JPH0532699B2 - - Google Patents

Info

Publication number
JPH0532699B2
JPH0532699B2 JP59064769A JP6476984A JPH0532699B2 JP H0532699 B2 JPH0532699 B2 JP H0532699B2 JP 59064769 A JP59064769 A JP 59064769A JP 6476984 A JP6476984 A JP 6476984A JP H0532699 B2 JPH0532699 B2 JP H0532699B2
Authority
JP
Japan
Prior art keywords
liquid
water
carbon dioxide
carrier gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59064769A
Other languages
Japanese (ja)
Other versions
JPS60207057A (en
Inventor
Chiaki Maekoya
Hitoshi Iwasaki
Fumio Mizuniwa
Komei Yatsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6476984A priority Critical patent/JPS60207057A/en
Priority to DE19853511687 priority patent/DE3511687C2/en
Publication of JPS60207057A publication Critical patent/JPS60207057A/en
Publication of JPH0532699B2 publication Critical patent/JPH0532699B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は液相酸化方式の水中有機炭素(TOC)
の測定装置に関する。 〔従来の技術〕 水中有機炭素(水中に存在する有機物中の炭素
をいう)を測定する場合には、有機物を酸化して
二酸化炭素とし、この二酸化炭素の濃度を定量的
に検出する原理が一般的に採用されている。 有機物の酸化法としては、大別して乾式酸化法
と湿式酸化法がある。 乾式酸化は500℃以上で燃焼や触媒酸化を行う
もので、代表的なものとしては、少量の試料を酸
素(又は二酸化炭素を除去した空気)と共に高温
の全炭素測定用酸化触媒充填管に通す燃焼法
(JIS K0102)があり、その他にも、例えば特開
昭52−36090号公報に開示されるように、試料水
から予め無機質炭素を除去した後、これを磁気燃
焼ボートに一定量はかりとり、このボートを950
〜1300℃に加熱された磁気燃焼管中に挿入して、
キヤリヤガスとして二酸化炭素を除去した空気又
は酸素ガスを流しつつ試料水中に含まれる有機炭
素を燃焼させる方式等が提案されている。 湿式酸化の代表的なものとしては、試料水の酸
化剤を添加するものがあり、例えば試料水と反応
試薬(酸化剤)との混合溶液に紫外線を照射して
酸化反応を進行させたり(UV酸化法)、その他
に試料水と反応試薬をアンプルに入れ、このアン
プルを加熱して試料水を反応試薬で酸化させる方
式(JIS K0102)がある。この二酸化炭素の抽出
は、窒素、ヘリウム等のキヤリヤガスを試験水中
に送入して通気させることで行つている。この場
合、後者のアンプル方式は、酸化工程後のアンプ
ルを加熱装置内で破壊し、これにキヤリヤガスを
通気することで行つているため、二酸化炭素の抽
出操作が煩雑であり、あまり使用されていない。 また抽出した二酸化炭素の定量には、有機物を
高温酸化(燃焼)して生成される二酸化炭素を赤
外分析法で検出するようにしたもの(Beckman
社)、二酸化炭素をメタンに変換して水素炎イオ
ン化検出付ガスクロマトグラフを用いて検出する
ようにしたもの(住友化学工業社)、UV酸化し
て得られた二酸化炭素を赤外分析法で検出するよ
うにしたもの(Dohrman Astro社)、二酸化炭素
を溶液に吸収させて導電率を測定するようにした
もの(Barnstead社)などがある。 〔発明が解決しようとする課題〕 前述した従来技術のうち、乾式酸化法では定量
下限が良くとも500ppb程度とされ、一方、湿式
酸化法では定量感度が10ppbの高感度のTOC分析
計が開発されている。 乾式酸化法が湿式酸化法に比べて定量感度が劣
るのは、例えば酸化触媒方式では少量(20μ程
度)の試料をこれに比べてはるかに容量の大きい
酸化触媒充填管に注入するため、酸化触媒充填管
内でガス化した試料が拡散してしまい希釈化され
ることや、外部汚染の影響を受け易いことが挙げ
られる。このことは、燃焼管に試料を入れたボー
トを挿入して酸化させる方式であつても、ボート
を入れる燃焼管は大形化するため、その燃焼管の
容積が試料に対してはるかに大きくなるので、同
様のことがいえる。 なお、上記の酸化触媒方式において、低濃度有
機炭素に対する定量感度を高めるために試料供給
量を増やそうとしても、気化熱によつて酸化触媒
の機能が低下するため、その実現が困難であつ
た。 ところで、LSI製造プロセスや原子力プラント
などで使用されている高純度水は年を追つて要求
水質も厳しくなつており、これに伴つて定量感度
が一桁程度のppbのものが要求されてきており、
もはや従来の湿式酸化法を用いたTOC測定装置
であつても、その要求を充分に満足させるのは困
難であつた。 その理由としては、従来の湿式酸化法では、液
相中(試料水と酸化剤との混合液中)にキヤリヤ
ガスを送入して、生成された二酸化炭素の抽出を
行うので、大量のキヤリヤガスを必要とし、キヤ
リヤガス中に抽出された二酸化炭素の濃度が低く
なることが挙げられる。 すなわち、水中に溶存する二酸化炭素の量は、
気相中の二酸化炭素の分圧に比例するので、二酸
化炭素濃度の低いキヤリヤガスを水中でバブリン
グさせると、水中の二酸化炭素はキヤリヤガス中
に移動するが、水中の二酸化炭素の濃度が低くな
るほど、二酸化炭素がキヤリヤガス中に抽出され
にくくなり、したがつて、二酸化炭素の抽出率を
高めるためには、多くのキヤリヤガスを必要と
し、結果として、キヤリヤガス中の二酸化炭素の
濃度が低くなる。 本発明は以上の点に鑑みてなされ、その目的
は、操作が簡便にして、水中の低濃度(極微量)
の有機炭素に対する定量感度を向上させ極めて高
精度の水中有機炭素の測定装置を提供することに
ある。 〔課題を解決するための手段〕 水中有機炭素の定量感度を高めるためには、
試料水の処理量を大きくして二酸化炭素の生成量
を増大させること、分析操作中の汚染を防止す
ること、生成二酸化炭素の抽出率を向上させる
ことなどについての対策が必要である。 本発明は、このような課題を解決するために、
基本的には次のようなTOC測定装置を提案する。 すなわち、試料水及び酸化剤よりなる反応液を
送液する管を有し、この送液管には、試料水及び
反応液の混合液を送液する過程で試料水中に溶存
する無機炭酸を除去する脱気器と、脱気器の下流
に送液兼加圧ポンプ、加熱器付き反応管及び反応
管出口側の絞り部を配設する。そして、前記反応
管が前記送液管の一部をなして前記混合液を流し
つつ高温に加熱すると共に前記送液兼加圧ポンプ
及び絞り部の協働により蒸気圧以上に加圧し、こ
の高温加圧下で前記混合液の試料水に含まれる有
機物を前記反応液により液相酸化するよう設定す
る。且つ前記絞り部の下流に前記混合液を水蒸気
化又は霧化するためのガス化管路を延設し、この
ガス化管路に前記有機物の液相酸化により生成さ
れた二酸化炭素を抽出するためのキヤリヤガス送
入手段、該キヤリアガスと前記水蒸気化又は霧化
された水分とを分離する気液分離器、水分の分離
除去後に前記キヤリヤガス中の二酸化炭素を検出
する二酸化炭素検出手段を配設して成る。 〔作用〕 試料水及び反応液は送液管にて混合されつつま
ず脱気器に移送され、この脱気器にて試料水中に
溶存する無機炭酸が除去される。さなわち、空気
と接触されている高純度水には溶存炭酸が混在し
ている。これを有機物の酸化により生成する二酸
化炭素と区別するため予め送液過程において脱気
器により除去する。 脱気器を通過した混合液は、送液管及び送液兼
加圧ポンプを介して反応管に移送される。反応管
は加熱器で加熱されているため、その中を通過す
る混合液は高温に加熱され、且つ加圧ポンプと反
応管出口側に設けた絞り部の協働により反応管内
の高温の混合液が蒸気圧以上に加圧される。 その結果、混合液は液相に保たれ、その試料水
中の有機物が反応液により高温で液相酸化(湿式
酸化)される。すなわち混合液が高温化されるこ
とで、試料水中の有機物に対する反応液による酸
化反応が進行し、試料水中に含まれる有機物より
二酸化炭素が生成される。 この場合の液相酸化の工程は、前記送液兼加圧
ポンプの駆動により混合液を反応管に流しつつ行
われるので、連続的になされる(連続流れ方式)。
そのため、試料水の処理量を大きくして二酸化炭
素の生成能力を高める(前記の要素に対応)。
また、液相酸化であるため、燃焼による乾式酸化
のようにガス化した試料が反応管にて拡散してし
まう事態は生じない。 そして、反応管を経た混合液はその絞り部を出
た後にガス化管路を流れつつ水蒸気化或いは霧化
され、この水蒸気化或いは霧化された雰囲気中に
キヤリヤガスが送入され、前記の液相酸化過程で
生成された二酸化炭素がキヤリヤガス中に抽出さ
れる。 二酸化炭素をキヤリヤガスで抽出する場合、そ
の抽出率を高くするには、二酸化炭素を含む雰囲
気(従来の湿式酸化法では水中がこれに該当し、
本発明では上記の水蒸気化又は霧化されたガス状
雰囲気がこれに該当する)へのキヤリヤガスの拡
散、キヤリヤガスへの二酸化炭素の拡散をそれぞ
れ早くすれば達成される。これらの物質の拡散の
速さの度合いを示すものとして拡散係数(cm2
s)があるが、拡散係数は低温より高温の方が大
きく、また、液体に対する気体の拡散係数が10-5
オーダであるのに対して、気体に対する気体の拡
散係数は0.1オーダであり、104倍も大きい(亀井
三郎編、基礎化学工学、いずみ書房)。従つて、
水中の有機物を酸化した後、その試料水を水蒸気
化又は霧化し、これにキヤリヤガスを混合するよ
うにすれば、少ない量のキヤリヤガスで低濃度の
二酸化炭素を効果的に抽出可能であり、発明者等
はこれを実験的に確認した(前記の要素に対
応)。 また、本発明では、水蒸気化或いは霧化するガ
ス化管路を送液管を延設して行うようにしてある
ため、容積の小さい細管(例えば内径φ0.5〜1mm
程度)の中で水蒸気化或いは霧化させることがで
き、しかも送液兼用加圧ポンプの送液作用により
連続した流れの中で水蒸気化或いは霧化されるた
め、水蒸気化或いは霧化された流れがほとんど管
路内で滞溜拡散する間がなく次々とキヤリヤガス
合流部に強制移送される(換言すれば、反応管の
絞り部を経て混合液がガス化管路に入ると、その
流入体積分だけ水蒸気化或いは霧化された混合液
が気液分離器側に強制的に押し出される)。その
結果、キヤリヤガスに対する二酸化炭素の希釈度
合いを大幅に小さくしつつ、水蒸気化或いは霧化
された試料がキヤリヤガスと常にほゞ一定の比率
で混合される(この作用は前記の要素を更に助
長させる)。 二酸化炭素を抽出したキヤリヤガスは、気液分
離器にて水蒸気化又は霧化された水分と分離(除
湿)された後、キヤリヤガス中の二酸化炭素が定
量濃度として検出(測定)される。 なお、上記加熱器付き反応管と凝縮器の距離
は、乾式酸化方式(燃焼方式)よりも反応管の加
熱温度を高くする必要がないので、凝縮器の反応
管から受ける熱的影響を小さくでき、その分、反
応管と凝縮器間の間の長さ(ガス化管路長さ)も
短くでき(例えば50cm程度)、この管路が細径で
あることと相まつて管路容積を小さくして水蒸気
又は霧化されたガス状試料の管路内での拡散を抑
える(この作用も前記の要素を助長させる)。 また、以上の二酸化炭素測定は送液管及びガス
化管路を一連に通して外部汚染にさらされること
なく行い得る(前記の要素に対応)。 〔実施例〕 第1図は本発明の水中有機炭素の測定装置の一
実施例を示す構成図である。 第1図において、1は試料水、2は試料水1を
後述する反応管10に送るためのキヤリヤ液(キ
ヤリヤ液2は実質的に有機炭素が含まれない純水
であり、後述の気液分離器19の凝縮水が利用さ
れる)、3は試料水1中の有機物を酸化するため
の反応液で、酸化剤として機能する過硫酸カリウ
ム(ペルオキソニ硫酸カリウム)と生成された二
酸化炭素の水中への溶解度を減少させるための硫
酸とからなる。 試料水1はポンプ5aにより、キヤリヤ液2は
ポンプ5bにより、それぞれ共通の送液管5に設
けた六方弁6に時間差をもつて送られる。この場
合、試料水1を第1図の六方弁の状態で予め計量
コイル7に一定量送つておき、その後、六方弁6
を切り換えてキヤリヤ液2側、計量コイル7、送
液管5をつなげて、計量コイル7にある試料水1
がその上流側にあるキヤリヤ液2の流れの力によ
つて送液管5側に押し出すように流す。 この送液により試料水1が送液管5を流れ、そ
の途中でポンプ5cにより送られる反応液3が所
定の比率で合流し、これらの混合液が脱気器8へ
移送される。 脱気器8は槽状を呈して、ヘリウム4がキヤリ
ヤガスとして前記混合液中に通気しバブリングす
ることで、混合液中に含まれる無機炭酸が除去さ
れ、ヘリウム4とともに排ガス18として大気に
放出される。例えば、試料水1を高純度水とした
場合、その中の溶存炭酸は、二酸化炭素(CO2)、
炭酸水素イオン(HCO3 -)、炭酸イオン(CO3 2-
として存在するが、これらの存在割合はPHによつ
て異なる。通気法により溶存炭酸を効率的に除去
するためには炭酸として存在させる必要がある。
炭酸として99%以上存在することのできるPHは4
以下である。そこで、通気時の試料水1の酸濃度
は硫酸で1mmol/になるようにしてある。 送液管5は内径がφ0.5〜1mm程度としてある。
例えば管路5をφ1mmで長さ1.2m程度にすれば、
その中の液量は1mlとなる。この送液管5には、
脱気器8の下流に送液兼加圧ポンプ5d、コイル
状の反応管10、反応管出口側の絞り部となる圧
力調節弁12が配設される。反応管10は加熱器
となる恒温槽11を備え、恒温槽11により200
℃程度の高温に加熱され、且つその内部を流通す
る混合液がポンプ5dと圧力調節弁12の協働に
より一定の圧力(上記設定温度の水の蒸気圧より
も約10Kgf/cm2高くなるようにしてある)に加圧
される。具体的には、例えば200℃、20〜30Kg
f/cm2の高温加圧状態としてある。9は圧力計で
ある。 試料水1は、この高温、加圧状態にある反応管
10を連続的に10ml/minの流量で流れ、この流
れ過程で高温化されて反応液3により試料水1中
の有機物が酸化される(液相酸化)。 高純度水中に有機物(CxHyNz)は過硫酸カリ
ウム(K2S2O8)によつて式(1)及び(2)のように酸
化されて二酸化炭素を生成する。 K2S2O8+H2OK2SO4+H2SO4+(O) ……(1) CxHyNz(O)+nxCO2 +y/2H2O+zNO3 - ……(2) 式(1)の反応では高温でなければ進行しない。そ
して、本実施例では、装置の自動化と処理能力を
向上させるために、試料水1及び反応液3を高温
に保たれている反応管10の中を通して有機物を
連続的な流れの中で二酸化炭素に変換している。 反応管10の圧力調節弁12の下流には、送液
管5を延設した形で水蒸気発生管(ガス化管路)
13が配設され、水蒸気発生管13の途中にヘリ
ウム4を流量調節弁17を介して送入するキヤリ
ヤガス混合弁14が付加され、その下流に水分分
離器(凝縮器)15、さらに下流に二酸化炭素検
出用の赤外分析計が配設してある。水蒸気発生管
13も内径φ0.5〜1mm程度としてある。 反応管10を通過し液相酸化処理過程に付され
た混合液は、圧力調節弁12を通過後に減圧され
て水蒸気発生管13にて水蒸気化しつつ、ヘリウ
ム4と合流し、有機物の酸化によつて生成された
二酸化炭素がヘリウム4により抽出される。この
二酸化炭素を抽出したヘリウム4は水蒸気と共に
気液分離器15に導かれ、水蒸気は凝縮水19と
して分離除去され、除湿されたヘリウム4が赤外
分析計16へ送られ、ヘリウム4中の二酸化炭素
の濃度が定量測定され、この測定値から試料水1
中の有機炭素が測定される。 上記した本実施例によれば、 まず、試料水1は反応管10に流れつつ試料
水中の有機物が酸化される。このような流れ方
式を採用すると、試料水の処理量を大きくで
き、そのため試料水中の二酸化炭素の生成量が
増大し検出感度を高める。 また、分析操作中には試料を外部に触れる機
会を与えることなく、送液管5、水蒸気管13
を通して試料の分析を行うので、外部汚染を有
効に防止できる。 また、試料中の有機物を高温、加圧状態に反
応管10にて液相酸化した後に、これを水蒸気
化してこの水蒸気雰囲気中に二酸化炭素抽出用
のキヤリヤガスを送入するので、水中にキヤリ
ヤガスを送入して二酸化炭素を抽出する場合よ
りも少ない量のキヤリヤガスで低濃度の二酸化
炭素を効果的に抽出できる(その理由は、発明
の作用の項で述べたので参照されたい)。 さらに、水蒸気管13は内径がφ0.5〜1mm程
度でその長さが50cm程度であり、その容積が極
めて小さく、しかも水蒸気管13で水蒸気化さ
れた試料はポンプ5dの力により強制的な流れ
を伴うので、ほとんど水蒸気管13で拡散する
間もなくキヤリヤガス4と合流して、直ちに気
液分離器15を介して赤外分析計16に送られ
るので、キヤリヤガス4中の二酸化炭素が希釈
化されることなく赤外分析計16にて検出され
る。 従つて、以上のの作用によつて、水中二
酸化炭素の定量感度を向上させ、1ppb前後の極
低濃度の有機炭素を定量可能にした。この具体的
効果の裏付けを、第3図により説明する。 第3図は本実施例の装置を用いて検量線を作成
したデータである。検量線を作成するためには、
有機物が含まれていない水で標準液を調整する必
要がある。通常の高純度水には低いものでも
20ppb前後の有機炭素が混在している。このた
め、標準液のベースとなる水としては、この水を
精製した有機物を実質的に含まない水を用いる必
要がある。そして、有機物を実質的に含まない水
には気液分離器19からのドレンを用い、これに
有機炭素の標準物質として一般的なフタル酸水素
カリウムの一定量を添加し、有機炭素濃度が5〜
100ppbになるような標準液を調整して分析した。
その結果が第3図の実線Bで、フタル酸水素カリ
ウムが完全に酸化したときの計算値を破線Aによ
りあわせて示した。検量線は100ppbまで直線を
示している。また、計算値に対する実験値の比を
回収率とすると、その値は約95%である。有機物
が含まれないと思われた気液分離器のドレンでも
約5ppbの有機炭素が検出された。この原因とし
て、ドレンを採取した容器の洗浄法、標準液調整
中の外部汚染などが考えられるが詳細は明らかで
はない。このときのくり返し精度は標準偏差で
0.19ppbであつた。定量下限は標準偏差の5倍を
とると0.9ppbとなり、以上からすれば1ppb前後
の極低濃度の有機炭素の定量も可能であることが
わかる。このときの変動係数は5ppbのときの標
準偏差と同じとすると20%である。 本実施例に係る装置を用いて種々の高純度水を
分析した結果を表1に示す。各種高純度水の分析
値は3〜108ppbとかなり幅がある。なお、No.1
の試料は、水蒸気を酸素雰囲気中で900℃の白金
触媒層を通して有機物を燃焼させた後凝縮させた
ものである。
[Industrial Application Field] The present invention is a liquid-phase oxidation method for organic carbon in water (TOC).
This invention relates to a measuring device. [Prior art] When measuring organic carbon in water (referring to carbon in organic matter present in water), the general principle is to oxidize the organic matter to carbon dioxide and quantitatively detect the concentration of this carbon dioxide. has been adopted. Methods for oxidizing organic substances are broadly classified into dry oxidation methods and wet oxidation methods. Dry oxidation involves combustion and catalytic oxidation at temperatures above 500°C, typically in which a small amount of sample is passed along with oxygen (or air from which carbon dioxide has been removed) through a tube filled with a high-temperature oxidation catalyst for measuring total carbon. There is a combustion method (JIS K0102), and there is also a method in which inorganic carbon is removed from sample water in advance and then a certain amount is weighed on a magnetic combustion boat, as disclosed in JP-A No. 52-36090. , this boat 950
Inserted into a magnetic combustion tube heated to ~1300℃,
A method has been proposed in which organic carbon contained in sample water is combusted while flowing air or oxygen gas from which carbon dioxide has been removed as a carrier gas. A typical wet oxidation method involves adding an oxidizing agent to the sample water. For example, a mixed solution of sample water and a reaction reagent (oxidizing agent) is irradiated with ultraviolet rays to advance the oxidation reaction (UV oxidation). There is also a method (JIS K0102) in which sample water and reaction reagent are placed in an ampoule and the ampoule is heated to oxidize the sample water with the reaction reagent. Extraction of carbon dioxide is carried out by introducing a carrier gas such as nitrogen or helium into the test water to aerate it. In this case, the latter ampule method is performed by breaking the ampule in a heating device after the oxidation process and passing carrier gas through it, which makes the extraction of carbon dioxide complicated and is not used very often. . In addition, in order to quantify the extracted carbon dioxide, carbon dioxide produced by high-temperature oxidation (combustion) of organic matter was detected using an infrared analysis method (Beckman
(Sumitomo Chemical Co., Ltd.), which converts carbon dioxide to methane and detects it using a gas chromatograph with flame ionization detection (Sumitomo Chemical Co., Ltd.), and detects carbon dioxide obtained by UV oxidation using infrared analysis. There is one that measures conductivity by absorbing carbon dioxide into a solution (Dohrman Astro), and another that measures conductivity by absorbing carbon dioxide into a solution (Barnstead). [Problem to be solved by the invention] Of the conventional techniques mentioned above, the lower limit of quantification in the dry oxidation method is at best about 500 ppb, while a highly sensitive TOC analyzer with a quantitative sensitivity of 10 ppb has been developed in the wet oxidation method. ing. The reason why the dry oxidation method has lower quantitative sensitivity than the wet oxidation method is because, for example, in the oxidation catalyst method, a small amount (about 20μ) of the sample is injected into a tube filled with an oxidation catalyst, which has a much larger capacity than the oxidation catalyst method. Examples include the fact that the sample gasified in the filling tube diffuses and becomes diluted, and it is susceptible to external contamination. This means that even if oxidation is carried out by inserting a boat containing a sample into a combustion tube, the combustion tube into which the boat is inserted will be large, so the volume of the combustion tube will be much larger than the sample. Therefore, the same thing can be said. In addition, in the above-mentioned oxidation catalyst method, even if it was attempted to increase the sample supply amount in order to increase the quantitative sensitivity for low-concentration organic carbon, it was difficult to achieve this because the function of the oxidation catalyst deteriorated due to the heat of vaporization. . By the way, the quality of high-purity water used in LSI manufacturing processes, nuclear power plants, etc. is becoming stricter over the years, and along with this, a quantitative sensitivity of around single digit ppb is required. ,
Even with TOC measurement devices using conventional wet oxidation methods, it has been difficult to fully satisfy these demands. The reason for this is that in the conventional wet oxidation method, a carrier gas is introduced into the liquid phase (a mixture of sample water and oxidizing agent) to extract the generated carbon dioxide, so a large amount of carrier gas is required. and the concentration of carbon dioxide extracted into the carrier gas will be lower. In other words, the amount of carbon dioxide dissolved in water is
It is proportional to the partial pressure of carbon dioxide in the gas phase, so when a carrier gas with a low carbon dioxide concentration is bubbled in water, carbon dioxide in the water moves into the carrier gas, but the lower the concentration of carbon dioxide in water, the more Carbon is less likely to be extracted into the carrier gas, and therefore more carrier gas is required to increase the extraction rate of carbon dioxide, resulting in a lower concentration of carbon dioxide in the carrier gas. The present invention has been made in view of the above points, and its purpose is to simplify the operation and reduce the concentration of water at low concentrations (extremely small amounts) in water.
The object of the present invention is to provide an extremely high-precision measuring device for organic carbon in water by improving the quantitative sensitivity for organic carbon in water. [Means to solve the problem] In order to increase the quantitative sensitivity of organic carbon in water,
Measures need to be taken to increase the amount of carbon dioxide produced by increasing the amount of sample water processed, to prevent contamination during analysis operations, and to improve the extraction rate of produced carbon dioxide. In order to solve such problems, the present invention has the following features:
Basically, we propose the following TOC measuring device. That is, it has a tube for feeding a reaction liquid consisting of sample water and an oxidizing agent, and this liquid feeding tube has a tube that removes inorganic carbonic acid dissolved in the sample water in the process of feeding a mixture of sample water and reaction liquid. A deaerator is installed downstream of the deaerator, a liquid feeding/pressurizing pump, a reaction tube with a heater, and a constriction section on the outlet side of the reaction tube are installed. Then, the reaction tube forms a part of the liquid sending pipe, and the mixed liquid is heated to a high temperature while flowing therethrough, and is pressurized to a level higher than the vapor pressure by cooperation of the liquid sending and pressurizing pump and the throttle part. The organic matter contained in the sample water of the mixed solution is set to be oxidized in liquid phase by the reaction solution under pressure. Further, a gasification pipe for steaming or atomizing the liquid mixture is extended downstream of the throttle part, and for extracting carbon dioxide generated by liquid phase oxidation of the organic matter into this gasification pipe. A carrier gas feeding means, a gas-liquid separator for separating the carrier gas from the vaporized or atomized water, and a carbon dioxide detection means for detecting carbon dioxide in the carrier gas after separating and removing the water. Become. [Operation] The sample water and the reaction solution are mixed in a liquid sending pipe and then transferred to a deaerator, where inorganic carbonic acid dissolved in the sample water is removed. In other words, dissolved carbonic acid is mixed in high-purity water that is in contact with air. In order to distinguish this from carbon dioxide produced by oxidation of organic matter, it is removed in advance using a deaerator during the liquid feeding process. The mixed liquid that has passed through the deaerator is transferred to the reaction tube via a liquid sending pipe and a liquid sending and pressurizing pump. Since the reaction tube is heated by a heater, the mixed liquid passing through it is heated to a high temperature, and the high temperature mixed liquid inside the reaction tube is is pressurized above vapor pressure. As a result, the mixed solution is kept in a liquid phase, and the organic matter in the sample water is oxidized in the liquid phase (wet oxidation) by the reaction solution at a high temperature. That is, when the temperature of the mixed liquid is raised, the oxidation reaction of the organic matter in the sample water by the reaction liquid progresses, and carbon dioxide is generated from the organic matter contained in the sample water. In this case, the liquid phase oxidation step is carried out continuously (continuous flow method) because the liquid mixture is caused to flow through the reaction tube by driving the liquid feeding/pressurizing pump.
Therefore, the amount of sample water to be processed is increased to increase the ability to generate carbon dioxide (corresponding to the above-mentioned factors).
Furthermore, since it is a liquid phase oxidation, there is no possibility of the gasified sample being diffused in the reaction tube as in dry oxidation by combustion. After passing through the reaction tube, the mixed liquid flows through the gasification pipe and becomes steamed or atomized after exiting the constriction section, and a carrier gas is introduced into this steamed or atomized atmosphere, and the aforementioned liquid is The carbon dioxide produced during the phase oxidation process is extracted into the carrier gas. When extracting carbon dioxide with a carrier gas, in order to increase the extraction rate, an atmosphere containing carbon dioxide (in the conventional wet oxidation method, this corresponds to water,
In the present invention, this can be achieved by speeding up the diffusion of the carrier gas into the vaporized or atomized gaseous atmosphere described above, and the diffusion of carbon dioxide into the carrier gas. Diffusion coefficient (cm 2 /
s), but the diffusion coefficient is larger at high temperatures than at low temperatures, and the diffusion coefficient of gas for liquid is 10 -5
On the other hand, the diffusion coefficient for gases is on the order of 0.1, which is 10 4 times larger (edited by Saburo Kamei, Basic Chemical Engineering, Izumi Shobo). Therefore,
After oxidizing the organic matter in water, the sample water is vaporized or atomized, and a carrier gas is mixed with this, making it possible to effectively extract low concentrations of carbon dioxide with a small amount of carrier gas. confirmed this experimentally (corresponding to the factors mentioned above). In addition, in the present invention, since the gasification pipe line for water vaporization or atomization is carried out by extending the liquid sending pipe, a thin pipe with a small volume (for example, an inner diameter of 0.5 to 1 mm) is used.
Water can be vaporized or atomized in a continuous flow due to the liquid feeding action of a pressure pump that also serves as a liquid feeder. is forced to be transferred one after another to the carrier gas confluence part without much time for it to accumulate and diffuse in the pipe (in other words, when the mixed liquid enters the gasification pipe through the constriction part of the reaction pipe, the inflow volume (The vaporized or atomized mixed liquid is forcibly pushed out to the gas-liquid separator side.) As a result, the steamed or atomized sample is always mixed with the carrier gas at a substantially constant ratio, while the degree of dilution of the carbon dioxide with respect to the carrier gas is greatly reduced (this effect further enhances the aforementioned factors). . The carrier gas from which carbon dioxide has been extracted is separated (dehumidified) from water vaporized or atomized in a gas-liquid separator, and then the carbon dioxide in the carrier gas is detected (measured) as a quantitative concentration. Note that the distance between the reaction tube with a heater and the condenser does not require the heating temperature of the reaction tube to be higher than in the dry oxidation method (combustion method), so the thermal influence of the reaction tube on the condenser can be reduced. Therefore, the length between the reaction tube and the condenser (gasification pipe length) can be shortened (e.g., about 50 cm), and this, together with the small diameter of this pipe, reduces the pipe volume. to suppress the diffusion of water vapor or atomized gaseous sample within the pipe (this action also promotes the above-mentioned factors). Further, the above carbon dioxide measurement can be performed without being exposed to external contamination by passing the liquid pipe and gasification pipe in series (corresponding to the above-mentioned factors). [Example] FIG. 1 is a block diagram showing an example of an apparatus for measuring organic carbon in water according to the present invention. In FIG. 1, 1 is a sample water, and 2 is a carrier liquid for sending the sample water 1 to a reaction tube 10 (described later). 3 is a reaction liquid for oxidizing organic matter in sample water 1, in which potassium persulfate (potassium peroxonisulfate), which functions as an oxidizing agent, and generated carbon dioxide are mixed in water. sulfuric acid to reduce its solubility. The sample water 1 is sent by a pump 5a, and the carrier liquid 2 is sent by a pump 5b to a six-way valve 6 provided in a common liquid sending pipe 5 at different times. In this case, a certain amount of sample water 1 is sent in advance to the measuring coil 7 in the state of the six-way valve shown in FIG.
Switch the carrier liquid 2 side, the measuring coil 7, and the liquid sending pipe 5 to connect the sample water 1 in the measuring coil 7.
is pushed out toward the liquid sending pipe 5 by the force of the flow of the carrier liquid 2 on the upstream side. Due to this liquid feeding, the sample water 1 flows through the liquid feeding pipe 5, and along the way, the reaction liquid 3 sent by the pump 5c joins at a predetermined ratio, and the mixed liquid is transferred to the deaerator 8. The deaerator 8 has a tank shape, and helium 4 is bubbled through the mixed liquid as a carrier gas to remove inorganic carbonic acid contained in the mixed liquid, and the helium 4 is released into the atmosphere as exhaust gas 18. Ru. For example, when sample water 1 is high purity water, the dissolved carbonic acid therein is carbon dioxide (CO 2 ),
Bicarbonate ion (HCO 3 - ), carbonate ion (CO 3 2- )
However, the proportion of these substances differs depending on the pH. In order to efficiently remove dissolved carbonic acid by the aeration method, it is necessary to make it exist as carbonic acid.
The pH at which more than 99% of carbonic acid can exist is 4.
It is as follows. Therefore, the acid concentration of sample water 1 during aeration is set to 1 mmol/sulfuric acid. The liquid feeding pipe 5 has an inner diameter of approximately φ0.5 to 1 mm.
For example, if the pipe line 5 is made to have a diameter of 1 mm and a length of about 1.2 m,
The volume of liquid in it is 1 ml. In this liquid sending pipe 5,
A liquid feeding/pressurizing pump 5d, a coiled reaction tube 10, and a pressure regulating valve 12 serving as a constriction portion on the outlet side of the reaction tube are arranged downstream of the deaerator 8. The reaction tube 10 is equipped with a constant temperature bath 11 serving as a heater, and the constant temperature bath 11 has a temperature of 200
The mixed liquid that is heated to a high temperature of about °C and flows through it is kept at a constant pressure (approximately 10 Kgf/cm 2 higher than the vapor pressure of water at the above set temperature) by the cooperation of the pump 5d and the pressure regulating valve 12. The pressure is applied to the Specifically, for example, 200℃, 20-30Kg
It is in a high temperature and pressurized state of f/cm 2 . 9 is a pressure gauge. The sample water 1 continuously flows through this high temperature, pressurized reaction tube 10 at a flow rate of 10 ml/min, and during this flow process, the temperature is raised and the organic matter in the sample water 1 is oxidized by the reaction liquid 3. (liquid phase oxidation). Organic matter (C x H y N z ) in high purity water is oxidized by potassium persulfate (K 2 S 2 O 8 ) as shown in equations (1) and (2) to generate carbon dioxide. K 2 S 2 O 8 +H 2 OK 2 SO 4 +H 2 SO 4 +(O) ...(1) C x H y N z (O)+nxCO 2 +y/2H 2 O+zNO 3 - ...(2) Equation ( Reaction 1) does not proceed unless the temperature is high. In this example, in order to improve the automation and processing capacity of the apparatus, the sample water 1 and the reaction liquid 3 are passed through the reaction tube 10 kept at high temperature, and the organic matter is poured into carbon dioxide in a continuous flow. is being converted to . Downstream of the pressure control valve 12 of the reaction tube 10, a water vapor generation tube (gasification tube) is provided by extending the liquid sending tube 5.
A carrier gas mixing valve 14 is added in the middle of the steam generation pipe 13 to feed helium 4 through a flow rate control valve 17, a moisture separator (condenser) 15 is downstream of the carrier gas mixing valve 14, and a carbon dioxide gas is further downstream of the carrier gas mixing valve 14. An infrared analyzer for carbon detection is installed. The steam generating tube 13 also has an inner diameter of about 0.5 to 1 mm. The mixed liquid that has passed through the reaction tube 10 and has been subjected to the liquid phase oxidation process is reduced in pressure after passing through the pressure control valve 12 and is vaporized in the steam generation tube 13, where it merges with helium 4 and is oxidized by organic matter. The carbon dioxide thus produced is extracted with helium-4. The helium 4 from which carbon dioxide has been extracted is led to the gas-liquid separator 15 together with water vapor, where the water vapor is separated and removed as condensed water 19, and the dehumidified helium 4 is sent to the infrared analyzer 16, where the carbon dioxide contained in the helium 4 is The concentration of carbon is quantitatively measured, and from this measurement value sample water 1
The organic carbon inside is measured. According to the present embodiment described above, first, while the sample water 1 is flowing into the reaction tube 10, organic substances in the sample water are oxidized. If such a flow system is adopted, the amount of sample water to be processed can be increased, which increases the amount of carbon dioxide produced in the sample water and increases the detection sensitivity. In addition, during the analysis operation, the liquid sending pipe 5 and the water vapor pipe 13 are
Since the sample is analyzed through the sensor, external contamination can be effectively prevented. In addition, after the organic matter in the sample is oxidized in a liquid phase at high temperature and pressure in the reaction tube 10, it is turned into steam and a carrier gas for carbon dioxide extraction is introduced into this steam atmosphere. A lower concentration of carbon dioxide can be effectively extracted using a smaller amount of carrier gas than when carbon dioxide is extracted by feeding the carrier gas (for the reason, please refer to the section on the operation of the invention). Furthermore, the steam pipe 13 has an inner diameter of approximately φ0.5 to 1 mm and a length of approximately 50 cm, and its volume is extremely small.Moreover, the sample steamed in the steam pipe 13 is forced to flow through the force of the pump 5d. Therefore, the carbon dioxide in the carrier gas 4 is diluted because it joins with the carrier gas 4 almost before being diffused in the steam pipe 13 and is immediately sent to the infrared analyzer 16 via the gas-liquid separator 15. detected by the infrared analyzer 16. Therefore, the above-mentioned effects have improved the sensitivity of quantitative determination of carbon dioxide in water, making it possible to quantify organic carbon at extremely low concentrations of around 1 ppb. The proof of this specific effect will be explained with reference to FIG. FIG. 3 shows data obtained by creating a calibration curve using the apparatus of this example. To create a calibration curve,
It is necessary to prepare the standard solution with water that does not contain organic substances. Even if it is low in ordinary high purity water
Contains around 20ppb of organic carbon. For this reason, it is necessary to use purified water that substantially does not contain organic substances as the water that serves as the base of the standard solution. Then, the drain from the gas-liquid separator 19 is used for water that does not substantially contain organic matter, and a certain amount of potassium hydrogen phthalate, which is commonly used as a standard substance for organic carbon, is added to the water to reduce the organic carbon concentration to 5. ~
A standard solution with a concentration of 100 ppb was prepared and analyzed.
The result is shown by solid line B in FIG. 3, and the calculated value when potassium hydrogen phthalate is completely oxidized is also shown by broken line A. The calibration curve shows a straight line up to 100 ppb. Furthermore, if the ratio of the experimental value to the calculated value is taken as the recovery rate, the value is approximately 95%. Approximately 5 ppb of organic carbon was detected even in the drain of the gas-liquid separator, which was thought to contain no organic matter. Possible causes of this include the method of cleaning the container in which the drain was collected and external contamination during standard solution preparation, but the details are not clear. The repeat accuracy at this time is the standard deviation.
It was 0.19 ppb. The lower limit of quantification is 0.9 ppb when five times the standard deviation is taken, and from the above it can be seen that it is possible to quantify organic carbon at extremely low concentrations of around 1 ppb. The coefficient of variation at this time is 20%, assuming it is the same as the standard deviation at 5 ppb. Table 1 shows the results of analyzing various types of high-purity water using the apparatus according to this example. The analytical values of various types of high-purity water vary considerably, from 3 to 108 ppb. In addition, No.1
The sample was made by passing water vapor through a platinum catalyst layer at 900°C in an oxygen atmosphere, burning organic matter, and then condensing it.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、既述した〜
に述べた定量感度向上要素を全て満足させること
で、極低濃度(1ppb前後の濃度)の水中有機炭
素を測定でき、今まで実現困難であつた超純水の
有機炭素の測定も可能にする優れた効果を奏す
る。 また、送液管及びこれを延設したガス下管路を
流す過程でポンプ駆動により自動的に水中有機炭
素を測定するので、分析操作の簡便化を図ること
ができる。
As described above, according to the present invention, the above-mentioned ~
By satisfying all of the quantitative sensitivity improvement factors mentioned above, it is possible to measure organic carbon in water at extremely low concentrations (concentrations around 1 ppb), and it also becomes possible to measure organic carbon in ultrapure water, which has been difficult to achieve until now. It has excellent effects. In addition, organic carbon in the water is automatically measured by driving the pump during the process of flowing the liquid through the liquid sending pipe and the gas lower pipe extending therefrom, so that analysis operations can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図は本発明の応用例を示す構成図、第3図は上記
実施例の装置を用いて検量線を作成した時の線図
である。 1……試料水、2……キヤリヤ液、3……反応
液(酸化剤)、4……ヘリウム(キヤリヤガス)、
5……送液管、5a〜5c……送液ポンプ、5d
……送液兼加圧ポンプ、6……六方弁、7……計
量コイル、8……脱気器、9……圧力計、10…
…反応管、11……恒温槽(加熱器)、12……
圧力調節弁(絞り部)、13……水蒸気発生管
(ガス化管路)、14……キヤリヤガス混合弁(キ
ヤリヤガス送入手段)、15……気液分離器、1
6……赤外分析計(二酸化炭素検出手段)。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a block diagram showing an application example of the present invention, and FIG. 3 is a diagram showing a calibration curve created using the apparatus of the above embodiment. 1... Sample water, 2... Carrier liquid, 3... Reaction liquid (oxidizing agent), 4... Helium (carrier gas),
5...Liquid feeding pipe, 5a to 5c...Liquid feeding pump, 5d
...Liquid feeding and pressurizing pump, 6...Six-way valve, 7...Measuring coil, 8...Deaerator, 9...Pressure gauge, 10...
...Reaction tube, 11... Constant temperature bath (heater), 12...
Pressure control valve (throttling part), 13... Steam generation pipe (gasification pipe), 14... Carrier gas mixing valve (carrier gas feeding means), 15... Gas-liquid separator, 1
6...Infrared analyzer (carbon dioxide detection means).

Claims (1)

【特許請求の範囲】 1 試料水及び酸化剤よりなる反応液を送液する
管を有し、この送液管には、前記試料水及び反応
液の混合液を送液する過程で試料水中に溶存する
無機炭酸を除去する脱気器と、前記脱気器の下流
に送液兼加圧ポンプ、加熱器付き反応管及び反応
管出口側の絞り部を配設し、前記反応管が前記送
液管の一部をなして前記混合液を流しつつ高温に
加熱すると共に前記送液兼加圧ポンプ及び絞り部
の協働により蒸気圧以上に加圧し、この高温加圧
下で前記混合液の試料水に含まれる有機物を前記
反応液により液相酸化するよう設定し、且つ前記
絞り部の下流に前記混合液を水蒸気化又は霧化す
るためのガス化管路を延設し、このガス化管路に
前記有機物の液相酸化により生成された二酸化炭
素を抽出するためのキヤリヤガス送入手段、該キ
ヤリアガスと前記水蒸気化又は霧化された水分と
を分離する気液分離器、水分の分離除去後に前記
キヤリヤガス中の二酸化炭素を検出する二酸化炭
素検出手段を配設して成ることを特徴とする水中
有機炭素の測定装置。 2 特許請求の範囲第1項において、前記絞り部
は圧力調節弁により構成してある水中有機炭素の
測定装置。 3 特許請求の範囲第1項又は第2項において、
前記キヤリヤガス送入手段は前記気液分離器の入
口付近に接続して成る水中有機炭素の測定装置。
[Scope of Claims] 1. It has a tube for conveying a reaction liquid consisting of sample water and an oxidizing agent, and this liquid conveyance tube contains a liquid that is added to the sample water during the process of conveying the mixed liquid of the sample water and reaction liquid. A deaerator for removing dissolved inorganic carbon dioxide, a liquid feeding/pressurizing pump downstream of the deaerator, a reaction tube with a heater, and a constriction part on the outlet side of the reaction tube are provided, and the reaction tube is connected to the feeder. The mixed liquid is heated to a high temperature while flowing through a part of the liquid pipe, and is pressurized to a level higher than the vapor pressure by the cooperation of the liquid feeding/pressurizing pump and the throttle section, and under this high temperature and pressure, a sample of the mixed liquid is heated. The organic matter contained in the water is set to be oxidized in the liquid phase by the reaction liquid, and a gasification pipe for vaporizing or atomizing the mixed liquid is extended downstream of the throttle part, and the gasification pipe is a carrier gas feeding means for extracting the carbon dioxide produced by the liquid phase oxidation of the organic matter, a gas-liquid separator for separating the carrier gas and the vaporized or atomized moisture, and a gas-liquid separator for separating and removing the moisture; An apparatus for measuring organic carbon in water, comprising a carbon dioxide detection means for detecting carbon dioxide in the carrier gas. 2. The apparatus for measuring organic carbon in water according to claim 1, wherein the throttle section is constituted by a pressure regulating valve. 3 In claim 1 or 2,
An apparatus for measuring organic carbon in water, wherein the carrier gas feeding means is connected near an inlet of the gas-liquid separator.
JP6476984A 1984-03-30 1984-03-30 Apparatus for measuring organic carbon in water Granted JPS60207057A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6476984A JPS60207057A (en) 1984-03-30 1984-03-30 Apparatus for measuring organic carbon in water
DE19853511687 DE3511687C2 (en) 1984-03-30 1985-03-29 Method and device for determining organic carbon in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6476984A JPS60207057A (en) 1984-03-30 1984-03-30 Apparatus for measuring organic carbon in water

Publications (2)

Publication Number Publication Date
JPS60207057A JPS60207057A (en) 1985-10-18
JPH0532699B2 true JPH0532699B2 (en) 1993-05-17

Family

ID=13267732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6476984A Granted JPS60207057A (en) 1984-03-30 1984-03-30 Apparatus for measuring organic carbon in water

Country Status (2)

Country Link
JP (1) JPS60207057A (en)
DE (1) DE3511687C2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318955A (en) * 1988-06-20 1989-12-25 Tokico Ltd Carbon-quantity measuring apparatus
JPH0291569A (en) * 1988-09-29 1990-03-30 Japan Organo Co Ltd Instrument for measuring carbon content
GB9203642D0 (en) * 1992-02-19 1992-04-08 Fluid Dynamics Sales Ltd Carbon analyser
JP3265830B2 (en) * 1994-05-27 2002-03-18 株式会社島津製作所 Total organic carbon meter
US8181544B2 (en) * 2008-11-18 2012-05-22 Picarro, Inc. Liquid sample evaporator for vapor analysis
KR102156150B1 (en) * 2018-12-28 2020-09-15 (주)휴마스 METHOD AND APPARATUS FOR MEASURING TOTAL ORGANIC CARBON BY COMBUSTION OXIDATION USING PROPORTIONAl CONTROL SAMPLE PRECISION INJECTION METHOD AND DOUBLE COOLING GAS-LIQUID SEPARATION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236090A (en) * 1975-09-17 1977-03-19 Kawatetsu Keiryoki Kk Method of measuring total organic carbon and total carbon in water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854881A (en) * 1971-09-13 1974-12-17 A Cohen Apparatus for determining organic carbon content of polluted liquids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236090A (en) * 1975-09-17 1977-03-19 Kawatetsu Keiryoki Kk Method of measuring total organic carbon and total carbon in water

Also Published As

Publication number Publication date
DE3511687C2 (en) 1987-01-08
JPS60207057A (en) 1985-10-18
DE3511687A1 (en) 1985-10-03

Similar Documents

Publication Publication Date Title
US5879948A (en) Determination of total mercury in exhaust gases
CA2606720C (en) Method and apparatus for monitoring mercury in a gas sample
Tanner et al. Sampling and determination of gas-phase hydrogen peroxide following removal of ozone by gas-phase reaction with nitric oxide
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
EP0897538A1 (en) Method and apparatus for the measurement of dissolved carbon in deionized water
JPH0532699B2 (en)
US5080867A (en) Portable carbonyl sulfide analyzer
US7968053B2 (en) Chlorine analyzing apparatus
CA2228337A1 (en) Method and apparatus for the measurement of dissolved carbon
CA1117403A (en) Process for the quantitative determination of the carbon of organic compounds in water
JPH08501393A (en) Apparatus and method for measuring nitrogen content in a water-containing system
CN101573615A (en) Method for monitoring the concentration of a water-containing substance in a watery medium
Fernández-Pérez et al. Focused microwave Soxhlet device for rapid extraction of mercury, arsenic and selenium from coal prior to atomic fluorescence detection
US4977093A (en) Process for analyzing carbonyl sulfide in a gas
JPH0581859B2 (en)
JPH0377458B2 (en)
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
JPH06242097A (en) Organic carbon measuring equipment
KR102614702B1 (en) A method for correcting analysis error for TOC measuring system
SU1713882A1 (en) Method of measuring hydrogen concentration
JPH06273407A (en) Carbon measuring apparatus
JPH0827273B2 (en) Carbon measuring device
US11867681B2 (en) TOC analyzer and method for moistening a binder in a TOC analyzer
JPS61104256A (en) Apparatus for analysis of total volatile organic compound
JPH081432B2 (en) Underwater carbon measuring device