JPH05329557A - Flare working tube made of austenitic stainless steel - Google Patents

Flare working tube made of austenitic stainless steel

Info

Publication number
JPH05329557A
JPH05329557A JP4141352A JP14135292A JPH05329557A JP H05329557 A JPH05329557 A JP H05329557A JP 4141352 A JP4141352 A JP 4141352A JP 14135292 A JP14135292 A JP 14135292A JP H05329557 A JPH05329557 A JP H05329557A
Authority
JP
Japan
Prior art keywords
flare
tube
working
residual stress
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4141352A
Other languages
Japanese (ja)
Inventor
Yasunobu Sakane
康伸 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA KOKAN KK
OSAKA STEEL TUBE
Original Assignee
OSAKA KOKAN KK
OSAKA STEEL TUBE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA KOKAN KK, OSAKA STEEL TUBE filed Critical OSAKA KOKAN KK
Priority to JP4141352A priority Critical patent/JPH05329557A/en
Publication of JPH05329557A publication Critical patent/JPH05329557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

PURPOSE:To prevent a crack generated on the inside surface of a frame part of a flare working tube by performing compression with cold working to the inside surface of the frame part of the tube end formed by a flare working. CONSTITUTION:Flare working is executed by pressing a die (cone) against the tube end of a stock tube while rotating it and spreading out the tube end. After forming a frame part by the flare working, cold working is performed by using a steel wire brush wheel and a nylon grindstone wheel 7. By this compression, the tensile residual stress of the surface is reduced, or the tensile residual stress is eliminated, and on the contrary, the compression residual stress is generated, and stress corrosion cracking and fatigue cracking come also to be scarcely generated. In such a manner, the flare working tube can be used safely for a long period with respect to a piping coming into contact with the environment containing oxygen and chlorine ions, whose concentration is comparatively high, a piping whose expansion and contraction by a wall are large, and a piping whose vibration is violent, etc., as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、管端がフレアー加工
によって鍔状に成形されていて、ルーズフランジで接合
されるオーステナイト系ステンレス鋼製の管であって、
上記の鍔状成形部(フレアー加工部)における割れの発
生しにくい管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel pipe whose pipe end is formed into a brim by flare processing and which is joined by a loose flange.
The present invention relates to a pipe in which cracks are less likely to occur in the brim-shaped molding portion (flare processing portion).

【0002】[0002]

【従来の技術】化学プラントや各種建造物内の配管方法
の一つとして、端部をフレアー加工した管をルーズフラ
ンジで接合する方法がある。図1は、その原理を管の長
手方向断面図で示したものである。図示のように、二本
のフレアー管1は端部が鍔状に成形されており、その間
にパッキン2を介挿し、ルーズフランジ3をボルト4お
よびナット5で締めつけることによって接合される。
2. Description of the Related Art As one of piping methods in chemical plants and various structures, there is a method of joining pipes whose ends are flared with loose flanges. FIG. 1 shows the principle in a longitudinal sectional view of a tube. As shown in the figure, the two flare tubes 1 are formed in a brim shape at their ends, and a packing 2 is inserted therebetween, and the loose flange 3 is fastened with bolts 4 and nuts 5 to join them.

【0003】上記のフレアー加工管の材質は、炭素鋼、
低合金鋼、ステンレス鋼等、種々であるが、例えば給
水、給湯、排水用、あるいは化学薬品の輸送用の配管に
は JISのSUS 304 のようなオーステナイト系ステンレス
鋼製の溶接管が使用されることが多い。この材質の管
は、一般的な耐食性においては極めて優れているが、長
期の使用中に鍔の曲げ部(図1の○で囲ったAの部分)
の内面(管の内側に向いた面)、特にその溶接ビード近
傍に微細な割れが発生することがある。このような割れ
が進展すると接合部からの内部流体の漏れが生じ、甚だ
しい場合には接合部が破断して、管の他の部分が何ら損
傷していなくても交換を余儀なくされ、補修作業に手間
がかかるだけでなく、資材の浪費、プラントの運転中断
等、多くの問題が生じる。
The flared tube is made of carbon steel,
There are various types such as low alloy steel and stainless steel, but for example, for water supply, hot water supply, drainage, or transportation of chemicals, austenitic stainless steel welded pipe such as JIS SUS 304 is used. Often. The pipe made of this material is extremely excellent in general corrosion resistance, but the bent part of the tsuba (the part circled with ○ in Fig. 1) during long-term use.
Fine cracks may occur on the inner surface (surface facing the inside of the pipe), especially near the weld beads. If such a crack progresses, internal fluid will leak from the joint, and in extreme cases, the joint will rupture and will have to be replaced even if the other parts of the pipe are not damaged. Not only is it troublesome, but many problems occur, such as waste of materials and interruption of plant operation.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
なオーステナイト系ステンレス鋼製フレアー加工管の鍔
の曲がり部に発生する割れを防止することを課題として
なされたものである。
SUMMARY OF THE INVENTION An object of the present invention is to prevent cracks occurring in the bent portion of the flange of the flared pipe of austenitic stainless steel as described above.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は『フレア
ー加工によって形成された管端鍔部の内表面に冷間加工
による圧縮加工が施されていることを特徴とするにオー
ステナイト系ステンレス鋼製のフレアー加工管』にあ
る。
The gist of the present invention is that "the austenitic stainless steel is characterized in that the inner surface of the pipe end collar portion formed by flare processing is subjected to compression processing by cold working. Flare processing tube made of.

【0006】[0006]

【作用】本発明者は、フレアー加工管の鍔の曲がり部に
発生する割れの原因を詳しく調査し、それが応力腐食割
れと疲労破壊によるものであることを突きとめた。そし
て、鍔の曲がり部の内側に割れが発生し易いのは、その
加工履歴にあるのではないかと考えた。
The inventor of the present invention has investigated in detail the cause of the cracks generated in the bent portion of the flange of the flared pipe, and found that it is due to stress corrosion cracking and fatigue fracture. Then, it is considered that the cracks are likely to occur inside the bent portion of the brim in the processing history.

【0007】管端部のフレアー加工は、図2に示すよう
に、材料管(溶接鋼管)の管端に金型(コーン)6およ
び6 ’を回転させながら押しつけ、管端を押し広げて行
く方法によって行われる。従って、鍔の曲げ部A(図2
(C) で○で囲った部分)の表面には引張応力が残留す
る。加工後の管は、そのまま(熱処理等を施さずに)使
用されるからA部の内表面は引張残留応力を持ったまま
で管内部を流れる媒体に曝されることになる。
As shown in FIG. 2, the flaring of the pipe end is performed by pressing the molds (cones) 6 and 6'on the pipe end of the material pipe (welded steel pipe) while rotating the pipe end to spread the pipe end. Done by the method. Therefore, the bent portion A of the collar (see FIG.
Tensile stress remains on the surface of the (C) circled). The processed tube is used as it is (without being subjected to heat treatment or the like), so that the inner surface of the portion A is exposed to the medium flowing inside the tube while having a tensile residual stress.

【0008】応力腐食割れは、腐食環境と引張応力との
相乗作用で発生する。従って、部材の引張残留応力のあ
る部分は応力腐食割れ感受性が大きくなる。特に溶接ビ
ード部は溶接の熱影響によって鋭敏化していることが多
いから、応力腐食割れに敏感である。
Stress corrosion cracking occurs due to the synergistic effect of the corrosive environment and tensile stress. Therefore, the stress corrosion cracking susceptibility of the portion of the member having tensile residual stress is increased. In particular, the weld bead portion is often sensitized by the heat effect of welding, and is therefore susceptible to stress corrosion cracking.

【0009】疲労破壊は、管本体の膨張・収縮、振動等
によって発生する繰り返し応力が主原因であるが、これ
も部材そのものに引張残留応力があると、発生しやすく
なる。さらに、応力腐食により割れが発生した部分に繰
り返し応力が付加されると、割れの進展は一層加速され
る。
Fatigue failure is mainly caused by repetitive stress generated by expansion / contraction of the pipe body, vibration, etc. However, this also easily occurs when the member itself has tensile residual stress. Further, if stress is repeatedly applied to a portion where a crack has occurred due to stress corrosion, the progress of the crack is further accelerated.

【0010】本発明の管は、フレアー加工によって鍔部
を形成した後に、その曲げ部の内面に冷間加工による圧
縮加工が施されていることを特徴とする。この圧縮加工
よって前述の表面の引張残留応力が軽減され、或いは引
張残留応力が無くなって逆に圧縮残留応力が発生し、応
力腐食割れも疲労割れも発生しにくくなるのである。
The pipe of the present invention is characterized in that, after forming the collar portion by flare processing, the inner surface of the bent portion is subjected to compression processing by cold working. By this compression processing, the above-mentioned tensile residual stress on the surface is reduced, or the tensile residual stress disappears and conversely compressive residual stress occurs, and stress corrosion cracking and fatigue cracking hardly occur.

【0011】冷間加工方法は、表面に圧縮残留応力を発
生させる方法であればどのような方法でもよい。機械的
な方法としてはローラー掛け、ショットピーニング等が
あり、熱処理による方法として浸炭、窒化、表面焼入れ
等の方法がある。しかし、圧縮応力を与える必要がある
のは鍔の曲り部の内表面という極く特殊な部分だけであ
るから、例えば、鋼線ブラシホイールやナイロン砥石ホ
イール(ホイール状のナイロン繊維の不織布に研磨砥粒
を接着したもの)を用いる方法が実際的である。
The cold working method may be any method as long as it produces a compressive residual stress on the surface. Mechanical methods include roller application, shot peening, and the like, and heat treatment methods include carburizing, nitriding, and surface hardening. However, it is only necessary to apply compressive stress to the inner surface of the bent portion of the tsuba, so for example, a steel wire brush wheel or a nylon grinding wheel (wheel-shaped nylon fiber non-woven fabric is used for abrasive grinding). It is practical to use a method in which grains are adhered).

【0012】図3は、その方法の概要を示す図で、 (a)
は管が大径の場合、 (b)は管が小径の場合の加工方法で
ある。7はいずれも前記の鋼線ブラシホイールまたはナ
イロン砥石ホイールである。
FIG. 3 is a diagram showing an outline of the method.
Shows the processing method when the pipe has a large diameter, and (b) shows the processing method when the pipe has a small diameter. 7 is the steel wire brush wheel or the nylon grindstone wheel described above.

【0013】付与する圧縮応力は、表層部の引張残留応
力を軽減する程度でも効果はあるが、圧縮残留応力が生
じる程度に付与するのが望ましい。その具体的な方法に
ついては、以下の実施例で説明する。
The compressive stress to be applied is effective even if the tensile residual stress in the surface layer portion is reduced, but it is desirable to apply the compressive stress to the extent that the compressive residual stress is generated. The specific method will be described in the following examples.

【0014】[0014]

【実施例】下記の条件でフレアー加工管の鍔曲り部の応
力腐食割れと疲労破壊による割れの発生状況を調べた。
[Examples] Under the following conditions, the occurrence of stress corrosion cracking in the flange portion of a flared pipe and the occurrence of cracks due to fatigue fracture were examined.

【0015】供試材 オーステナイト系ステンレス鋼(SUS 304)の溶接管をフ
レアー加工して、図4に示す寸法(外径D=76.3mm、肉
厚T=3.0 mm、鍔高さH=10mm、曲げ部のR=5mm)の
フレアー加工管を作製し供試材とした。
Sample material Austenitic stainless steel (SUS 304) welded pipe was flared, and the dimensions shown in FIG. 4 (outer diameter D = 76.3 mm, wall thickness T = 3.0 mm, flange height H = 10 mm, A flared tube having a bent portion (R = 5 mm) was prepared and used as a test material.

【0016】鍔部の内面処理 鋼線ブラシホイールまたはナイロン砥石ホイールを使用
し、図3(a) の要領で押込み量(図3のt)と処理時間
を表1および表2に示すように変えて実施した。
Inner surface treatment of the collar portion A steel wire brush wheel or a nylon grindstone wheel is used, and the pushing amount (t in FIG. 3) and the treatment time are changed as shown in Tables 1 and 2 as shown in FIG. 3 (a). It was carried out.

【0017】応力腐食割れ試験 鍔のある管端から 100mmの長さに切取り、沸騰42%塩化
マグネシウム溶液中に24時間浸漬した後、浸透探傷法で
曲げ部内表面の割れを検出した。
Stress Corrosion Cracking Test A pipe having a collar was cut into a length of 100 mm, immersed in a boiling 42% magnesium chloride solution for 24 hours, and cracks on the inner surface of the bent portion were detected by a penetrant flaw detection method.

【0018】疲労破壊試験 図5に示すように供試材のフレアー加工管1をフランジ
3で接合した状態で試験を行った。フランジ部を中心と
して支点間距離を500mm とし、フランジ部に 2000kgf
(鍔部内面の応力は18.9kgf/mm2)の圧縮応力と引張応力
を繰り返し負荷した。繰り返し数は 100万回 (2 Hz) と
した。
Fatigue Fracture Test As shown in FIG. 5, the test was conducted in a state where the flared pipe 1 of the sample material was joined by the flange 3. The distance between the fulcrums is 500mm centered on the flange, and 2000kgf on the flange.
A compressive stress and a tensile stress of (the inner surface of the collar portion is 18.9 kgf / mm 2 ) were repeatedly applied. The number of repetitions was 1 million times (2 Hz).

【0019】応力腐食割れ試験の試験結果を表1に、疲
労破壊試験の結果を表2に、それぞれ示す。割れは、図
4(b) に示すように鍔部内面に放射状に発生する。疲労
割れは、貫通割れが1本でも生じていれば「あり」とし
た。
Table 1 shows the results of the stress corrosion cracking test, and Table 2 shows the results of the fatigue fracture test. The cracks are generated radially on the inner surface of the collar as shown in Fig. 4 (b). Fatigue cracks were defined as "present" if at least one penetration crack had occurred.

【0020】なお、表1の試験No.1、4 、7 、11、13お
よび15について、鍔曲がり部内表面の残留応力をX線回
折法で測定した。その値を表1に併記する。
For Test Nos. 1, 4, 7, 11, 13, and 15 in Table 1, the residual stress on the inner surface of the flange portion was measured by the X-ray diffraction method. The values are also shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表1に示すように、フレアー加工のままで
圧縮応力付加の処理をしていないもの(試験No.1) には
応力腐食割れが多数発生している。しかし、鋼線ブラシ
ホイールまたはナイロン砥石ホイールで処理すれば、こ
の割れは減少する。ホイールの押込み量および処理時間
を増すほど発生する割れは少なくなる。これは残留応力
が引張残留応力から圧縮残留応力に変わり、しかもその
値が大きくなるからである。疲労破壊による割れも、上
記の処理によって発生しなくなることが表2から明らか
である。
As shown in Table 1, a large number of stress corrosion cracks were generated in the flare-processed sample which was not subjected to the compressive stress application (test No. 1). However, treatment with a steel wire brush wheel or a nylon grinding wheel reduces this cracking. As the wheel push-in amount and the processing time increase, the number of cracks that occur will decrease. This is because the residual stress changes from the tensile residual stress to the compressive residual stress, and its value increases. It is clear from Table 2 that cracks due to fatigue fracture are not generated by the above treatment.

【0024】[0024]

【発明の効果】本発明のフレアー加工管は、オーステナ
イト系ステンレス鋼本来の優れた耐食性を持ち、しかも
鍔の曲げ部内表面の割れが発生し難いものである。この
管は、製造も比較的簡単であり、オーステナイト系ステ
ンレス鋼のフレアー加工管の一般的な用途のみならず、
比較的高い濃度の酸素および塩素イオンを含有する環境
に触れる配管、熱による膨張・収縮の大きな配管、振動
の激しい配管等にも長期間安全に使用できる。
EFFECTS OF THE INVENTION The flared pipe of the present invention has excellent corrosion resistance inherent to austenitic stainless steel and is less likely to cause cracks on the inner surface of the bent portion of the collar. This tube is relatively simple to manufacture, and not only for the common applications of flared austenitic stainless steel tubes,
It can be safely used for a long period of time in pipes that come in contact with environments containing relatively high concentrations of oxygen and chloride ions, pipes that expand and contract greatly due to heat, and pipes that violently vibrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】フレアー加工管の使用状態を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a usage state of a flared tube.

【図2】フレアー加工管の製造方法を説明する図であ
る。
FIG. 2 is a diagram illustrating a method for manufacturing a flared tube.

【図3】本発明のフレアー加工管を製造する場合の鍔部
内面の冷間加工の例を示す図である。
FIG. 3 is a diagram showing an example of cold working of the inner surface of the flange portion when manufacturing the flared pipe of the present invention.

【図4】(a) は実施例の試験で使用した供試材の寸法を
示す図、(b) は試験後の割れ発生状況を示す (a)のB−
B矢視図である。
FIG. 4 (a) is a diagram showing the dimensions of the test material used in the test of the example, and (b) is a crack occurrence situation after the test.
FIG.

【図5】フレアー加工管の疲労破壊試験方法を示す図で
ある。
FIG. 5 is a diagram showing a fatigue fracture test method for flared pipes.

【符号の説明】[Explanation of symbols]

1: フレアー加工管、 2: パッキン、 3: ルー
ズフランジ 4: ボルト、 5: ナット、 6、6’: 回転
金型 (コーン) 7: 鋼線ブラシホイールまたはナイロン砥石ホイール
1: Flared tube, 2: Packing, 3: Loose flange 4: Bolt, 5: Nut, 6 and 6 ': Rotating mold (cone) 7: Steel wire brush wheel or nylon grinding wheel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フレアー加工によって形成された管端鍔部
の内表面に冷間加工による圧縮加工が施されていること
を特徴とするオーステナイト系ステンレス鋼製のフレア
ー加工管。
1. A flared pipe made of austenitic stainless steel, characterized in that the inner surface of a flange portion of the pipe formed by flaring is compression-worked by cold working.
JP4141352A 1992-06-02 1992-06-02 Flare working tube made of austenitic stainless steel Pending JPH05329557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141352A JPH05329557A (en) 1992-06-02 1992-06-02 Flare working tube made of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141352A JPH05329557A (en) 1992-06-02 1992-06-02 Flare working tube made of austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPH05329557A true JPH05329557A (en) 1993-12-14

Family

ID=15289979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141352A Pending JPH05329557A (en) 1992-06-02 1992-06-02 Flare working tube made of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH05329557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151325A (en) * 2010-04-06 2010-07-08 Nippon Steel Corp Loose flange type flared pipe coupling, steel pipe for the loose flange type flared pipe coupling, method for manufacturing the steel pipe for the loose flange type flared pipe coupling, and method for joining the steel pipe
JP2010151324A (en) * 2010-04-06 2010-07-08 Nippon Steel Corp Loose flange type flared pipe coupling, steel pipe for the loose flange type flared pipe coupling, method for manufacturing the steel pipe for the loose flange type flared pipe coupling, and method for joining the steel pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151325A (en) * 2010-04-06 2010-07-08 Nippon Steel Corp Loose flange type flared pipe coupling, steel pipe for the loose flange type flared pipe coupling, method for manufacturing the steel pipe for the loose flange type flared pipe coupling, and method for joining the steel pipe
JP2010151324A (en) * 2010-04-06 2010-07-08 Nippon Steel Corp Loose flange type flared pipe coupling, steel pipe for the loose flange type flared pipe coupling, method for manufacturing the steel pipe for the loose flange type flared pipe coupling, and method for joining the steel pipe

Similar Documents

Publication Publication Date Title
WO2006090889A1 (en) High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
JPH05329557A (en) Flare working tube made of austenitic stainless steel
Yu et al. Fatigue failure of high-pressure oil-pipes of truck diesel engine
RU2419020C2 (en) Method to repair pipelines
JP2006292088A (en) Steel pipe having superior pipe end buckling deformation-proof property
JP2005088048A (en) Flange for absorbing welding deformation for piping joint, and piping joint using the same
EP0950441A2 (en) Method of manufacturing long dual layer metal pipe
JP4026554B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP5672818B2 (en) High frequency induction heating residual stress improvement method
JP2005023354A (en) Piping welded joint of low carbon stainless steel and its producing method
FR2444719A1 (en) PROCESS FOR TREATING A WALL IN AUSTENITIC STAINLESS STEEL AND PERCUSSION APPARATUS FOR APPLYING THIS PROCESS
CN1255242C (en) In-situ fast method of eliminating residual stress in welded joint of small-diameter pipe
JP4389241B2 (en) Metal ring gasket
JPS55112196A (en) Repair welding method of pipe structure
JP6015681B2 (en) Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment
EP4239234A1 (en) Hydrogen gas steel pipe, method for manufacturing hydrogen gas steel pipe, hydrogen gas pressure vessel, and method for manufacturing hydrogen gas pressure vessel
JP7546692B2 (en) Fluid Systems Containing Duplex Stainless Steels
JP2011104597A (en) Method of manufacturing uoe steel pipe
JP3608422B2 (en) High corrosion resistance steel pipe coil with excellent low cycle fatigue strength and method for producing the same
JP2000071029A (en) Manufacture of long length double metallic pipe
Kim et al. Failure analysis of stainless steel metal hose in welding
RU74682U1 (en) PIPE WITH INTERNAL ANTI-CORROSION COATING
JP2003028786A (en) Stress corrosion crack forming method and device of tube inner surface
JP2002113576A (en) Fillet welding structure
Rubtsov et al. Modeling of the stress-deformed state of a fitting branch pipe with a linear defect