JPH05329595A - Method for controlling molten steel flow in continuous casting mold - Google Patents

Method for controlling molten steel flow in continuous casting mold

Info

Publication number
JPH05329595A
JPH05329595A JP4134898A JP13489892A JPH05329595A JP H05329595 A JPH05329595 A JP H05329595A JP 4134898 A JP4134898 A JP 4134898A JP 13489892 A JP13489892 A JP 13489892A JP H05329595 A JPH05329595 A JP H05329595A
Authority
JP
Japan
Prior art keywords
molten steel
flow
meniscus
mold
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4134898A
Other languages
Japanese (ja)
Other versions
JP2633765B2 (en
Inventor
Takumi Kondo
琢巳 近藤
Kazuhiko Tsutsumi
一彦 堤
Atsushi Fukuda
淳 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4134898A priority Critical patent/JP2633765B2/en
Publication of JPH05329595A publication Critical patent/JPH05329595A/en
Application granted granted Critical
Publication of JP2633765B2 publication Critical patent/JP2633765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a cast slab having excellent surface characteristic by impressing a specific moving magnetic field with coils divided into two or more in the width direction of a mold, accelerating/decelerating discharged turnover flow and controlling meniscus flow velocity. CONSTITUTION:Molten steel 3 is poured into the mold from a tundish through an immersion nozzle 2 and them the discharging flow 5 discharged from the immersion nozzle 2 is directed to short side direction and hit to the short side and separated into the upper and the lower parts and the molten steel; flow directed to the upper part becomes the discharged turnover flow (a) to form the meniscus flow 6. By impressing the moving magnetic field satisfying the inequality to the molten steel, the meniscus flow velocity having 10-60m/sec is obtd. That is, it is very effective to the improvement of the surface characteristic of the cast slab that the flow velocity of the meniscus flow 6 formed with the discharged turnover flow (a) is controlled in the fixed range by accelerating/ decelerating while securing the hitting intensity of the molten steel 3 poured from the immersion nozzle 2 to solidified shell 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造モールド内溶鋼
流動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling molten steel flow in a continuous casting mold.

【0002】[0002]

【従来の技術】連続鋳造に際し、鋳片の未凝固部分を電
磁撹拌することによって、鋳片内部の偏析を軽減し、良
好な鋳片を得ることは、一般に行われている。例えば特
公昭64−10305号公報では鋳型の少なくとも1方
の長辺側のメニスカス近傍に、2つの電磁撹拌装置を対
向して設置し、長辺側に設置した電磁撹拌装置によっ
て、鋳型内溶鋼に巾方向の中心に向う流れを付与し、浸
漬ノズルからの溶鋼流の鋳型内溶鋼への浸透深さを浅く
して、良好な品質の鋳片を製造することが開示されてい
る。
2. Description of the Related Art In continuous casting, it is common practice to electromagnetically stir the unsolidified portion of the slab to reduce segregation inside the slab and obtain a good slab. For example, in JP-B-64-10305, two electromagnetic stirrers are installed facing each other near the meniscus on the long side of at least one side of the mold, and the molten steel in the mold is melted by the electromagnetic stirrer installed on the long side. It is disclosed that a slab of good quality is produced by imparting a flow toward the center in the width direction to reduce the depth of penetration of the molten steel flow from the immersion nozzle into the molten steel in the mold.

【0003】又特開昭64−2771号公報では浸漬ノ
ズルの左右吐出孔からの溶鋼吐出流の強さに応じて移動
磁界を作用させて適正な大きさの湯面変動を実現して異
常な湯面変動にともなうモールドパウダー巻込み及び鋳
片の表面割れによる表面欠陥を防止することが開示され
ている。
Further, in Japanese Unexamined Patent Publication No. 64-2771, a moving magnetic field is applied in accordance with the strength of the molten steel discharge flow from the left and right discharge holes of the immersion nozzle to realize an appropriate level fluctuation of the molten metal surface, which is abnormal. It is disclosed to prevent surface defects due to mold powder entrainment and surface cracking of a cast piece due to fluctuations in the molten metal surface.

【0004】[0004]

【発明が解決しようとする課題】連続鋳造モールド内の
溶鋼の流動は鋳片品質を左右する重要な要素である。本
発明はモールド内のメニスカス流速を制御して表面性状
の優れた鋳片を得る連続鋳造モールド内溶鋼流動制御方
法を提供するものである。
The flow of molten steel in a continuous casting mold is an important factor that affects the quality of cast slabs. The present invention provides a method for controlling molten steel flow in a continuous casting mold for controlling the meniscus flow velocity in the mold to obtain a slab having excellent surface properties.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、連続鋳
造モールドの溶鋼にノズルを浸漬して連続鋳造するに当
り、モールド幅方向に2分割以上に区分されたコイルに
より、下記式により定まる移動磁界を溶鋼に印加して、
吐出反転流を加速、減速し10cm/sec〜60cm/secのメ
ニスカス流速を溶鋼に付与して、図4に示す所望の撹拌
パターンを溶鋼に形成することを特徴とする連続鋳造モ
ールド内溶鋼流動制御方法である。 50≦L×f≦40000 ただし L:コイルピッチ(mm) f:磁界周波数(Hz)
The gist of the present invention is determined by the following formula by a coil divided into two or more parts in the width direction of the mold when the nozzle is immersed in the molten steel of the continuous casting mold for continuous casting. Applying a moving magnetic field to molten steel,
Controlling the molten steel flow in a continuous casting mold, which accelerates and decelerates the discharge reversal flow to impart a meniscus flow velocity of 10 cm / sec to 60 cm / sec to molten steel to form the desired stirring pattern shown in FIG. Is the way. 50 ≦ L × f ≦ 40000 However, L: Coil pitch (mm) f: Magnetic field frequency (Hz)

【0006】以下本発明を詳述する。図1は本発明に係
る連続鋳造用の鋳型要部を一部破断して示した図であ
る。鋳型は長辺鋳型銅板1−1,1−2と短辺鋳型銅板
1−3,1−4からなり、図示しないタンディッシュに
取付けられた浸漬ノズル2の下部が挿入されている。こ
の浸漬ノズル2の下部に設けられた吐出孔は鋳型短辺方
向に対向して浸漬ノズルの両側に1個ずつ開口している
が格別限定されない。この浸漬ノズルを介してタンディ
ッシュから鋳型内に溶鋼3が注入されるが、浸漬ノズル
から吐出した吐出流5は短辺方向に向かい短辺に当たっ
て上,下に別れ、上方に向かった溶鋼流は吐出反転流a
となり、メニスカス流6を形成する。一方下方に向かっ
た溶鋼流bは下降流となる。
The present invention will be described in detail below. FIG. 1 is a partially cutaway view showing a main part of a mold for continuous casting according to the present invention. The mold is composed of long-side mold copper plates 1-1 and 1-2 and short-side mold copper plates 1-3 and 1-4, and the lower part of the immersion nozzle 2 attached to a tundish (not shown) is inserted. The discharge holes provided in the lower portion of the immersion nozzle 2 are opposed to each other in the direction of the shorter side of the mold and are opened one by one on both sides of the immersion nozzle, but there is no particular limitation. Molten steel 3 is injected into the mold from the tundish through this immersion nozzle, but the discharge flow 5 discharged from the immersion nozzle is directed toward the short side, hits the short side and is divided into upper and lower parts, and the molten steel flow directed upward is Reverse discharge flow a
And a meniscus flow 6 is formed. On the other hand, the molten steel flow b directed downward becomes a downward flow.

【0007】本発明は鋳型の相対向する長辺側面1−
1,1−2の外側にモールド幅方向に2分割以上に区分
された撹拌用コイル7−1,7−2が設けられ移動磁界
を発生する。又鋳型から離れた制御室10に移動磁界の
方向を変える切換器と電流制御器が設けられ、交流電源
に導通される。図3のLはコイルのポールピッチであ
る。
According to the present invention, the long side surfaces of the mold facing each other 1-
Agitating coils 7-1 and 7-2, which are divided into two or more sections in the mold width direction, are provided outside the elements 1 and 1-2 to generate a moving magnetic field. In addition, a switch and a current controller that change the direction of the moving magnetic field are provided in the control chamber 10 away from the mold, and are connected to an AC power source. L in FIG. 3 is the pole pitch of the coil.

【0008】本発明者らの実験によると浸漬ノズルから
注湯された溶鋼の凝固シェルへの衝突強さを確保しつ
つ、かつ吐出反転流により形成されるメニスカス流を一
定範囲に制御することは鋳片の表面性状向上に極めて有
効なる知見を得た。即ち本発明においては50≦L×f
≦40000(ただしコイルピッチ:Lmm、磁界周波
数:fHzとする)を満足する移動磁界を溶鋼に印加して
10cm/sec〜60cm/secのメニスカス流速を得るもので
あるが、これは次の理由による。
According to the experiments conducted by the present inventors, it is possible to control the meniscus flow formed by the discharge reversal flow within a certain range while ensuring the collision strength of the molten steel poured from the immersion nozzle to the solidified shell. We have found that it is extremely effective in improving the surface properties of cast slabs. That is, in the present invention, 50 ≦ L × f
A moving magnetic field satisfying ≤40,000 (coil pitch: Lmm, magnetic field frequency: fHz) is applied to molten steel to obtain a meniscus flow velocity of 10 cm / sec to 60 cm / sec, for the following reason. ..

【0009】即ち、モールド内溶鋼に移動磁界を印加す
るとき、磁界移動速度Vは(1)式で表される。 V=C1 ×L×f+C2 …………………(1) (L:コイルのポールピッチ、f:磁界周波数、C1
2 :調整係数) 又、メニスカス流速Vpによって磁界移動速度を決定す
るため、磁界移動速度VはVpの関数となる。このと
き、関数は1次式(2)、又は2次式(3)で考える。
That is, when a moving magnetic field is applied to the molten steel in the mold, the magnetic field moving speed V is expressed by equation (1). V = C 1 × L × f + C 2 (1) (L: coil pole pitch, f: magnetic field frequency, C 1 ,
C 2: adjustment factors) In addition, in order to determine the magnetic field moving speed by the meniscus flow speed Vp, the magnetic field moving velocity V is a function of Vp. At this time, the function is considered by the linear expression (2) or the quadratic expression (3).

【0010】 V=f(Vp)=C3 ×Vp+C4 …………………(2) =C3 ×Vp2 +C4 ×Vp+C5 …………………(3)V = f (Vp) = C 3 × Vp + C 4 …………… (2) = C 3 × Vp 2 + C 4 × Vp + C 5 …………… (3)

【0011】(1)式と(2)式又は(3)式を連立さ
せてVpについて解くと、(4)式又は(5)式とな
る。 Vp=C6 ×L×f+C7 …………………(4) =C6 ×L0.5 ×f0.5 +C7 …………………(5) 又、V=f(Vp)を高次式で表す場合を考えるとVp
は一般的には(6)式のようになる(C7 =1/次
数)。 Vp=C6 ×LC7×fC7+C8 …………………(6) このとき、L,fと同様にVpに影響を与えるコイル電
流Iの変動は、C6 ,C8 の変化範囲に含まれる。実際
には0〜2500mAの範囲で操業を行った。
When the equations (1) and (2) or (3) are combined and solved for Vp, the equation (4) or (5) is obtained. Vp = C 6 × L × f + C 7 ……………… (4) = C 6 × L 0.5 × f 0.5 + C 7 ……………… (5) Moreover, V = f (Vp) is increased. Considering the case of the following formula, Vp
Is generally expressed by the equation (6) (C 7 = 1 / degree). Vp = C 6 × L C7 × f C7 + C 8 (6) At this time, the fluctuation of the coil current I, which affects Vp similarly to L and f, is the change of C 6 and C 8 . Included in the range. Actually, the operation was performed in the range of 0 to 2500 mA.

【0012】ここで、メニスカス流速Vpの適正値範囲
(Vpmin ,Vpmax )と(6)式より(7)式が得ら
れる。 Vpmin ≦C6 ×LC7×fC7+C8 ≦Vpmax …………………(7) これを変形すると(8)式が得られる。 C9 ≦L×f≦C10 …………………(8)
Here, the formula (7) is obtained from the proper value range (Vp min , Vp max ) of the meniscus flow velocity Vp and the formula (6). Vp min ≤ C 6 × L C7 × f C7 + C 8 ≤Vp max (7) When this is modified, the formula (8) is obtained. C 9 ≦ L × f ≦ C 10 …………………… (8)

【0013】以上の導出より、V=f(Vp)の次数を
問わず(8)式は得られることが明白なため、C9 ,C
10を得るために図5のように横軸をL×f、縦軸をVp
という1次式前提で示す。
From the above derivation, it is clear that the equation (8) can be obtained regardless of the order of V = f (Vp). Therefore, C 9 and C
In order to obtain 10 , the horizontal axis is L × f and the vertical axis is Vp as shown in FIG.
This is shown on the assumption that

【0014】図5により、モールド電磁撹拌装置のコイ
ルピッチと磁界周波数の積L×fを50≦L×f≦40
000(L:コイルピッチ(mm)、f:磁界周波数(H
z))とすれば、メニスカス流速を適正に制御すること
が可能となる。
According to FIG. 5, the product L × f of the coil pitch of the mold electromagnetic stirring device and the magnetic field frequency is 50 ≦ L × f ≦ 40.
000 (L: coil pitch (mm), f: magnetic field frequency (H
z)) makes it possible to properly control the meniscus flow velocity.

【0015】又実験によると凝固シェルの表層を洗い流
し、介在物や偏析を除去するために、ある程度の溶鋼吐
出流速は必要である。さらに、メニスカスでの介在物捕
捉防止のためにはメニスカス流のコントロールが必要で
ある。即ち、溶鋼吐出流をメニスカスからの距離別にみ
ると図6となる。即ちメニスカスから300mmを臨界点
とすることができる。従って、メニスカス流のみが存在
するメニスカスから直下300mm下までの範囲にコイル
中心を設置し、メニスカス流のみをコントロールする。
According to experiments, a certain molten steel discharge flow rate is necessary to wash away the surface layer of the solidified shell and remove inclusions and segregation. Furthermore, it is necessary to control the meniscus flow in order to prevent inclusions from being trapped in the meniscus. That is, FIG. 6 shows the molten steel discharge flow by distance from the meniscus. That is, the critical point can be 300 mm from the meniscus. Therefore, the center of the coil is set in a range from the meniscus where only the meniscus flow exists to 300 mm below, and only the meniscus flow is controlled.

【0016】本発明においてメニスカス流速が10cm/s
ec未満及び60cm/sec超になるときは、得られる鋳片の
表面欠陥発生率が大きい。従って本発明はメニスカス流
速を10〜60cm/secの範囲に制御するものである。こ
のため電磁撹拌コイル中心は鋳造方向のメニスカス〜直
下300mmに設置することが必要である。
In the present invention, the meniscus flow velocity is 10 cm / s.
When it is less than ec and exceeds 60 cm / sec, the surface defect occurrence rate of the obtained slab is high. Therefore, the present invention controls the meniscus flow velocity within the range of 10 to 60 cm / sec. For this reason, the center of the electromagnetic stirring coil must be installed 300 mm directly below the meniscus in the casting direction.

【0017】メニスカス流速は、例えば、溶鋼流中にサ
ーモアロイ製の円筒を装入し流れによる抵抗力Fを歪み
ゲージで測定する。歪みと抵抗力は予め分銅を用いて検
量線を引き回帰式より定めることができる。浸漬ノズル
に設けられる吐出孔の数は格別限定されない。即ち図7
はノズル吐出孔数別にメニスカス流速のEMS制御可能
範囲をプロットしたものであるが、ノズル吐出孔1〜6
箇を適時選択することができる。
The meniscus flow velocity is measured by, for example, inserting a thermorey cylinder into the molten steel flow and measuring the resistance force F due to the flow with a strain gauge. The strain and the resistance can be determined in advance by drawing a calibration curve using a weight and using a regression equation. The number of discharge holes provided in the immersion nozzle is not particularly limited. That is, FIG.
Is a plot of the EMS controllable range of the meniscus flow velocity for each nozzle discharge hole.
You can select the timely.

【0018】又図8はノズル吐出孔の形状(ただし孔面
積は同じ)をメニスカス流速のEMS制御可能範囲にプ
ロットしたものであるが、本発明においては丸、楕円、
長方形又は正方形のいずれも用いられる。
Further, FIG. 8 is a plot of the shape of the nozzle discharge hole (however, the hole area is the same) in the EMS controllable range of the meniscus flow velocity.
Either a rectangle or a square can be used.

【0019】本発明における撹拌パターンを図4に示
す。(a)は撹拌方向8がモールド中心から短辺に指向
するもの、(b)は短辺からモールド中心に指向するも
のである。図2に示す制御部10は、各コイル7−1,
7−2…を各別に移動磁界の方向と強さを50≦L×f
≦40000の範囲に制御して鋼種、スラブ形状に従い
図4の示す所望の撹拌パターンを選択することができる
The stirring pattern in the present invention is shown in FIG. In (a), the stirring direction 8 is directed from the mold center to the short side, and (b) is directed from the short side to the mold center. The control unit 10 shown in FIG.
7-2 ... The moving magnetic field direction and strength are separately set to 50 ≦ L × f
The desired stirring pattern shown in FIG. 4 can be selected according to the steel type and slab shape by controlling in the range of ≦ 40000.

【0020】[0020]

【実施例】表1に示すモールド条件及び電磁撹拌条件に
よって連続鋳造して表面欠陥の発生率を調べた。図9に
比較例とともに示す。
EXAMPLE Continuous casting was performed under the molding conditions and electromagnetic stirring conditions shown in Table 1 to examine the occurrence rate of surface defects. FIG. 9 shows this together with a comparative example.

【0021】[0021]

【表1】 [Table 1]

【0022】このときのコイル仕様及び能力を表2に示
す。撹拌パターンの形成は吐出反転流に移動磁界を印加
してメニスカス流速を加速、減速して行う。
Table 2 shows the coil specifications and capabilities at this time. The stirring pattern is formed by applying a moving magnetic field to the discharge reversal flow to accelerate or decelerate the meniscus flow velocity.

【0023】[0023]

【表2】 [Table 2]

【0024】本発明によれば図9(b)に示すように、
メニスカス流速10〜60cm/secの範囲内で表面欠陥の
発生率は5%以下であった。
According to the present invention, as shown in FIG.
The occurrence rate of surface defects was 5% or less within the range of the meniscus flow rate of 10 to 60 cm / sec.

【0025】[0025]

【発明の効果】本発明によると連続鋳造の鋳型内溶鋼の
メニスカス流速を制御するので、表面性状に優れた鋳片
を得ることができる。
According to the present invention, since the meniscus flow velocity of the molten steel in the mold of continuous casting is controlled, it is possible to obtain a slab having excellent surface properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一部切欠き説明図である。FIG. 1 is a partially cutaway explanatory view of the present invention.

【図2】本発明の部分斜視図である。FIG. 2 is a partial perspective view of the present invention.

【図3】本発明の部分平面図である。FIG. 3 is a partial plan view of the present invention.

【図4】(a)〜(b)は本発明の撹拌パターンであ
る。
FIG. 4 (a) and FIG. 4 (b) are agitation patterns of the present invention.

【図5】メニスカス流速とL×fとの関係の図表であ
る。
FIG. 5 is a chart showing the relationship between meniscus flow velocity and L × f.

【図6】単位体積当りの溶鋼吐出流とメニスカスからの
距離との関係の図表である。
FIG. 6 is a chart of a relationship between a molten steel discharge flow per unit volume and a distance from a meniscus.

【図7】メニスカス流速のEMS制御可能範囲とノズル
吐出孔の数との関係の図表である。
FIG. 7 is a chart of the relationship between the EMS controllable range of meniscus flow velocity and the number of nozzle ejection holes.

【図8】メニスカス流速のEMS制御可能範囲とノズル
吐出孔の形との関係の図表である。
FIG. 8 is a chart showing the relationship between the EMS controllable range of the meniscus flow velocity and the shape of a nozzle ejection hole.

【図9】(a)と(b)はメニスカス流速と表面欠陥発
生率との関係の図表である。
9A and 9B are charts showing the relationship between meniscus flow velocity and surface defect occurrence rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造モールドの溶鋼にノズルを浸漬
して連続鋳造するに当り、モールド幅方向に2分割以上
に区分されたコイルにより、下記式により定まる移動磁
界を溶鋼に印加して、吐出反転流を加速、減速し10cm
/sec〜60cm/secのメニスカス流速を溶鋼に付与して、
図4に示す所望の撹拌パターンを溶鋼に形成することを
特徴とする連続鋳造モールド内溶鋼流動制御方法。 50≦L×f≦40000 ただし L:コイルピッチ(mm) f:磁界周波数(Hz)
1. When a nozzle is immersed in molten steel of a continuous casting mold for continuous casting, a moving magnetic field determined by the following formula is applied to the molten steel by a coil divided into two or more parts in the mold width direction and discharged. Reverse flow accelerates and decelerates 10 cm
Apply a meniscus flow velocity of / sec to 60 cm / sec to molten steel,
A method for controlling molten steel flow in a continuous casting mold, which comprises forming a desired stirring pattern shown in FIG. 4 in molten steel. 50 ≦ L × f ≦ 40000 However, L: Coil pitch (mm) f: Magnetic field frequency (Hz)
JP4134898A 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold Expired - Lifetime JP2633765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134898A JP2633765B2 (en) 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134898A JP2633765B2 (en) 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold

Publications (2)

Publication Number Publication Date
JPH05329595A true JPH05329595A (en) 1993-12-14
JP2633765B2 JP2633765B2 (en) 1997-07-23

Family

ID=15139105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134898A Expired - Lifetime JP2633765B2 (en) 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold

Country Status (1)

Country Link
JP (1) JP2633765B2 (en)

Also Published As

Publication number Publication date
JP2633765B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
KR100741404B1 (en) Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
JPH0555220B2 (en)
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JPH05329594A (en) Method for controlling molten steel flow in continuous casting mold
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP2922363B2 (en) Flow control device for molten steel in continuous casting mold
JPH05329595A (en) Method for controlling molten steel flow in continuous casting mold
AU711675B2 (en) Continuous casting machine
JP2607334B2 (en) Flow control device for molten steel in continuous casting mold
JPH05329599A (en) Method for controlling molten steel flow in continuous casting mold
JPH05329597A (en) Method for controlling molten steel flow in continuous casting mold
JPH05329596A (en) Method for controlling molten steel flow in continuous casting mold
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
JP2633768B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH06604A (en) Controller for flow of molten steel in continuous casting mold
JP2607332B2 (en) Flow control device for molten steel in continuous casting mold
JPH0523804A (en) Production of cast steel slab
JP3257546B2 (en) Steel continuous casting method
JP2626861B2 (en) Flow control device for molten steel in continuous casting mold
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPH0671403A (en) Controller for fluid of molten steel in continuous casting mold
JP4432263B2 (en) Steel continuous casting method
JPH05237621A (en) Continuous casting method
JPH0671401A (en) Controller for fluid of molten steel in continuous casting mold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970212