JPH05327060A - Thin film magnetoresistance element - Google Patents
Thin film magnetoresistance elementInfo
- Publication number
- JPH05327060A JPH05327060A JP4155785A JP15578592A JPH05327060A JP H05327060 A JPH05327060 A JP H05327060A JP 4155785 A JP4155785 A JP 4155785A JP 15578592 A JP15578592 A JP 15578592A JP H05327060 A JPH05327060 A JP H05327060A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetoresistive element
- ferromagnetic
- magnetic
- film magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 120
- 230000005291 magnetic effect Effects 0.000 claims abstract description 36
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 34
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 15
- 239000011521 glass Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000007738 vacuum evaporation Methods 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、機械的変量の検出用磁
気センサまたは磁気記録媒体から信号を再生するための
磁気ヘッドに用いられる薄膜磁気抵抗素子に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetoresistive element used in a magnetic sensor for detecting a mechanical variable or a magnetic head for reproducing a signal from a magnetic recording medium.
【0002】[0002]
【従来の技術】磁界中におかれた物質の電気抵抗の変化
する現象は、磁気抵抗効果と呼ばれている。この磁気抵
抗効果は、ホール効果に基づく一般磁気抵抗効果と、強
磁性体に現れる異方性磁気抵抗効果とに分類される。こ
の異方性磁気抵抗効果は、低磁界での抵抗変化量が半導
体より大きいので、低磁界用センサとして、主に利用さ
れている。この低磁界用センサには、薄膜磁気抵抗素子
が用いられている。この薄膜磁気抵抗素子は、例えばN
i−Fe、Ni−Fe−Co等の強磁性体合金薄膜から
構成されている。そして、この薄膜磁気抵抗素子は、ガ
ラス等の基板上に真空蒸着または電着により形成されて
いる。例えば、図6に示すように、コーニング(株)製
7059Fガラス100上に、90%Ni-10%Fe
(割合は重量%、以下同じ)の組成をもつ強磁性体合金
を、真空蒸着により、膜厚:25nm,幅:30μm,
長さ:2000μmに被着して、薄膜磁気抵抗素子10
1を形成している。この薄膜磁気抵抗素子101上の両
端には電極102が形成されている。これらの電極10
2間に一定電圧を印加し、薄膜磁気抵抗素子101に磁
界を近づけると、電極102間の電圧信号が変化する。
この電圧信号の変化が磁気センサとしての感度になる。2. Description of the Related Art The phenomenon in which the electric resistance of a substance placed in a magnetic field changes is called the magnetoresistive effect. This magnetoresistive effect is classified into a general magnetoresistive effect based on the Hall effect and an anisotropic magnetoresistive effect that appears in a ferromagnetic material. This anisotropic magnetoresistive effect is mainly used as a low magnetic field sensor because the amount of resistance change in a low magnetic field is larger than that of a semiconductor. A thin film magnetoresistive element is used for this low magnetic field sensor. This thin film magnetoresistive element is, for example, N
It is composed of a ferromagnetic alloy thin film such as i-Fe or Ni-Fe-Co. The thin film magnetoresistive element is formed by vacuum deposition or electrodeposition on a substrate such as glass. For example, as shown in FIG. 6, 90% Ni-10% Fe on 7059F glass 100 manufactured by Corning Co., Ltd.
A ferromagnetic alloy having the composition (weight%, the same applies hereinafter) was vacuum-deposited to form a film thickness: 25 nm, width: 30 μm,
Length: 2000 μm, thin film magnetoresistive element 10
1 is formed. Electrodes 102 are formed on both ends of the thin film magnetoresistive element 101. These electrodes 10
When a constant voltage is applied between the two to bring the magnetic field close to the thin film magnetoresistive element 101, the voltage signal between the electrodes 102 changes.
This change in the voltage signal becomes the sensitivity of the magnetic sensor.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の薄膜磁気抵抗素子101にあっては、その電
圧信号の感度(ダイナミック・レンジ)を増大させるた
め、その断面積を増加させていたが、その消費電力も増
加してしまい、ガラス100上での発熱量が増大すると
いう課題があった。However, in such a conventional thin film magnetoresistive element 101, the cross-sectional area is increased in order to increase the sensitivity (dynamic range) of the voltage signal thereof. However, there is a problem that the power consumption also increases and the amount of heat generated on the glass 100 increases.
【0004】そこで、本発明は、その磁気センサとして
の感度を向上させても、その消費電力を減少させること
ができる薄膜磁気抵抗素子を提供することを、その目的
としている。Therefore, it is an object of the present invention to provide a thin film magnetoresistive element capable of reducing its power consumption even if its sensitivity as a magnetic sensor is improved.
【0005】[0005]
【課題を解決するための手段】請求項1に記載の薄膜磁
気抵抗素子においては、第1強磁性体薄膜と、第2強磁
性体薄膜と、この第2強磁性体薄膜と上記第1強磁性体
薄膜との間に積層された非磁性体薄膜と、を有するもの
である。In a thin film magnetoresistive element according to claim 1, a first ferromagnetic thin film, a second ferromagnetic thin film, this second ferromagnetic thin film, and the first strong thin film. A non-magnetic thin film laminated between the magnetic thin film and the magnetic thin film.
【0006】また、請求項2に記載の薄膜磁気抵抗素子
においては、上記第1強磁性体薄膜、および、上記第2
強磁性体薄膜は、少なくともFe、または、Coを含有
するNi系の合金薄膜であり、上記非磁性体薄膜は、C
u、Ag、Ta、または、Auの金属薄膜であるもので
ある。Further, in the thin-film magnetoresistive element according to claim 2, the first ferromagnetic thin film and the second ferromagnetic thin film are provided.
The ferromagnetic thin film is a Ni-based alloy thin film containing at least Fe or Co, and the non-magnetic thin film is C
It is a metal thin film of u, Ag, Ta, or Au.
【0007】[0007]
【作用】本発明に係る薄膜磁気抵抗素子にあっては、第
1強磁性体薄膜、非磁性体薄膜、第2強磁性体薄膜が3
層構造に形成されている。そして、この薄膜磁気抵抗素
子を磁気センサに用いれば、感度を向上させても、その
消費電力を減少させることができるものである。In the thin film magnetoresistive element according to the present invention, the first ferromagnetic thin film, the non-magnetic thin film, and the second ferromagnetic thin film are composed of three layers.
It is formed in a layered structure. If this thin film magnetoresistive element is used in a magnetic sensor, the power consumption can be reduced even if the sensitivity is improved.
【0008】[0008]
【実施例】以下、本発明に係る薄膜磁気抵抗素子10の
実施例について、図面を参照して説明する。図1はこの
薄膜磁気抵抗素子10を示す断面図である。Embodiments of the thin film magnetoresistive element 10 according to the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing this thin film magnetoresistive element 10.
【0009】この図に示すように、薄膜磁気抵抗素子1
0は、強磁性体薄膜2,4と、これらの間に積層された
非磁性体薄膜3と、を有するものである。コーニング
(株)製7059Fガラス1上に、薄膜磁気抵抗素子1
0の強磁性体薄膜2,非磁性体薄膜3と、強磁性体薄膜
4とをそれぞれ真空蒸着により三層構造に積層してい
る。この薄膜磁気抵抗素子10の両端には、電極5がそ
れぞれ被着されている。As shown in this figure, the thin film magnetoresistive element 1
Reference numeral 0 has the ferromagnetic thin films 2 and 4 and the non-magnetic thin film 3 stacked between them. Thin film magnetoresistive element 1 on 7059F glass 1 manufactured by Corning Inc.
The ferromagnetic thin film 2, the non-magnetic thin film 3, and the ferromagnetic thin film 0 of 0 are laminated in a three-layer structure by vacuum evaporation. Electrodes 5 are attached to both ends of the thin film magnetoresistive element 10.
【0010】この薄膜磁気抵抗素子10は、ガラス1上
に形成された状態で、図2に示す磁気センサ用感度測定
装置20の所定場所に設置し、電極5を接続し、薄膜磁
気抵抗素子10の抵抗変化率が測定される。電源13
は、電流計12を介して電極5間に一定の電圧を印加す
るものである。すなわち、強磁性体薄膜2、非磁性体薄
膜3、強磁性体薄膜4の両端にそれぞれ並列に印加され
るものである。電圧計11は、薄膜磁気抵抗素子10の
両端の電圧変化を測定するものである。この電圧計11
および電流計12により薄膜磁気抵抗素子10の消費電
力が測定される。また、コイル14は薄膜磁気抵抗素子
10に磁界を印加するものである。このコイル14の両
端に可変抵抗15を介して直流電源16が接続されてい
る。この可変抵抗15はコイル14に流れる電流を可変
し、コイル14より発生する磁界の強さを変化させるも
のである。The thin film magnetoresistive element 10 is placed on the glass 1 at a predetermined position of the magnetic sensor sensitivity measuring device 20 shown in FIG. 2, and the electrode 5 is connected to the thin film magnetoresistive element 10. The resistance change rate of is measured. Power supply 13
Is to apply a constant voltage between the electrodes 5 via the ammeter 12. That is, it is applied in parallel to both ends of the ferromagnetic thin film 2, the non-magnetic thin film 3, and the ferromagnetic thin film 4. The voltmeter 11 measures a voltage change across the thin film magnetoresistive element 10. This voltmeter 11
Also, the power consumption of the thin film magnetoresistive element 10 is measured by the ammeter 12. The coil 14 applies a magnetic field to the thin film magnetoresistive element 10. A DC power supply 16 is connected to both ends of the coil 14 via a variable resistor 15. The variable resistor 15 changes the current flowing through the coil 14 and changes the strength of the magnetic field generated by the coil 14.
【0011】以下、表1に示すように薄膜磁気抵抗素子
10にあっては、A:強磁性体薄膜2,4およびB:非
磁性体薄膜3の組成および膜厚がそれぞれ変化して、磁
気センサ用感度測定装置20により、その最大変化抵抗
率、感度、消費電力が測定されるものである。なお、N
o.1〜No.5の中でAの膜厚が2×になっているの
は、強磁性体薄膜2および強磁性体薄膜4の膜厚を示す
ものである。さらに、それぞれの膜厚が等しいことを示
している。一方、No.6,No.7の薄膜磁気抵抗素
子は、A:強磁性体薄膜のみで構成されている。また、
B/全とあるのは、非磁性体薄膜3の膜厚を、薄膜磁気
抵抗素子10の厚さで割ることを示している。つまり、
薄膜磁気抵抗素子10中の非磁性体の含有率を示すもの
である。In the following, as shown in Table 1, in the thin film magnetoresistive element 10, the composition and film thickness of A: ferromagnetic thin films 2 and 4 and B: nonmagnetic thin film 3 are changed, respectively. The sensor sensitivity measuring device 20 measures the maximum change resistivity, sensitivity, and power consumption. Note that N
o. 1-No. The film thickness A of 2 × in 5 indicates the film thickness of the ferromagnetic thin film 2 and the ferromagnetic thin film 4. Furthermore, it is shown that the respective film thicknesses are equal. On the other hand, No. 6, No. The thin film magnetoresistive element 7 is composed of only A: a ferromagnetic thin film. Also,
B / total means that the film thickness of the nonmagnetic thin film 3 is divided by the thickness of the thin film magnetoresistive element 10. That is,
The content of the non-magnetic material in the thin film magnetoresistive element 10 is shown.
【0012】そして、各No.の実施例の製造方法は、
以下の通りである。各No.の薄膜磁気抵抗素子は、到
達真空度が2×10-6Torr程度の真空炉において、
真空蒸着により、薄膜磁気抵抗素子10の組成、膜厚を
それぞれ変化させ、その幅:30μm,長さ:2000
μmをそれぞれ同じにして、コーニング(株)製705
9Fガラス1上に、形成されるものである。なお、Ni
−Fe、または、Cuの真空蒸着時の圧力は、1.0〜
1.2×10-5Torr程度である。Then, each No. The manufacturing method of the embodiment of
It is as follows. Each No. The thin film magnetoresistive element of is a vacuum furnace whose ultimate vacuum is about 2 × 10 −6 Torr,
The composition and the film thickness of the thin film magnetoresistive element 10 are changed by vacuum vapor deposition, and the width is 30 μm and the length is 2000.
705 made by Corning Co., Ltd. with the same μm
It is formed on the 9F glass 1. Note that Ni
The pressure during vacuum deposition of —Fe or Cu is 1.0 to
It is about 1.2 × 10 −5 Torr.
【0013】[0013]
【表1】 [Table 1]
【0014】No.1の実施例は、各強磁性体薄膜2,
4として90%Ni-10%Feの組成をもつ合金薄膜
2,4同士の間に、非磁性体薄膜3としてCu薄膜3を
形成したものである。合金薄膜2,4の膜厚は、それぞ
れ12.5nmである。また、Cu薄膜3の膜厚は、
2.5nmである。このとき、薄膜磁気抵抗素子10全
体の厚さは27.5nmになっている。このときの薄膜
磁気抵抗素子10に対するCu薄膜3の膜厚の割合は9
%である。そして、この薄膜磁気抵抗素子10の最大抵
抗変化率は1.5%である。この最大抵抗変化率は、図
3,図4に示すように、薄膜磁気抵抗素子10の抵抗変
化率が一定になるまで、印加磁場強度を増化させて、測
定している。すなわち、その一定になった抵抗変化率を
100%より引いた数字が最大抵抗変化率である。ま
た、この実施例の薄膜磁気抵抗素子10の感度は75m
Vである。その両端に印加する電流は4.5mAであ
る。その両端の電圧は5Vである。その結果、その消費
電力は22.5mWである。同様に、No.2〜No.
5までの実施例は、表1,図2,図3の通りである。な
お、比較例としてNo.6,No.7がある。No. In the first embodiment, each ferromagnetic thin film 2,
4, a Cu thin film 3 is formed as a non-magnetic thin film 3 between alloy thin films 2 and 4 having a composition of 90% Ni-10% Fe. The film thickness of each of the alloy thin films 2 and 4 is 12.5 nm. The thickness of the Cu thin film 3 is
It is 2.5 nm. At this time, the total thickness of the thin film magnetoresistive element 10 is 27.5 nm. At this time, the ratio of the film thickness of the Cu thin film 3 to the thin film magnetoresistive element 10 is 9
%. The maximum resistance change rate of the thin film magnetoresistive element 10 is 1.5%. As shown in FIGS. 3 and 4, this maximum resistance change rate is measured by increasing the applied magnetic field strength until the resistance change rate of the thin film magnetoresistive element 10 becomes constant. That is, the maximum resistance change rate is obtained by subtracting the constant resistance change rate from 100%. The sensitivity of the thin film magnetoresistive element 10 of this embodiment is 75 m.
It is V. The current applied to both ends is 4.5 mA. The voltage across it is 5V. As a result, its power consumption is 22.5 mW. Similarly, No. 2 to No.
Examples up to 5 are as shown in Table 1, FIG. 2 and FIG. As a comparative example, No. 6, No. There is 7.
【0015】表1より判断すると、比較例No.6,N
o.7の薄膜磁気抵抗素子に対して本実施例No.1,
No.2,No.3,No.4,No.5の薄膜磁気抵
抗素子にあっては、その厚さに対する消費電力が減少し
ており、最大27%も低減されている。したがって、本
実施例の薄膜磁気抵抗素子10は、ガラス1上におい
て、その発熱量も消費電力に付随して減少させることが
できるものである。Judging from Table 1, Comparative Example No. 6, N
o. No. 7 thin film magnetoresistive element of the present embodiment. 1,
No. 2, No. 3, No. 4, No. In the thin film magnetoresistive element of No. 5, the power consumption with respect to the thickness is reduced, and the maximum power consumption is reduced by 27%. Therefore, the thin film magnetoresistive element 10 of the present embodiment can reduce the amount of heat generated on the glass 1 in association with the power consumption.
【0016】また、No.7の薄膜磁気抵抗素子の感度
を向上させるため、その膜厚を2倍にしたNo.6の薄
膜磁気抵抗素子は、消費電力を25mWから48mWに
増大させてしまっている。しかし、No.1の薄膜磁気
抵抗素子にあっては、その厚さがNo.7の薄膜磁気抵
抗素子の厚さに近いものであるにもかかわらず、最大抵
抗変化率および感度がNo.6の薄膜磁気抵抗素子に近
似した値である。さらに、No.1の薄膜磁気抵抗素子
は、No.7の薄膜磁気抵抗素子に対して、消費電力も
25mWから22.5mWに減少させている。すなわ
ち、薄膜磁気抵抗素子の厚さを2倍にしなくても薄膜磁
気抵抗素子の感度を向上させ、その消費電力も低減させ
るものである。そして、ガラス1上において薄膜磁気抵
抗素子の発熱量も減少させるものである。No. In order to improve the sensitivity of the thin film magnetoresistive element of No. 7, the film thickness of No. 7 was doubled. The thin film magnetoresistive element of No. 6 has increased the power consumption from 25 mW to 48 mW. However, no. In the thin film magnetoresistive element of No. 1, its thickness is No. The maximum resistance change rate and the sensitivity are no. The value is similar to that of the thin film magnetoresistive element of No. 6. Furthermore, No. The thin film magnetoresistive element of No. 1 is No. 1 The power consumption of the thin film magnetoresistive element of No. 7 is also reduced from 25 mW to 22.5 mW. That is, the sensitivity of the thin film magnetoresistive element is improved and the power consumption thereof is reduced without doubling the thickness of the thin film magnetoresistive element. Then, the amount of heat generated by the thin film magnetoresistive element on the glass 1 is also reduced.
【0017】なお、本実施例の薄膜磁気抵抗素子のパタ
ーンを、図5に示すように、櫛歯状に微細加工したab
間とbc間との電流路が互いに90゜異なるように形成
してもよい。また、磁気記録媒体から信号を再生するた
めの磁気ヘッドに用いてもよい。As shown in FIG. 5, the pattern of the thin film magnetoresistive element of this embodiment is finely processed into a comb-shaped ab pattern.
The current paths between the space bc and the space bc may be different from each other by 90 °. It may also be used in a magnetic head for reproducing a signal from a magnetic recording medium.
【0018】[0018]
【発明の効果】以上説明してきたように本発明に係る薄
膜磁気抵抗素子によれば、その磁気特性の感度を向上さ
せてもその消費電力を低減させることができる。As described above, according to the thin film magnetoresistive element of the present invention, the power consumption can be reduced even if the sensitivity of its magnetic characteristics is improved.
【図1】本発明の一実施例に係る薄膜磁気抵抗素子を示
す断面図である。FIG. 1 is a sectional view showing a thin film magnetoresistive element according to an embodiment of the present invention.
【図2】本発明の一実施例に係る磁気センサ用感度測定
装置を示す電気回路図である。FIG. 2 is an electric circuit diagram showing a sensitivity measuring device for a magnetic sensor according to an embodiment of the present invention.
【図3】本発明の一実施例に係る薄膜磁気抵抗素子の磁
場強度に対する抵抗率の変化を表したグラフである。FIG. 3 is a graph showing a change in resistivity with respect to a magnetic field strength of a thin film magnetoresistive element according to an example of the present invention.
【図4】本発明の一実施例の比較例に係る薄膜磁気抵抗
素子の磁場強度に対する抵抗率の変化を表したグラフで
ある。FIG. 4 is a graph showing changes in resistivity with respect to magnetic field strength of a thin film magnetoresistive element according to a comparative example of an example of the present invention.
【図5】本発明の一実施例に係る薄膜磁気抵抗素子パタ
ーンを示す平面図である。FIG. 5 is a plan view showing a thin film magnetoresistive element pattern according to an embodiment of the present invention.
【図6】本発明の従来例に係る薄膜磁気抵抗素子を示す
断面図である。FIG. 6 is a cross-sectional view showing a thin film magnetoresistive element according to a conventional example of the present invention.
2 強磁性体薄膜 3 非磁性体薄膜 4 強磁性体薄膜 2 Ferromagnetic thin film 3 Non-magnetic thin film 4 Ferromagnetic thin film
Claims (2)
と、この第2強磁性体薄膜と上記第1強磁性体薄膜との
間に積層された非磁性体薄膜と、を有することを特徴と
する薄膜磁気抵抗素子。1. A first ferromagnetic thin film, a second ferromagnetic thin film, and a nonmagnetic thin film laminated between the second ferromagnetic thin film and the first ferromagnetic thin film. A thin-film magnetoresistive element having.
2強磁性体薄膜は、少なくともFe、または、Coを含
有するNi系の合金薄膜であり、 上記非磁性体薄膜は、Cu、Ag、Ta、または、Au
の金属薄膜である請求項1に記載の薄膜磁気抵抗素子。2. The first ferromagnetic thin film and the second ferromagnetic thin film are Ni-based alloy thin films containing at least Fe or Co, and the non-magnetic thin film is Cu, Ag, Ta, or Au
2. The thin film magnetoresistive element according to claim 1, which is the metal thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155785A JPH05327060A (en) | 1992-05-22 | 1992-05-22 | Thin film magnetoresistance element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155785A JPH05327060A (en) | 1992-05-22 | 1992-05-22 | Thin film magnetoresistance element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05327060A true JPH05327060A (en) | 1993-12-10 |
Family
ID=15613370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4155785A Withdrawn JPH05327060A (en) | 1992-05-22 | 1992-05-22 | Thin film magnetoresistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05327060A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0924491A1 (en) * | 1997-12-22 | 1999-06-23 | Brown & Sharpe Tesa S.A. | Electronic circuit for magnetic measuring device and measuring method |
-
1992
- 1992-05-22 JP JP4155785A patent/JPH05327060A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0924491A1 (en) * | 1997-12-22 | 1999-06-23 | Brown & Sharpe Tesa S.A. | Electronic circuit for magnetic measuring device and measuring method |
EP1052473A2 (en) * | 1997-12-22 | 2000-11-15 | Brown & Sharpe Tesa S.A. | Magnetic measuring devices with reduced power consumption or stand by mode |
EP1052473A3 (en) * | 1997-12-22 | 2000-11-29 | Brown & Sharpe Tesa S.A. | Magnetic measuring devices with reduced power consumption or stand by mode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6295186B1 (en) | Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias | |
EP1400957A2 (en) | Spin-valve head containing partial current-screening-layer, production method of said head, and current-screening method | |
JPH11510911A (en) | Magnetoresistive magnetic field sensor | |
JPH04247607A (en) | Magnetoresistance effect element | |
JP2001308411A (en) | Spin bubble type magnetoresistance sensor and thin film magnetic head | |
JPH0268706A (en) | Reluctance sensor | |
JPWO2020137558A1 (en) | Exchange bond film and magnetoresistive sensor and magnetic detector using this | |
JP6951454B2 (en) | Exchange bond film and magnetoresistive element and magnetic detector using this | |
JP2001217482A (en) | Magnetic sensor and magnetic storage device using the same | |
US6120920A (en) | Magneto-resistive effect magnetic head | |
US6347022B1 (en) | Spin-valve type magnetoresistive thin film element and spin-valve type magnetoresistive thin film head using the same | |
JPH0845030A (en) | Magneto-resistive magnetic head | |
JPH05327060A (en) | Thin film magnetoresistance element | |
JPH08235540A (en) | Multilayered magnetoresistance effect film and magnetic head | |
JP4018464B2 (en) | Magnetic field sensor and magnetic disk device | |
JP3766944B2 (en) | Magnetoresistive effect element | |
JP2003282999A (en) | Magnetic sensor | |
US20030129454A1 (en) | Spin valve magnetoresistive sensor | |
JP2000173026A (en) | Magnetoresistive effect element and magnetic head | |
JPH04339309A (en) | Magneto-resistance effect element using multilayred magneto-resistance effect film | |
JP2806549B2 (en) | Magnetoresistance effect element | |
JPH0629589A (en) | Magnetoresistance effect element | |
JP2002185060A (en) | Dual-spin-valve type thin-film element and its manufacturing method, and thin-film magnetic head | |
JP2504234B2 (en) | Magnetoresistive thin film and method of manufacturing the same | |
JPH0774022A (en) | Multilayer magnetoresistance-effect film and magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990803 |