JPH05325832A - Saddle type bobbin for deflection coil - Google Patents

Saddle type bobbin for deflection coil

Info

Publication number
JPH05325832A
JPH05325832A JP4158622A JP15862292A JPH05325832A JP H05325832 A JPH05325832 A JP H05325832A JP 4158622 A JP4158622 A JP 4158622A JP 15862292 A JP15862292 A JP 15862292A JP H05325832 A JPH05325832 A JP H05325832A
Authority
JP
Japan
Prior art keywords
bobbin
nozzle
collar
coil
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4158622A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeuchi
博 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4158622A priority Critical patent/JPH05325832A/en
Priority to EP93303990A priority patent/EP0572192B1/en
Priority to DE69300218T priority patent/DE69300218T2/en
Publication of JPH05325832A publication Critical patent/JPH05325832A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only
    • H01J29/762Deflecting by magnetic fields only using saddle coils or printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/236Manufacture of magnetic deflecting devices for cathode-ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/071Winding coils of special form
    • H01F2041/0711Winding saddle or deflection coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/236Manufacture of magnetic deflecting devices
    • H01J2209/2363Coils
    • H01J2209/2366Machines therefor, e.g. winding, forming, welding, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/70Electron beam control outside the vessel
    • H01J2229/703Electron beam control outside the vessel by magnetic fields
    • H01J2229/7032Conductor design and distribution
    • H01J2229/7035Wires and conductors
    • H01J2229/7036Form of conductor
    • H01J2229/7037Form of conductor flat, e.g. foil, or ribbon type

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To provide the saddle type bobbin for deflection coil, which can perform the winding work without colliding of a nozzle and flanges at crossover parts at the time of winding a multi-conductor parallel cable around a saddle type bobbin. CONSTITUTION:A coil winding groove 5 is provided in each crossover part of the head side and the neck side of a saddle type bobbin 2. This coil winding groove 5 is formed between the inside flange 3A and the outside flange 3B, and the height of the inside flange 3B is set lower than the height of the outside flange 3A of the crossover part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビジョン受像機やデ
ィスプレイ装置等に装着される偏向ヨークの偏向コイル
用鞍型ボビンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a saddle type bobbin for a deflection coil of a deflection yoke mounted on a television receiver, a display device or the like.

【0002】[0002]

【従来の技術】近年、テレビジョン受像機のハイビジョ
ン化や高精細度ディスプレイ装置の出現によって、これ
ら装置の陰極線管の画面の色ずれ、即ちコンバージェン
ス等の規格がますます厳しいものになっており、これに
伴い、偏向磁界のますますの精密な制御が望まれる。
2. Description of the Related Art In recent years, with the advent of high-definition television receivers and the advent of high-definition display devices, the color shift of the screen of the cathode ray tube of these devices, that is, the standards such as convergence, have become increasingly strict. Along with this, increasingly precise control of the deflection magnetic field is desired.

【0003】図11には一般的な偏向ヨークに使用される
鞍型偏向コイルのボビンの一例が示されている。このボ
ビン2には複数のコイル巻き溝5が設けられており、こ
のコイル巻き溝5に、例えば、図10に示されるような捲
線11が積層巻回され、偏向コイルが形成される。この捲
線11としては絶縁層4が施された導線(リッツ線を含
む)の外周に接着剤を塗布したものが用いられている。
FIG. 11 shows an example of a bobbin of a saddle type deflection coil used for a general deflection yoke. The bobbin 2 is provided with a plurality of coil winding grooves 5, and windings 11 as shown in FIG. 10, for example, are laminated and wound in the coil winding grooves 5 to form a deflection coil. As the winding wire 11, a conductor wire (including a litz wire) on which the insulating layer 4 is applied is coated with an adhesive.

【0004】前記コイル巻き溝5内に捲線11を巻回する
際に、この捲線11は束ねられないばらばらの単線のまま
1本〜数本ずつフライヤー方式の自動巻線機で積層巻回
され、これによって偏向コイルが形成される。次いで、
この積層巻回されたコイルに通電し、絶縁層4の外側に
塗布された接着剤を加熱溶融して捲線相互を接着して偏
向コイルが形成される。
When winding the winding wire 11 in the coil winding groove 5, the winding wire 11 is laminated and wound by an automatic winding machine of a fryer type, one by several as single wires which are not bundled. This forms the deflection coil. Then
Electric current is applied to the coil wound in layers, and the adhesive applied to the outside of the insulating layer 4 is heated and melted to bond the windings to each other to form a deflection coil.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、捲線11
を巻くときに張力の方向が変化する等によって、図10に
示すように、捲線11はずれて片寄って巻かれたり、捲線
11の順番が入れ替わったりして、設計指示通りに巻くこ
とができないという問題が生じ、しかも量産される各偏
向コイルの捲線11の片寄りの状態も個々の製品毎にばら
つきを生じ、偏向磁界を精度よく制御することができな
いという問題があった。また、量産される製品がばらつ
くので、歩留り低下を生ずるという問題もあり、この従
来の捲線方式ではコスト的に対応できないという問題が
ある。この従来方式でもコイル巻き溝幅をどんどん狭く
して行けば捲線11のずれや片寄り等は少なくなって設計
指示に近づくことはできるが、この場合、インダクタン
スLと抵抗Rとの比L/Rは小さくなり、コイル性能が
低下するという問題がある。
[Problems to be Solved by the Invention] However, the winding 11
When the winding direction is changed, the winding direction may change and the winding 11 may be misaligned and wound, as shown in Fig. 10.
There is a problem that the order of 11 is changed and it is not possible to wind according to the design instruction, and the deviation state of the winding 11 of each deflection coil that is mass-produced also varies from product to product, and the deflection magnetic field is reduced. There was a problem that it could not be controlled accurately. Further, since the mass-produced products vary, there is a problem that the yield is reduced, and there is a problem that the conventional winding method cannot cope with the cost. Even with this conventional method, if the width of the coil winding groove is made narrower, the deviation or deviation of the winding 11 can be reduced and the design instruction can be approached. In this case, however, the ratio L / R of the inductance L and the resistance R is reduced. Becomes smaller and the coil performance is degraded.

【0006】本出願人はこのような問題を解決するため
に、従来の1本、1本の単線のコイル導線に替えて図9
に示すようなリボン線等の多心平行導線を用いて形成す
る偏向コイルを提案している。
In order to solve such a problem, the applicant of the present invention has replaced the conventional one-wire coil conductor wire with one wire, as shown in FIG.
Proposed is a deflection coil formed by using a multicore parallel conductor wire such as a ribbon wire as shown in FIG.

【0007】前記多心平行導線15としては図9の(a)
に示すように、絶縁層4で被覆された銅やアルミニウム
等の導体線8を接着剤6を用いて平行に配列して接着し
たものや、同図(b)に示すように、樹脂等の絶縁シー
ト7の片面に絶縁層4で被覆された導体線8を複数本平
行に配列して接着剤6を用いて接着したものや、同図の
(c)に示すように、絶縁層4と接着層9が形成された
複数の導体線8を平行に配列して接着したものや、同図
の(d)に示すように、絶縁層4の外側に熱可塑性接着
層20が形成された複数の導体線8を平行に配列して接着
したものが使用される。
The multi-core parallel conductor 15 is shown in FIG.
As shown in FIG. 3, conductor wires 8 made of copper, aluminum or the like covered with the insulating layer 4 are arranged in parallel by using an adhesive 6 and bonded, or as shown in FIG. A plurality of conductor wires 8 covered with the insulating layer 4 are arranged in parallel on one surface of the insulating sheet 7 and bonded with an adhesive 6, or as shown in (c) of FIG. A plurality of conductor wires 8 on which an adhesive layer 9 is formed are arranged in parallel and adhered, or a plurality of thermoplastic adhesive layers 20 formed on the outer side of the insulating layer 4 as shown in FIG. The conductor wires 8 are arranged in parallel and bonded to each other.

【0008】上記多心平行導線15の導体線8はそれぞれ
の多心平行導線15内で順序よく固定されており、したが
って、導体線8はそれぞれの多心平行導線15内で線がず
れたり、また、線の順番が入れ替わったりすることがな
いので、これらの多心平行導線15を用い、この多心平行
導線15をコイル巻き溝5に積層巻回することにより前記
導体線8の大幅なずれ等を解消し得る偏向コイルの作製
が期待できる。
The conductor wires 8 of the multi-conductor parallel conductors 15 are fixed in order within the respective multi-conductor parallel conductors 15. Therefore, the conductor wires 8 are displaced in the respective multi-conductor parallel conductors 15, or Since the order of the wires does not change, the multicore parallel conductors 15 are used, and the multicore parallel conductors 15 are wound around the coil winding groove 5 in a layered manner so that the conductor wires 8 are greatly displaced. It can be expected to manufacture a deflection coil that can solve the above problem.

【0009】前記、偏向コイルを作製するためには、多
心平行導線15を図7に示すように鍔3を有するコイル巻
き溝5に挿入し、このコイル巻き溝5の底面10に平行に
積層巻回することにより達成される。この多心平行導線
15を用いて形成した偏向コイルは従来に比べて特性を大
幅に改善することができる。
In order to manufacture the above-mentioned deflection coil, a multi-core parallel conductive wire 15 is inserted into a coil winding groove 5 having a collar 3 as shown in FIG. 7, and laminated in parallel with the bottom surface 10 of this coil winding groove 5. It is achieved by winding. This multi-core parallel conductor
The deflection coil formed by using 15 can greatly improve the characteristics as compared with the conventional one.

【0010】ところで、偏向コイル用鞍型ボビンは例え
ば図8に示されるように、頭部側と尾部側のコイルの渡
り線部18,19にコイル巻き溝5を有しており、このコイ
ル巻き溝5の内側の鍔3Bの高さは、外側の鍔3Aの高
さよりも高く設定されている。このボビン2のコイル巻
き溝5に従来の単線を巻くフライヤー方式の巻線機(図
示せず)を用いて多心平行導線15を巻回すると、巻線機
のノズル先端がコイル巻き溝5から遠く離れて配置され
る構成となっているため、渡り線部18,19で多心平行導
線15が捩じれて巻かれたり、コイル巻き溝5から外れる
等の虞があった。そこで、出願人らは、多心平行導線15
のノズルの先端とコイル巻き溝5間の距離を短くできる
構造の図3に示す巻線機を用いて、多心平行導線15を安
定的にコイル巻き溝5に挿入して巻回する方式を提案し
た。
By the way, the saddle type bobbin for the deflection coil has coil winding grooves 5 in the crossover portions 18 and 19 of the coils on the head side and the tail side as shown in FIG. 8, for example. The height of the collar 3B inside the groove 5 is set higher than the height of the collar 3A outside. When a multifilamentary parallel conductor 15 is wound around the coil winding groove 5 of the bobbin 2 using a conventional winding machine for winding a single wire (not shown), the nozzle tip of the winding machine moves from the coil winding groove 5 to the coil winding groove 5. Since the multi-core parallel conductors 15 are twisted and wound by the connecting wire portions 18 and 19, and may be disengaged from the coil winding groove 5 because they are arranged far apart. Therefore, the applicants have proposed that the multicore parallel conductor 15
Using the winding machine shown in FIG. 3 which has a structure capable of shortening the distance between the tip of the nozzle and the coil winding groove 5, the multi-core parallel conductor 15 is stably inserted into the coil winding groove 5 and wound. Proposed.

【0011】この提案例の巻線機は次のように構成され
ている。すなわち、1は基台、17は支柱、33はボビン取
り付け台、31はボビン保持部材、25は多心平行導線15の
ボビン、12はボビン回転機構、16はバックテンション付
加手段、15は多心平行導線、26はノズル支持台、28はノ
ズル回転機構、27はノズルシャフト、30はノズルシャフ
トの先端部のノズル、23はノズルベッド、35はノズル支
柱、2はボビン、41はボビン2の支持台、42はボビン保
持部、40はアーム、38は第1のボビン回転機構、37はボ
ビン側支柱、44は第2のボビン回転機構である。
The winding machine of this proposed example is constructed as follows. That is, 1 is a base, 17 is a pillar, 33 is a bobbin mount, 31 is a bobbin holding member, 25 is a bobbin of multi-conductor parallel conductors 15, 12 is a bobbin rotating mechanism, 16 is a back tension adding means, and 15 is a multi-core. Parallel conductors, 26 is a nozzle support, 28 is a nozzle rotating mechanism, 27 is a nozzle shaft, 30 is a nozzle at the tip of the nozzle shaft, 23 is a nozzle bed, 35 is a nozzle column, 2 is a bobbin, 41 is a support for the bobbin 2. A base, 42 is a bobbin holding portion, 40 is an arm, 38 is a first bobbin rotating mechanism, 37 is a bobbin side support, and 44 is a second bobbin rotating mechanism.

【0012】前記、ボビン25に巻かれている多心平行導
線15はテンション付加手段16によって張力調整されなが
らノズルシャフト27に挿通されており、多心平行導線15
のノズル30の先端はボビン2のコイル巻き溝5に近接し
て設置されている。ノズルシャフト27はノズル回転機構
28により正逆所望方向に回転自在となっており、ノズル
支持台26はノズル支柱35に上下のY方向に移動自在に取
り付けられている。また、ノズル支柱35はX方向(水平
横方向)に移動自在に立設されている。また、ノズルシ
ャフト27の下端側にはノズル30が所望方向に回転自在に
取り付けられている。
The multi-conductor parallel conductor 15 wound around the bobbin 25 is inserted into the nozzle shaft 27 while the tension is adjusted by the tension applying means 16, and the multi-conductor parallel conductor 15 is provided.
The tip of the nozzle 30 is installed close to the coil winding groove 5 of the bobbin 2. The nozzle shaft 27 is a nozzle rotation mechanism.
A nozzle support base 26 is attached to a nozzle support 35 so as to be movable in the up and down Y directions. Further, the nozzle support column 35 is erected so as to be movable in the X direction (horizontal direction). Further, a nozzle 30 is attached to the lower end side of the nozzle shaft 27 so as to be rotatable in a desired direction.

【0013】また、ボビン2のボビン保持部42はZ方向
(図3の(b)の紙面に直交する方向)に移動自在とな
っている。前記ボビン2は第1のボビン回転機構38の回
転動作によりX軸を中心として回転自在となっており、
また、第2のボビン回転機構44の駆動によりZ軸を中心
として回転自在となっている。
Further, the bobbin holding portion 42 of the bobbin 2 is movable in the Z direction (direction orthogonal to the paper surface of FIG. 3B). The bobbin 2 is rotatable about the X axis by the rotation operation of the first bobbin rotating mechanism 38,
Further, the second bobbin rotating mechanism 44 is driven to be rotatable about the Z axis.

【0014】上記、各々の回転および移動駆動機構は図
示されない制御装置によって制御されており、多心平行
導線15がボビン2のコイル巻き溝5に円滑に積層巻回さ
れて偏向用コイルが形成されるようになっている。
Each of the above rotation and movement drive mechanisms is controlled by a controller (not shown), and the multi-core parallel conductor 15 is smoothly wound around the coil winding groove 5 of the bobbin 2 in layers to form a deflection coil. It has become so.

【0015】次に、この巻線装置を用いた鞍型偏向コイ
ルの作製作業を図4および図5に基づいて説明する。ま
ず、図4の(a)に示すようにボビン2が矢印の如く移
動し、同時に、ノズル30をボビンの内周面に所定間隔を
維持して対向するようにX軸の方向に移動することによ
り、ボビン2の右側内周壁面45の溝に多心平行導線15が
巻かれる。ノズル30がボビン2の頭部側上端側に対向し
たとき、図4の(b)に示すようにノズル30をa位置か
らb位置を経てc位置に矢印に沿って回転する。このと
き、ノズル30を鍔3Bを越えた位置まで一旦ふくらませ
てから、c位置に戻して多心平行導線15を巻くとスムー
ズに巻かれる。次に、ボビン2をX軸を中心として90°
時計方向に回転して同図の(c)の状態とし、この状態
で、ボビン2をZ1 点のX軸を中心として180 °反時計
方向に回転することにより、同図の(d)の状態とな
り、ボビン2の頭部側の渡り線部に多心平行導線15が巻
かれる。次に、ボビン2をX軸を中心として90°時計方
向に回転することにより同図の(e)の状態となる。次
に、ノズル30をc位置からd位置を経てa位置に矢印に
沿って回転する。この場合、ノズル30をc位置よりも一
旦鍔3B側にふくらませてからa位置まで回転すること
により多心平行導線をスムーズに巻くことができる。
Next, a work for manufacturing a saddle type deflection coil using this winding device will be described with reference to FIGS. 4 and 5. First, as shown in FIG. 4A, the bobbin 2 moves in the direction of the arrow, and at the same time, the nozzle 30 moves in the X-axis direction so as to face the inner peripheral surface of the bobbin at a predetermined interval. Thereby, the multi-core parallel conductor 15 is wound in the groove of the right inner peripheral wall surface 45 of the bobbin 2. When the nozzle 30 faces the upper end side of the bobbin 2 on the head side, as shown in FIG. 4B, the nozzle 30 is rotated from the a position to the b position to the c position along the arrow. At this time, when the nozzle 30 is once inflated to a position beyond the brim 3B and then returned to the c position and the multicore parallel conductor 15 is wound, it is smoothly wound. Next, set the bobbin 2 90 ° about the X axis.
By rotating the bobbin 2 in the counterclockwise direction by 180 ° about the X axis of the Z 1 point in the state shown in (c) of the figure by rotating clockwise, the state of (d) of the figure is obtained. Then, the multi-core parallel conductor 15 is wound around the connecting wire portion on the head side of the bobbin 2. Then, the bobbin 2 is rotated clockwise about the X axis by 90 °, and the state shown in FIG. Next, the nozzle 30 is rotated from the position c through the position d to the position a along the arrow. In this case, the multicore parallel conductor wire can be smoothly wound by temporarily inflating the nozzle 30 from the c position to the flange 3B side and then rotating it to the a position.

【0016】次に、この状態で、ボビン2をZ軸に沿っ
て下方に移動し、同時に、ノズル30をボビン2の内周面
に対して一定の間隔を保って対向するようにX軸の左方
向に移動することにより、ボビン2の反対側の溝に多心
平行導線15が巻かれる。ボビン2の尾部側の渡り線部の
溝の中心がノズル30に対向する位置まで下降したとき
に、図5の(a)に示すようにノズル30をa位置からb
位置を経てc位置まで矢印に沿って移動し、このとき
も、ノズル30は一旦鍔3Bを越えた位置まで回転し、多
心平行導線15をふくらませた後、c位置に戻す。次に、
ボビン2をX軸に対して90°時計方向に回転することに
より図5の(b)の状態となる。この状態で、Z軸に対
してボビン2を反時計方向に180 °回転して図5の
(c)の状態にすることにより、尾部側の渡り線部が巻
かれる。
Next, in this state, the bobbin 2 is moved downward along the Z-axis, and at the same time, the nozzle 30 is opposed to the inner peripheral surface of the bobbin 2 at a constant distance from the X-axis. By moving to the left, the multi-core parallel conductor 15 is wound in the groove on the opposite side of the bobbin 2. When the center of the groove of the crossover part on the tail side of the bobbin 2 is lowered to a position facing the nozzle 30, the nozzle 30 is moved from the position a to the position b as shown in FIG.
After moving through the position to the c position along the arrow, the nozzle 30 also rotates once to the position beyond the collar 3B, inflates the multicore parallel conductor 15, and then returns to the c position. next,
By rotating the bobbin 2 clockwise by 90 ° with respect to the X axis, the state shown in FIG. 5B is obtained. In this state, the bobbin 2 is rotated 180 ° counterclockwise with respect to the Z-axis to bring it to the state shown in FIG. 5C, so that the crossover portion on the tail side is wound.

【0017】次にボビン2をX軸を中心にして90°時計
方向に回転して図5の(d)の状態とし、この状態で、
ノズル30を一旦逆方向に鍔3Bを越えた位置まで回転
し、多心平行導線15をふくらませてからノズル30をc位
置からd位置を経てa位置まで矢印に沿って回転するこ
とにより、図4の(a)に示す最初の状態となり、以上
の動作を繰り返すことによりボビン2の各溝に多心平行
導線15が連続して巻かれ、鞍型偏向コイルが形成され
る。
Next, the bobbin 2 is rotated clockwise by 90 ° about the X axis to the state shown in FIG. 5D, and in this state,
By once rotating the nozzle 30 in the opposite direction to a position beyond the collar 3B, inflating the multi-core parallel conductor 15, and then rotating the nozzle 30 from the c position to the d position to the a position along the arrow, (A), the multi-core parallel conductor 15 is continuously wound in each groove of the bobbin 2 by repeating the above operation, and a saddle type deflection coil is formed.

【0018】しかしながら、ボビン2の頭部側および尾
部側の渡り線部の内側の鍔3Bが外側の鍔3Aよりも高
く形成されていると、ノズル30がボビンの長さ方向の内
周面から渡り線部に移るときに、ノズル30を例えば、図
4の(b)に示すようにa位置からb位置を経てc位置
に矢印に沿って回転するが、ノズル30を内側の鍔3Bを
越えた位置まで回転し、多心平行導線15をふくらませて
から、ノズル30をc位置まで戻して多心平行導線15を巻
くと、スムーズに巻かれることが判明したが、このよう
にして巻くと、ノズル30が内側の鍔3Bにぶつかり易
く、作業が難しいという問題があった。上記現象は図4
の(b),(e)、図5の(a),(d)の各工程で発
生し易いという問題があった。
However, if the inner collar 3B of the crossover portion on the head side and the tail side of the bobbin 2 is formed to be higher than the outer collar 3A, the nozzle 30 extends from the inner peripheral surface in the longitudinal direction of the bobbin. When moving to the crossover portion, the nozzle 30 is rotated along the arrow from the position a to the position b to the position c as shown in FIG. 4B, but the nozzle 30 is moved over the inner collar 3B. It has been found that when the multi-core parallel conductor 15 is swung up and the multi-core parallel conductor 15 is inflated, then the nozzle 30 is returned to the c position and the multi-core parallel conductor 15 is wound, the winding is smoothly performed. There is a problem that the nozzle 30 easily hits the inner collar 3B, which makes the work difficult. The above phenomenon is shown in Figure 4.
(B) and (e) of FIG. 5 and (a) and (d) of FIG.

【0019】また、尾部側渡り線部18のコイル巻き溝5
の内側鍔3Bが高いと、図6に示されるように、この鍔
部3A,3Bにカバー22を被せてバンド24で陰極線管に
締め付けるときに、カバー22が大形となって嵩張るた
め、大きなスペースを必要とする等の問題があった。
Further, the coil winding groove 5 of the tail side connecting wire portion 18
As shown in FIG. 6, when the inner flange 3B is high, the cover 22 becomes large and bulky when the covers 22 are covered on the flanges 3A and 3B and the band 24 is fastened to the cathode ray tube. There was a problem such as requiring space.

【0020】本発明は上記課題を解決するためになされ
たものであり、その目的は、鞍型形状のボビンに多心平
行導線を巻くときに、渡り線部の鍔にノズルがぶつかる
ことがなく、巻回作業が容易で、多心平行導線を正確に
巻くことができる偏向コイル用鞍型ボビンを提供するこ
とにある。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to prevent a nozzle from hitting a brim of a connecting wire portion when winding a multicore parallel conductor wire around a saddle type bobbin. It is an object of the present invention to provide a saddle type bobbin for a deflection coil, which is easy to wind and can accurately wind a multi-core parallel conductor wire.

【0021】[0021]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明の偏向コイル用鞍型ボビンは、鞍型形状をしたボビ
ンに多心平行導線を巻いて鞍型偏向コイルを形成するコ
イル巻き溝が形成され、ボビンの頭部側とネック側の渡
り線部が巻かれるコイル巻き溝は外側の鍔と内側の鍔の
鍔間に形成され、前記渡り線部の内側の鍔の高さを外側
の鍔の高さ以下にしたことを特徴として構成されてい
る。
In order to achieve the above object, the present invention is configured as follows. That is, the saddle type bobbin for the deflection coil of the present invention has a coil winding groove for forming a saddle type deflection coil by winding a multi-core parallel conductor wire on a saddle type bobbin, and the head side and the neck side of the bobbin are formed. The coil winding groove around which the crossover portion is wound is formed between the outer and inner flanges, and the height of the inner flange of the crossover portion is set to be equal to or lower than the height of the outer flange. Has been done.

【0022】[0022]

【作用】ノズルがボビンの長手方向の内周面から渡り線
部に移るときに、ノズルの回転をノズルが内側の鍔を越
えた位置まで一旦回転し、多心平行導線をふくらませて
からノズルをコイル巻き溝の中心まで戻し、多心平行導
線をコイル巻き溝に挿入する際、渡り線部の内側の鍔の
高さを外側の鍔の高さ以下とすることにより、ノズルが
内側の鍔にぶつかることなくコイル巻き作業が可能とな
る。
[Operation] When the nozzle moves from the inner circumferential surface of the bobbin in the longitudinal direction to the crossover portion, the nozzle is rotated once until the nozzle has passed the inner rim, and the multicore parallel conductor is inflated before the nozzle is moved. When returning to the center of the coil winding groove and inserting the multi-core parallel conductor wire into the coil winding groove, the height of the collar inside the crossover part should be less than the height of the outside collar, so that the nozzle is inside the collar. Coil winding work is possible without hitting.

【0023】[0023]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、本実施例の説明において、提案例と同一の
名称部分には同一符号を付し、その詳細な重複説明は省
略する。図1には本実施例に係わる偏向コイル用鞍型ボ
ビンの要部構成が示されている。図2には本実施例に係
わる偏向コイル用鞍型ボビンの斜視図が示されている。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, the same reference numerals will be given to the same names as those in the proposed example, and detailed description thereof will be omitted. FIG. 1 shows the configuration of the essential parts of a saddle type bobbin for a deflection coil according to this embodiment. FIG. 2 shows a perspective view of a saddle type bobbin for a deflection coil according to this embodiment.

【0024】本実施例の特徴的なことは、ボビンの頭部
側とネック側の渡り線部に設けたコイル巻き溝の内側の
鍔の高さを外側の鍔の高さ以下としたことであり、その
他の構成は提案例と同様である。
The characteristic feature of this embodiment is that the height of the inner collar of the coil winding groove provided on the connecting wire portion on the head side and the neck side of the bobbin is equal to or less than the height of the outer collar. Yes, other configurations are similar to the proposed example.

【0025】これらの図において、ボビン2のネック側
と頭部側の渡り線部18,19には外側の鍔3Aと内側の鍔
3Bの鍔間にそれぞれコイル巻き溝5が形成されてお
り、このコイル巻き溝5の内側の鍔3Bの高さは外側の
鍔3Aの高さよりも小さく設定されている。また、多心
平行導線15のノズル30はコイル巻き溝5の鍔3Aに近接
して設置されている。
In these figures, coil winding grooves 5 are formed between the brims 3A on the outer side and 3B on the inner side of the bridging line portions 18 and 19 on the neck side and the head side of the bobbin 2, respectively. The height of the collar 3B on the inner side of the coil winding groove 5 is set smaller than the height of the collar 3A on the outer side. The nozzle 30 of the multi-core parallel conductor 15 is installed close to the collar 3A of the coil winding groove 5.

【0026】次に、上記構成の偏向コイル用鞍型ボビン
2に提案例の巻線機を用いて多心平行導線15を巻回して
偏向コイルを作製する場合、多心平行導線15の巻回作業
は前記図4および図5に示した巻回作業と同様な手順に
よって行われる。
Next, when the deflection coil is manufactured by winding the multicore parallel conductor 15 on the saddle type bobbin 2 for the deflection coil having the above-mentioned structure using the winding machine of the proposed example, the multicore parallel conductor 15 is wound. The work is performed by the same procedure as the winding work shown in FIGS. 4 and 5.

【0027】本実施例によれば、頭部側とネック側の渡
り線部のコイル巻き溝には渡り線部の内側の鍔3Bの高
さを外側の鍔3Aの高さよりも低く設定したので、多心
平行導線15のノズル30先端をコイル巻き溝5にさらに近
接して多心平行導線15を渡り線部の溝に巻くことができ
るため、多心平行導線15はコイル巻き溝5から多心平行
導線15が外れることもなく、安定、かつ、正確に巻回す
ることが可能となる。また、内側の鍔3Bの高さを外側
の鍔3Aの高さより低くしたので、図4の(b),
(e)および図5の(a),(d)の工程で、ノズル30
を鍔3Bを越えてふくらませて回転するとき、ノズル30
と鍔3Bとのぶつかりがなくなり、作業が容易となる。
According to the present embodiment, the height of the collar 3B inside the crossover is set lower than the height of the outer collar 3A in the coil winding grooves of the crossover on the head side and the neck side. Since the tip of the nozzle 30 of the multi-core parallel conductor 15 can be wound closer to the coil winding groove 5 and the multi-core parallel conductor 15 can be wound in the groove of the crossover portion, the multi-core parallel conductor 15 can be extended from the coil winding groove 5 to The core parallel conductor 15 does not come off, and it is possible to wind it stably and accurately. Further, since the height of the inner collar 3B is made lower than the height of the outer collar 3A, (b) of FIG.
In the steps (e) and (a) and (d) of FIG.
Nozzle 30 when rotating after inflating over Tsuba 3B
The collision with the collar 3B is eliminated, and the work becomes easier.

【0028】さらに、内側の鍔3Bを外側の鍔3Aの高
さより低くしたので、ネック側のカバー22を小さくする
ことができ、ネック側のスペースを狭めることが可能と
なる。
Furthermore, since the inner collar 3B is made lower than the height of the outer collar 3A, the neck side cover 22 can be made smaller and the neck side space can be narrowed.

【0029】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では、渡り線部の内側の鍔3Bの高さを外側の鍔
3Aの高さよりも低くしたが、鍔3Bの高さは鍔3Aの
高さと等しくしてもよく、例えば、渡り線部のコイル巻
き溝5内に積層される多心平行導線のコイル13の高さを
W とし、外側の鍔3Aの高さをhA 、内側の鍔3Bの
高さをhB とすると、hW ≦hB ≦hA の構成とすれば
よい。
The present invention is not limited to the above-mentioned embodiment, and various embodiments can be adopted. For example, in the above embodiment, the height of the collar 3B on the inner side of the crossover portion is set lower than the height of the collar 3A on the outer side, but the height of the collar 3B may be equal to the height of the collar 3A. The height of the coil 13 of the multi-core parallel conductive wire laminated in the coil winding groove 5 of the crossover portion is h W , the height of the outer collar 3A is h A , and the height of the inner collar 3B is h B. Then, the configuration may be h W ≦ h B ≦ h A.

【0030】[0030]

【発明の効果】本発明は頭部側とネック側の渡り線部の
内側の鍔の高さを外側の鍔の高さ以下に設定したので、
多心平行導線のノズルの先端をコイル巻き溝の外側の鍔
の高さまで近接して多心平行導線を巻回することができ
るため、多心平行導線を安定、かつ、正確に巻回するこ
とが可能となる。
According to the present invention, since the heights of the inner flanges of the crossover portions on the head side and the neck side are set to be equal to or lower than the heights of the outer flanges,
Since the end of the nozzle of the multi-core parallel conductor can be wound close to the height of the flange outside the coil winding groove, the multi-core parallel conductor can be wound in a stable and accurate manner. Is possible.

【0031】また、渡り線部の内側の鍔の高さを外側の
鍔の高さ以下としたので、ノズルがボビンの長手方向の
内周面から渡り線部に、あるいは渡り線部からボビンの
長手方向の内周面に移るとき、ノズルを回転する際にノ
ズルが内側の鍔にぶつかることがなく、巻回作業が容易
となる。
Further, since the height of the collar on the inner side of the connecting wire portion is set to be equal to or lower than the height of the outer collar, the nozzle is moved from the inner circumferential surface of the bobbin in the longitudinal direction to the connecting wire portion or from the connecting wire portion to the bobbin. When moving to the inner peripheral surface in the longitudinal direction, when the nozzle is rotated, the nozzle does not hit the inner collar, and the winding operation becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係わる偏向コイル用鞍型ボビンの要
部構成の説明図である。
FIG. 1 is an explanatory diagram of a main part configuration of a saddle type bobbin for a deflection coil according to an embodiment.

【図2】同偏向コイル用鞍型ボビンの斜視説明図であ
る。
FIG. 2 is a perspective explanatory view of the saddle type bobbin for the deflection coil.

【図3】提案例の巻線機の説明図である。FIG. 3 is an explanatory diagram of a winding machine of a proposed example.

【図4】提案例の多心平行導線の巻線作業の説明図であ
る。
FIG. 4 is an explanatory diagram of a winding work of a multi-core parallel conductor wire of a proposed example.

【図5】図4に続く巻線作業の説明図である。FIG. 5 is an explanatory view of the winding work following FIG.

【図6】ボビンのネック側鍔にカバーを被せた状態の説
明図である。
FIG. 6 is an explanatory view showing a state in which a cover is put on the neck side collar of the bobbin.

【図7】多心平行導線を積層して偏向コイルを作製する
提案例の説明図である。
FIG. 7 is an explanatory diagram of a proposal example of manufacturing a deflection coil by stacking multicore parallel conductive wires.

【図8】従来の偏向コイル用鞍型ボビンを多心平行導線
のコイル巻き状態で示す説明図である。
FIG. 8 is an explanatory view showing a saddle type bobbin for a conventional deflection coil in a coil winding state of a multi-core parallel conductor wire.

【図9】多心平行導線の各種形態の説明図である。FIG. 9 is an explanatory view of various forms of a multi-core parallel conductor wire.

【図10】従来の偏向コイルのコイル巻き状態の説明図で
ある。
FIG. 10 is an explanatory diagram of a coil winding state of a conventional deflection coil.

【図11】従来の偏向コイルのボビンの一例の説明図であ
る。
FIG. 11 is an explanatory diagram of an example of a bobbin of a conventional deflection coil.

【符号の説明】[Explanation of symbols]

2 ボビン 3A,3B 鍔 5 コイル巻き溝 15 多心平行導線 18 尾部側渡り線部 19 頭部側渡り線部 30 ノズル 2 Bobbin 3A, 3B Tsuba 5 Coil winding groove 15 Multi-core parallel conductor wire 18 Tail side crossover wire part 19 Head side crossover wire part 30 Nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鞍型形状をしたボビンに多心平行導線を
巻いて鞍型偏向コイルを形成するコイル巻き溝が形成さ
れ、ボビンの頭部側とネック側の渡り線部が巻かれるコ
イル巻き溝は外側の鍔と内側の鍔の鍔間に形成され、前
記渡り線部の内側の鍔の高さを外側の鍔の高さ以下にし
たことを特徴とする偏向コイル用鞍型ボビン。
1. A coil winding in which a coil winding groove for forming a saddle-type deflection coil is formed by winding a multi-core parallel conductor wire on a saddle-shaped bobbin, and a crossover portion on a head side and a neck side of the bobbin is wound. A saddle type bobbin for a deflection coil, characterized in that the groove is formed between the collar of the outer collar and the collar of the inner collar, and the height of the collar on the inside of the crossover portion is set to be equal to or lower than the height of the collar of the outside.
JP4158622A 1992-05-26 1992-05-26 Saddle type bobbin for deflection coil Pending JPH05325832A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4158622A JPH05325832A (en) 1992-05-26 1992-05-26 Saddle type bobbin for deflection coil
EP93303990A EP0572192B1 (en) 1992-05-26 1993-05-21 Saddle type bobbin for deflection coil
DE69300218T DE69300218T2 (en) 1992-05-26 1993-05-21 Deflection coil bobbin type.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4158622A JPH05325832A (en) 1992-05-26 1992-05-26 Saddle type bobbin for deflection coil

Publications (1)

Publication Number Publication Date
JPH05325832A true JPH05325832A (en) 1993-12-10

Family

ID=15675737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4158622A Pending JPH05325832A (en) 1992-05-26 1992-05-26 Saddle type bobbin for deflection coil

Country Status (3)

Country Link
EP (1) EP0572192B1 (en)
JP (1) JPH05325832A (en)
DE (1) DE69300218T2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007859A3 (en) * 1993-12-07 1995-11-07 Philips Electronics Nv Saddle-shaped deflection coil, stranded WRAPPED AND WINDING METHOD.
JP3737191B2 (en) * 1996-04-26 2006-01-18 株式会社東芝 Cathode ray tube deflection yoke and cathode ray tube apparatus
TW466531B (en) * 1998-12-07 2001-12-01 Koninkl Philips Electronics Nv Saddle-shaped deflection coil and winding method
JP2002367535A (en) * 2001-06-07 2002-12-20 Mitsubishi Electric Corp Deflection yoke device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2744048C2 (en) * 1977-09-30 1979-08-23 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Deflection unit for a television receiver
DE3635220A1 (en) * 1986-10-16 1988-04-21 Standard Elektrik Lorenz Ag WRAPPING DEVICE
DE3920699A1 (en) * 1989-06-24 1991-01-10 Nokia Unterhaltungselektronik SADDLE COIL ARRANGEMENT FOR A CATHODE RAY TUBE AND COIL CARRIER FOR SUCH AN ARRANGEMENT

Also Published As

Publication number Publication date
DE69300218D1 (en) 1995-08-03
EP0572192B1 (en) 1995-06-28
DE69300218T2 (en) 1996-03-14
EP0572192A1 (en) 1993-12-01

Similar Documents

Publication Publication Date Title
US3757262A (en) Toroidal deflection yoke having conductors wound in flyback manner
JPH05325832A (en) Saddle type bobbin for deflection coil
EP0118150B1 (en) Method of manufacturing a saddle-shaped coil
JPH05234536A (en) Saddle type deflection coil
JPH06119817A (en) Multiple core parallel conductive wire
JP3023940B2 (en) Method of manufacturing deflection coil
US4038621A (en) Precision vertical deflection coil for a hybrid television yoke
JP3269116B2 (en) Deflection coil and method of manufacturing the same
JP2575388Y2 (en) Coil body for coil for deflection yoke
JP2897545B2 (en) Deflection yoke coil winding machine
JP3109241B2 (en) Deflection coil and method of manufacturing the same
JP2897544B2 (en) Deflection yoke
JPH0652811A (en) Deflection yoke
JP3355676B2 (en) Deflection yoke
JP3355670B2 (en) Deflection yoke and method of adjusting distribution of deflection magnetic field
JP2000228851A (en) Coil former
JP2605827Y2 (en) Deflection yoke
JP3257073B2 (en) Method of forming saddle type deflection coil
JP2993594B2 (en) Ring core winding device
JP3282899B2 (en) Winding method of horizontal deflection yoke coil
JPS5838518Y2 (en) Focusing coil for image pickup tube
JP3353352B2 (en) Deflection yoke
JPH0745872Y2 (en) Deflection yoke
JPH07220655A (en) Deflection yoke
JP2002033233A (en) Winding machine and method for winding saddle-type deflection coil