JPH0532778Y2 - - Google Patents

Info

Publication number
JPH0532778Y2
JPH0532778Y2 JP3424386U JP3424386U JPH0532778Y2 JP H0532778 Y2 JPH0532778 Y2 JP H0532778Y2 JP 3424386 U JP3424386 U JP 3424386U JP 3424386 U JP3424386 U JP 3424386U JP H0532778 Y2 JPH0532778 Y2 JP H0532778Y2
Authority
JP
Japan
Prior art keywords
core
circular non
winding
cut
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3424386U
Other languages
Japanese (ja)
Other versions
JPS62145167U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3424386U priority Critical patent/JPH0532778Y2/ja
Publication of JPS62145167U publication Critical patent/JPS62145167U/ja
Application granted granted Critical
Publication of JPH0532778Y2 publication Critical patent/JPH0532778Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、非接地系配電線地絡検出装置に関す
るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a ground fault detection device for an ungrounded power distribution line.

従来の技術 従来、非接地系配電線における地絡を検出する
には、零相変流器が使用されている。
BACKGROUND ART Conventionally, zero-phase current transformers have been used to detect ground faults in ungrounded distribution lines.

考案が解決しようとする問題点 従来の零相変流器を使用する方法では、検出す
べき接地電流が非常に小さいために、どうしても
使用する零相変流器の大きさが大型のものとなつ
てしまつていた。従つて、その零相変流器も高価
になりその配置のためのスペースもかなり必要と
なつてしまつていた。
Problems that the invention aims to solve In the conventional method of using a zero-phase current transformer, the ground current to be detected is very small, so the size of the zero-phase current transformer used is unavoidably large. It was closed. Therefore, the zero-phase current transformer is also expensive and requires a considerable amount of space for its installation.

本考案の目的は、前述したような従来の問題点
を解消し安価で小型且つ軽量な非接地系配電線地
絡検出装置を提供することである。
An object of the present invention is to solve the above-mentioned conventional problems and provide an inexpensive, small, and lightweight ungrounded distribution line ground fault detection device.

問題点を解決するための手段 本考案による非接地系配電線地絡検出装置は、
変電所3心の非接地系引出ケーブルを一括して且
つ該引出ケーブルのしやへい層の接地線を通す同
一の第1及び第2の円形ノンカツト巻鉄心を備え
ており、該各円形ノンカツト巻鉄心には、1次巻
線と2次巻線とが施されており、前記第1の円形
ノンカツト巻鉄心の前記1次巻線と前記第2の円
形ノンカツト巻鉄心の前記1次巻線とは互いに逆
極性にて直列に接続されていて、前記第1の円形
ノンカツト巻鉄心の前記第2次巻線と前記第2の
円形ノンカツト巻鉄心の前記第2次巻線とは整流
器及び抵抗を介して逆極性で直列に接続されてお
り、前記直列接続された1次巻線端間には、コン
デンサ及び可変抵抗を介して前記引出ケーブルの
零相電圧に相当する電圧が加えられてなり、自回
線の地絡で前記直列接続された2次巻線端間に正
の出力が発生し、他回線の地絡で負の出力が発生
する。
Means for solving the problem The ungrounded distribution line ground fault detection device according to the present invention has the following features:
The substation is equipped with the same first and second circular non-cut winding cores that collectively connect the three core non-grounding system pull-out cables and pass the grounding wire of the thin layer of the pull-out cables, and each of the circular non-cut windings The core is provided with a primary winding and a secondary winding, the primary winding of the first circular non-cut wound core and the primary winding of the second circular non-cut wound core. are connected in series with opposite polarities, and the secondary winding of the first circular non-cut winding core and the secondary winding of the second circular non-cut winding core have a rectifier and a resistor. are connected in series with opposite polarity through the primary windings, and a voltage corresponding to the zero-sequence voltage of the lead-out cable is applied between the ends of the series-connected primary windings through a capacitor and a variable resistor, A ground fault in the own line generates a positive output between the ends of the series-connected secondary windings, and a ground fault in another line generates a negative output.

実施例 次に、添付図面に基づいて本考案の実施例につ
いて本考案をより詳細に説明する。
Embodiments Next, the present invention will be described in more detail with regard to embodiments of the present invention based on the accompanying drawings.

第1図は、本考案の非接地系配電線地絡検出装
置の一実施例を概略的に示している。この実施例
では、6600V以上の変電所の3心の非接地系引出
ケーブルの各心線11,12及び13を一括して
且つ各心線11,12及び13のしやへい層1
4,15及び16のそれぞれに接続された接地線
17,18及び19に共通に接続する接地線20
を貫通させるようにして2つの円形ノンカツト巻
鉄心21及び22が設けられる。第1の円形ノン
カツト巻鉄心21には、1次巻線23と2次巻線
24とが施され、第2の円形ノンカツト巻鉄心2
2には、1次巻線25と2次巻線26とが施され
ている。これら第1及び第2の円形ノンカツト巻
鉄心21及び22は、同一仕様であつてよい。1
次巻線23と1次巻線25とは互いに逆極性にて
直列に接続されている。2次巻線24と2次巻線
26とは全波整流器27及び28並びに抵抗Rを
介して逆極性で直列に接続されている。直列接続
された1次巻線23及び25の端間には、コンデ
ンサC及び可変抵抗RAを介して、接地形計器用
変圧器(G.P.T)又はコンデンサ形計器用変圧器
(PD)の3次電圧、すなわち零相電圧VO、VO′が
加えられるようになつている。また、接地線20
には、地絡時の充電電流Icgが流れるようになつ
ている。
FIG. 1 schematically shows an embodiment of the ungrounded distribution line ground fault detection device of the present invention. In this embodiment, each core wire 11, 12, and 13 of a three-core non-grounding system pull-out cable for a substation of 6,600 V or more is bundled, and each core wire 11, 12, and 13 is connected to a
A grounding wire 20 commonly connected to the grounding wires 17, 18, and 19 connected to each of the grounding wires 17, 15, and 16;
Two circular non-cut wound cores 21 and 22 are provided so as to penetrate through the cores 21 and 22. The first circular non-cut winding core 21 is provided with a primary winding 23 and a secondary winding 24, and the second circular non-cut winding core 21 is provided with a primary winding 23 and a secondary winding 24.
2 is provided with a primary winding 25 and a secondary winding 26. These first and second circular non-cut wound cores 21 and 22 may have the same specifications. 1
The secondary winding 23 and the primary winding 25 are connected in series with mutually opposite polarities. The secondary winding 24 and the secondary winding 26 are connected in series with opposite polarities via full-wave rectifiers 27 and 28 and a resistor R. The terminals of the series-connected primary windings 23 and 25 are connected via a capacitor C and a variable resistor R A to the tertiary power of a grounded potential transformer (GPT) or a capacitor-type potential transformer (PD). Voltages, that is, zero-sequence voltages VO and VO ' are applied. In addition, the ground wire 20
The charging current Icg is designed to flow in the event of a ground fault.

このような回路は、電流無効分フイルタを構成
するものであり、第1の円形ノンカツト巻鉄心2
1の2次巻線24には、−VO+Icgに比例した電
圧が生じ、第2の円形ノンカツト巻鉄心22の2
次巻線26にはVO+Icgに比例した電圧が生じ、
従つて、抵抗R、R端の出力端子には2Icgに比例
したものとなる。ここで、第2図に示すように、
零相電圧VOと充電電流Icgとの位相差をθとし
て、コンデンサC及び可変抵抗RAによる調整角
φを考えて、抵抗R、Rの抵抗値を適当に選定す
ることによつて、抵抗R、R端の出力端子の出力
をK Icg cos(φ−θ)とすることができる。こ
こで、Kは、比例定数である。
Such a circuit constitutes a current reactive filter, and the first circular non-cut wound core 2
A voltage proportional to -V O +Icg is generated in the secondary winding 24 of the second circular non-cut winding core 22.
A voltage proportional to V O +Icg is generated in the next winding 26,
Therefore, the output terminal of the resistor R and the R end has a value proportional to 2Icg. Here, as shown in Figure 2,
By setting the phase difference between the zero-sequence voltage V O and the charging current Icg as θ, considering the adjustment angle φ by the capacitor C and the variable resistor R A , and selecting the resistance values of the resistors R and R appropriately, the resistance can be adjusted. The outputs of the output terminals at the R and R ends can be set to K Icg cos (φ−θ). Here, K is a proportionality constant.

電路がケーブルのみの場合、微地絡(不完全地
絡)は考えられないので、調整角φは90°でよい。
この場合には、抵抗R、R端の出力は、KIcg
cos(π/2−θ)=K Icg sinθとなり、自回路
の地絡でそれは正の出力となり、他回線の地絡で
それは負の出力となる。
If the electrical path is only a cable, a slight ground fault (incomplete ground fault) is unlikely, so the adjustment angle φ may be 90°.
In this case, the output of the resistors R and R end is KIcg
cos(π/2-θ)=K Icg sinθ, and if there is a ground fault in the own circuit, it will be a positive output, and if there is a ground fault in another line, it will be a negative output.

しかし、架空線等の場合には、微地絡が考えら
れ、この時には、充電電流Icgが1/10位となり、
零相電圧VOと充電電流Icgとの位相差θも小さく
なり、sinθも1/10程度になるので、出力が1/100
程度になり、検出しにくくなる。従つて、このよ
うな場合には、可変抵抗RAを調整して、調整角
φを10°程度にする必要がある。このようにVo回
路の電流位相の調整角φを10°程度とすれば、1/1
0地絡でも100%地絡でも十分な検出出力を得るこ
とができ、容易にどちらも検出できる。
However, in the case of overhead lines, etc., there may be a slight ground fault, and in this case, the charging current Icg will be about 1/10,
The phase difference θ between the zero-sequence voltage V O and the charging current Icg also becomes smaller, and sin θ also becomes about 1/10, so the output is reduced to 1/100.
It becomes difficult to detect. Therefore, in such a case, it is necessary to adjust the variable resistor R A so that the adjustment angle φ is about 10°. In this way, if the adjustment angle φ of the current phase of the Vo circuit is about 10°, then 1/1
Sufficient detection output can be obtained for both 0 ground fault and 100% ground fault, and both can be easily detected.

考案の効果 本考案の非接地系配電線地絡検出装置の構成に
よれば、零相電圧VOで巻鉄心を励磁しているか
ら初透磁率が小さくても透磁率の大きいところで
使用でき、従つて、充電電流Icgが非常に小さく
ても、小型で軽量に安価なものとすることができ
る。例えば、1次巻線23及び2次巻線24を有
した円形ノンカツト巻鉄心(断面積10×3、直径
160程度)21と、1次巻線25及び2次巻線2
6を有した円形ノンカツト巻鉄心22とを互いに
重ねて磁気しやへいして一体的にモールドして貫
通形センサーとしてまとめることにより、約
800g程度の重さのものとすることができる。ま
た、接地線20を巻鉄心21,22へ貫通させて
いるので、内部で故障が生じたときにこれを有効
に検出することができる。
Effects of the invention According to the configuration of the ungrounded distribution line ground fault detection device of the present invention, since the winding core is excited by the zero-sequence voltage V O , it can be used in places where the initial magnetic permeability is small but the magnetic permeability is large. Therefore, even if the charging current Icg is very small, it can be made small, lightweight, and inexpensive. For example, a circular non-cut wound core (cross-sectional area 10 x 3, diameter
160) 21, primary winding 25 and secondary winding 2
By stacking the circular non-cut wound cores 22 having 6 and 6 to prevent magnetism and integrally molding them to form a through-type sensor, approximately
It can weigh about 800g. Further, since the grounding wire 20 is passed through the wound cores 21 and 22, it is possible to effectively detect a failure when it occurs inside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例としての非接地系配
電線地絡検出装置の概略図、第2図は第1図の装
置における零相電圧と充電電流との関係を示すベ
クトル図である。 11,12,13……引出ケーブル心線、1
4,15,16……しやへい層、17,18,1
9,20……接地線、21,22、……円形ノン
カツト巻鉄心、23,25……1次巻線、24,
26……2次巻線、27,28……全波整流器、
R……抵抗、C……コンデンサ、RA……可変抵
抗。
Fig. 1 is a schematic diagram of an ungrounded distribution line ground fault detection device as an embodiment of the present invention, and Fig. 2 is a vector diagram showing the relationship between zero-sequence voltage and charging current in the device of Fig. 1. . 11, 12, 13... Pull-out cable core, 1
4, 15, 16...Shiyahei layer, 17, 18, 1
9,20...Grounding wire, 21,22,...Circular non-cut wound core, 23,25...Primary winding, 24,
26... Secondary winding, 27, 28... Full wave rectifier,
R...Resistor, C...Capacitor, R A ...Variable resistance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model claims] 変電所3心の非接地系引出ケーブルを一括して
且つ該引出ケーブルのしやへい層の接地線を通す
同一の第1及び第2の円形ノンカツト巻鉄心を備
えており、該各円形ノンカツト巻鉄心には、1次
巻線と2次巻線とが施されており、前記第1の円
形ノンカツト巻鉄心の前記1次巻線と前記第2の
円形ノンカツト巻鉄心の前記1次巻線とは互いに
逆極性にて直列に接続されていて、前記第1の円
形ノンカツト巻鉄心の前記第2次巻線と前記第2
の円形ノンカツト巻鉄心の前記第2次巻線とは整
流器及び抵抗を介して逆極性で直列に接続されて
おり、前記直列接続された1次巻線端間には、コ
ンデンサ及び可変抵抗を介して前記引出ケーブル
の零相電圧に相当する電圧が加えられてなり、自
回線の地絡で前記直列接続された2次巻線端間に
正の出力が発生し、他回線の地絡で負の出力が発
生することを特徴とする非接地系配電線地絡検出
装置。
The substation is equipped with the same first and second circular non-cut winding cores that collectively connect the three core non-grounding system pull-out cables and pass the grounding wire of the thin layer of the pull-out cables, and each of the circular non-cut windings The core is provided with a primary winding and a secondary winding, the primary winding of the first circular non-cut wound core and the primary winding of the second circular non-cut wound core. are connected in series with opposite polarities, and the secondary winding of the first circular non-cut wound core and the second
The secondary winding of the circular non-cut wound iron core is connected in series with opposite polarity via a rectifier and a resistor, and a capacitor and a variable resistor are connected between the ends of the series-connected primary winding. A voltage corresponding to the zero-sequence voltage of the lead-out cable is applied, and a positive output is generated between the ends of the series-connected secondary windings due to a ground fault in the own line, and a negative output is generated due to a ground fault in the other line. An ungrounded distribution line ground fault detection device characterized by generating an output of
JP3424386U 1986-03-10 1986-03-10 Expired - Lifetime JPH0532778Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424386U JPH0532778Y2 (en) 1986-03-10 1986-03-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424386U JPH0532778Y2 (en) 1986-03-10 1986-03-10

Publications (2)

Publication Number Publication Date
JPS62145167U JPS62145167U (en) 1987-09-12
JPH0532778Y2 true JPH0532778Y2 (en) 1993-08-20

Family

ID=30842606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424386U Expired - Lifetime JPH0532778Y2 (en) 1986-03-10 1986-03-10

Country Status (1)

Country Link
JP (1) JPH0532778Y2 (en)

Also Published As

Publication number Publication date
JPS62145167U (en) 1987-09-12

Similar Documents

Publication Publication Date Title
US10809312B2 (en) Electric leakage detector
US7489485B2 (en) Method and equipment for the protection of power systems against geomagnetically induced currents
JP2015515844A (en) Detection of leakage current including continuous components in the vehicle
EP4016565A1 (en) Current transformer
US11313917B2 (en) Electric current sensor for detecting leakage current
JPH0532778Y2 (en)
CN108400005B (en) Transformer direct-current magnetic bias suppression system and suppression method
RU2428705C1 (en) Measuring negative sequence current converter
JPH0532777Y2 (en)
RU2593380C1 (en) Device for offset from magnetisation current rush during connection under voltage for transformer differential protection
RU2426138C1 (en) Measuring converter of negative sequence current
JPS6212646B2 (en)
JPH0536228Y2 (en)
JPH0862254A (en) Direct current detector
JP2967362B2 (en) High voltage ground fault relay method
JPS58180478U (en) Low-voltage line-to-ground capacitance compensator
SU432628A1 (en) PARAMETRIC FILTER OF ZERO SEQUENCE CURRENTS
SU1721524A1 (en) Zero sequence current-to-voltage converter
SU970536A1 (en) Device for protecting ac contact system from earthing
RU134706U1 (en) MEASURING DEVICE FOR DIFFERENTIAL CURRENT PROTECTION OF TIRES
JPH01141364A (en) Instrument for measuring ac current
JPS5836060Y2 (en) Single-phase high-voltage line ground fault fault detection device
JPH01120674U (en)
JPH028530B2 (en)
JPH08271566A (en) Ground fault detector for leakage transformer