、V=f(Vp)の次数を
問わず(8)式は得られることが明白なため、C9 ,C
10を得るために図5のように横軸をL×f、縦軸をVp
という1次式前提で示す。From the above derivation, it is clear that the equation (8) can be obtained regardless of the order of V = f (Vp). Therefore, C 9 and C
In order to obtain 10 , the horizontal axis is L × f and the vertical axis is Vp as shown in FIG.
This is shown on the assumption that
【0013】図5により、モールド電磁撹拌装置のコイ
ルピッチと磁界周波数の積L×fを50≦L×f≦40
000(L:コイルピッチ(mm)、f:磁界周波数(H
z))とすれば、メニスカス流速を適正に制御すること
が可能となる。According to FIG. 5, the product L × f of the coil pitch and the magnetic field frequency of the mold electromagnetic stirrer is 50 ≦ L × f ≦ 40.
000 (L: coil pitch (mm), f: magnetic field frequency (H
z)) makes it possible to properly control the meniscus flow velocity.
【0014】又実験によると凝固シェルの表層を洗い流
し、介在物や偏析を除去するために、ある程度の溶鋼吐
出流速は必要である。さらに、メニスカスでの介在物捕
捉防止のためにはメニスカス流のコントロールが必要で
ある。According to experiments, a certain molten steel discharge flow rate is required to wash away the surface layer of the solidified shell and remove inclusions and segregation. Furthermore, it is necessary to control the meniscus flow in order to prevent inclusions from being trapped in the meniscus.
【0015】即ち、溶鋼吐出流をメニスカスからの距離
別にみると図6となる。即ちメニスカスから300mmを
臨界点とすることができる。従って、メニスカス流のみ
が存在するメニスカスから直下300mm下までの範囲に
コイル中心を設置し、メニスカス流のみをコントロール
する。That is, FIG. 6 shows the molten steel discharge flow by distance from the meniscus. That is, the critical point can be 300 mm from the meniscus. Therefore, the center of the coil is set in a range from the meniscus where only the meniscus flow exists to 300 mm below, and only the meniscus flow is controlled.
【0016】本発明においてメニスカス流速が10cm/s
ec未満及び60cm/sec超になるときは得られる鋳片の表
面欠陥発生率が大きい。従って本発明はメニスカス流速
を10〜60cm/secの範囲に制御するものである。この
ため電磁撹拌コイル中心は鋳造方向のメニスカス〜直下
300mmに設置することが必要である。メニスカス流速
は、例えば溶鋼流中にサーモアロイ製の円筒を装入し流
れによる抵抗力Fを歪みゲージで測定する。歪みと抵抗
力は予め分銅を用いて検量線を引き回帰式より定めるこ
とができる。In the present invention, the meniscus flow velocity is 10 cm / s.
When it is less than ec and exceeds 60 cm / sec, the surface defect occurrence rate of the obtained cast piece is large. Therefore, the present invention controls the meniscus flow velocity within the range of 10 to 60 cm / sec. For this reason, the center of the electromagnetic stirring coil must be installed 300 mm directly below the meniscus in the casting direction. The meniscus flow velocity is measured by, for example, inserting a thermorey cylinder into the molten steel flow and measuring the flow resistance F with a strain gauge. The strain and the resistance can be determined in advance by drawing a calibration curve using a weight and using a regression equation.
【0017】本発明においてはノズル浸漬深さは浴面か
ら50mm〜400mmの範囲とする。即ち図7に示すよう
に50mm未満では溶鋼表面に極端な波立ち現象Wがみら
れ、一方400mm超では溶鋼表面に新たな溶鋼の供給が
なく、死に湯状態Zとなり、好ましくない。In the present invention, the nozzle immersion depth is in the range of 50 mm to 400 mm from the bath surface. That is, as shown in FIG. 7, if it is less than 50 mm, an extreme waviness phenomenon W is observed on the surface of the molten steel, while if it exceeds 400 mm, no new molten steel is supplied to the surface of the molten steel and the molten steel state Z is dead, which is not preferable.
【0018】又ノズル吐出孔角度は上向き45°〜下向
き180°とする。即ち図8に示すように上向き90
°、上向き135°では溶鋼表面に極端な波立ち現象W
が生じて好ましくない。実験によると浸漬ノズルに設け
られる吐出孔の数は本発明においては格別限定されな
い。又ノズル吐出孔の形状は丸、楕円、長方形又は正方
形のいずれも用いられる。Further, the nozzle discharge hole angle is 45 ° upward to 180 ° downward. That is, as shown in FIG.
At 135 ° and upward of 135 °
Is not preferred. According to experiments, the number of discharge holes provided in the immersion nozzle is not particularly limited in the present invention. The shape of the nozzle discharge hole may be round, oval, rectangular or square.
【0019】本発明における撹拌パターンを図4に示
す。(a)は撹拌方向8がモールド中心から短辺に指向
するもの、(b)は短辺からモールド中心に指向するも
のである。The stirring pattern in the present invention is shown in FIG. In (a), the stirring direction 8 is directed from the mold center to the short side, and (b) is directed from the short side to the mold center.
【0020】図2に示す制御部10は、各コイル7−
1,7−2…を各別に移動磁界の方向と強さを50≦L
×f≦40000の範囲に制御して、鋼種、スラブ形状
に従い図4の示す所望の撹拌パターンを選択することが
できる。撹拌パターンの形成は吐出反転流に移動磁界を
印加してメニスカス流速を加速、減速して行う。The control unit 10 shown in FIG.
1, 7-2 ... The moving magnetic field direction and strength are 50 ≦ L
The desired stirring pattern shown in FIG. 4 can be selected according to the steel type and the slab shape by controlling in the range of xf ≦ 40,000. The stirring pattern is formed by applying a moving magnetic field to the discharge reversal flow to accelerate or decelerate the meniscus flow velocity.
【0021】[0021]
【実施例】表1に示すモールド条件及び電磁撹拌条件に
よって連続鋳造して表面欠陥の発生率を調べた。図9に
比較例とともに示す。EXAMPLE Continuous casting was performed under the molding conditions and electromagnetic stirring conditions shown in Table 1 to examine the occurrence rate of surface defects. FIG. 9 shows this together with a comparative example.
【0022】[0022]
【表1】 [Table 1]
【0023】このときのコイル仕様及び能力を表2に示
す。Table 2 shows the coil specifications and capabilities at this time.
【0024】[0024]
【表2】 [Table 2]
【0025】本発明によれば図9(b)に示すように、
メニスカス流速10〜60cm/secの範囲内で表面欠陥の
発生率は5%以下であった。According to the present invention, as shown in FIG.
The occurrence rate of surface defects was 5% or less within the range of the meniscus flow rate of 10 to 60 cm / sec.
【0026】[0026]
【発明の効果】本発明によると連続鋳造の鋳型内溶鋼の
メニスカス流速を制御するので、表面性状に優れた鋳片
を得ることができる。According to the present invention, since the meniscus flow velocity of the molten steel in the mold of continuous casting is controlled, it is possible to obtain a slab having excellent surface properties.
【図1】本発明の一部切欠き説明図である。FIG. 1 is a partially cutaway explanatory view of the present invention.
【図2】本発明の部分斜視図である。FIG. 2 is a partial perspective view of the present invention.
【図3】本発明の部分平面図である。FIG. 3 is a partial plan view of the present invention.
【図4】(a)〜(f)は本発明の撹拌パターンであ
る。4 (a) to (f) are agitation patterns of the present invention.
【図5】メニスカス流速とL×fとの関係の図表であ
る。FIG. 5 is a chart showing the relationship between meniscus flow velocity and L × f.
【図6】単位体積当りの溶鋼吐出流とメニスカスからの
距離との関係の図表である。FIG. 6 is a chart of a relationship between a molten steel discharge flow per unit volume and a distance from a meniscus.
【図7】メニスカス流速のEMS制御可能範囲とノズル
浸漬深さとの関係の図表である。FIG. 7 is a chart showing the relationship between the EMS controllable range of the meniscus flow velocity and the nozzle immersion depth.
【図8】メニスカス流速のEMS制御可能範囲とノズル
吐出孔角度との関係の図表である。FIG. 8 is a chart showing the relationship between the EMS controllable range of the meniscus flow velocity and the nozzle discharge hole angle.
【図9】(a)と(b)はメニスカス流速と表面欠陥発
生率との関係の図表である。9A and 9B are charts showing the relationship between meniscus flow velocity and surface defect occurrence rate.
Claims (1)
して連続鋳造するに当り、ノズル吐出孔角度が上向き4
5°〜下向き180°のノズルを、浸漬深さが50mm〜
400mmの範囲に設けて、モールド幅方向に2分割以上
に区分されたコイルにより、下記式により定まる移動磁
界を溶鋼に印加して、吐出反転流を加速、減速し、10
cm/sec〜60cm/secのメニスカス流速を溶鋼に付与し
て、図4に示す所望の撹拌パターンを溶鋼に形成するこ
とを特徴とする連続鋳造モールド内溶鋼流動制御方法。 50≦L×f≦40000 ただし L:コイルピッチ(mm) f:磁界周波数(Hz)1. When a nozzle is immersed in molten steel of a continuous casting mold for continuous casting, the nozzle discharge hole angle is upward 4 °.
5 ° ~ 180 ° downward nozzle, immersion depth 50mm ~
A moving magnetic field determined by the following formula is applied to molten steel by a coil that is provided in a range of 400 mm and is divided into two or more sections in the mold width direction to accelerate and decelerate the discharge reversal flow.
A method for controlling molten steel flow in a continuous casting mold, which comprises applying a meniscus flow velocity of cm / sec to 60 cm / sec to molten steel to form the desired stirring pattern shown in FIG. 4 on the molten steel. 50 ≦ L × f ≦ 40000 However, L: Coil pitch (mm) f: Magnetic field frequency (Hz)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13490292A JP2633769B2 (en) | 1992-05-27 | 1992-05-27 | Method for controlling molten steel flow in continuous casting mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13490292A JP2633769B2 (en) | 1992-05-27 | 1992-05-27 | Method for controlling molten steel flow in continuous casting mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05329599A true JPH05329599A (en) | 1993-12-14 |
JP2633769B2 JP2633769B2 (en) | 1997-07-23 |
Family
ID=15139199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13490292A Expired - Lifetime JP2633769B2 (en) | 1992-05-27 | 1992-05-27 | Method for controlling molten steel flow in continuous casting mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2633769B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995026243A1 (en) * | 1994-03-29 | 1995-10-05 | Nippon Steel Corporation | Method of controlling flow in casting mold by using dc magnetic field |
-
1992
- 1992-05-27 JP JP13490292A patent/JP2633769B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995026243A1 (en) * | 1994-03-29 | 1995-10-05 | Nippon Steel Corporation | Method of controlling flow in casting mold by using dc magnetic field |
Also Published As
Publication number | Publication date |
---|---|
JP2633769B2 (en) | 1997-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1448329B1 (en) | A device and a method for continuous casting | |
KR100741403B1 (en) | Method for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings | |
US8109320B2 (en) | Method and apparatus for the continuous casting of preliminary steel sections | |
JP7151247B2 (en) | Flow controller for thin slab continuous casting and thin slab continuous casting method | |
JPH0555220B2 (en) | ||
JPH05329594A (en) | Method for controlling molten steel flow in continuous casting mold | |
JPH05329599A (en) | Method for controlling molten steel flow in continuous casting mold | |
JP3593328B2 (en) | Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor | |
JPH06606A (en) | Controller for flow of molten steel in continuous casting mold | |
EP3597328B1 (en) | Continuous casting method for steel | |
JPH05329596A (en) | Method for controlling molten steel flow in continuous casting mold | |
JPH05329598A (en) | Method for controlling molten steel flow in continuous casting mold | |
JP2607334B2 (en) | Flow control device for molten steel in continuous casting mold | |
JPH05329597A (en) | Method for controlling molten steel flow in continuous casting mold | |
JPH05329595A (en) | Method for controlling molten steel flow in continuous casting mold | |
JPH06604A (en) | Controller for flow of molten steel in continuous casting mold | |
JP2607335B2 (en) | Flow control device for molten steel in continuous casting mold | |
JP2626861B2 (en) | Flow control device for molten steel in continuous casting mold | |
JP2607332B2 (en) | Flow control device for molten steel in continuous casting mold | |
JP3257546B2 (en) | Steel continuous casting method | |
JPH0523804A (en) | Production of cast steel slab | |
JP4432263B2 (en) | Steel continuous casting method | |
JPH0671403A (en) | Controller for fluid of molten steel in continuous casting mold | |
JP4910357B2 (en) | Steel continuous casting method | |
JP3491099B2 (en) | Continuous casting method of steel using static magnetic field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970212 |