JPH0532427A - Production of quartz glass body - Google Patents

Production of quartz glass body

Info

Publication number
JPH0532427A
JPH0532427A JP3214366A JP21436691A JPH0532427A JP H0532427 A JPH0532427 A JP H0532427A JP 3214366 A JP3214366 A JP 3214366A JP 21436691 A JP21436691 A JP 21436691A JP H0532427 A JPH0532427 A JP H0532427A
Authority
JP
Japan
Prior art keywords
silica powder
quartz glass
glass
pressure
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3214366A
Other languages
Japanese (ja)
Inventor
Hiroshi Hihara
弘 日原
Masato Oku
誠人 奥
Kenji Enomoto
憲嗣 榎本
Tsugio Sato
継男 佐藤
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3214366A priority Critical patent/JPH0532427A/en
Priority to US07/874,179 priority patent/US5244485A/en
Priority to AU15150/92A priority patent/AU641859B2/en
Priority to CA002067260A priority patent/CA2067260C/en
Priority to DE69206469T priority patent/DE69206469T2/en
Priority to EP92107194A priority patent/EP0511621B1/en
Priority to KR1019920007369A priority patent/KR950002328B1/en
Priority to BR929201620A priority patent/BR9201620A/en
Publication of JPH0532427A publication Critical patent/JPH0532427A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide a method for producing a quartz glass body having a high strength of the formed body after pressurizing in good yield by using silica powder obtained from water glass. CONSTITUTION:Silica powder obtained from water glass as a starting raw material or powder prepared by granulating the aforementioned powder is filled in a forming mold and a pressure is applied to the forming mold 1 in a pressure vessel 3 to form the silica powder 2 in the same forming mold 1. Thereby, formability is improved and preparation of a high-purity quartz glass body is facilitated. As a result, the objective high-quality quartz glass body within a wide range can be produced in good yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は棒、パイプ、光ファイバ
プリフォ−ム等として使用するのに適する石英ガラス体
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a quartz glass body suitable for use as a rod, a pipe, an optical fiber preform or the like.

【0002】[0002]

【従来の技術】石英ガラス体を製造するには従来は、火
炎加水分解法で製造したいわゆるヒュ−ムドシリカ或は
天然石英の粉砕品を成形型に充填し、同成形型に外部か
ら圧力をかけて成形していた。
2. Description of the Related Art Conventionally, in order to produce a quartz glass body, a crushed product of so-called fumed silica or natural quartz produced by a flame hydrolysis method is filled in a molding die and external pressure is applied to the molding die. Was being molded.

【0003】[0003]

【発明が解決しようとする課題】火炎加水分解法によっ
て得られたシリカ粉末を用いた場合次のような課題があ
った。 .成形型へのシリカ粉末の充填性が劣り、加圧後の成
形体の強度も弱い。 .造粒する場合、シリカ表面のシラノ−ル基が少ない
ため結合剤を用いないと造粒が不可能である。しかし、
結合剤を用いるとこれを除去することが非常に困難であ
る。また結合剤を構成する成分は特に光学用ガラスを製
作する際に不純物としてガラス中に残存するため、高品
質のガラスを得ることが非常に困難であった。 .前記シリカ粉末の粒子が非常に微細なので充填密度
が上がらず、収縮が大きいため、得られた成形体に亀裂
が生じ易い。また、粒子が非常に微細であるため、取扱
が非常に困難であるだけでなく、造粒しても加圧成形に
適した粒径まで造粒することが困難である。 .一方、天然石英の粉砕品を用いた場合には、その純
度が前記記載の粉末と比較して劣り、特に、光学ガラス
用としては使用することが困難である。
When silica powder obtained by the flame hydrolysis method is used, there are the following problems. . The moldability of the silica powder in the mold is poor, and the strength of the molded product after pressing is weak. . In the case of granulation, since the silanol groups on the surface of silica are few, granulation is impossible unless a binder is used. But,
Using a binder makes it very difficult to remove. Further, since the component constituting the binder remains in the glass as an impurity particularly when manufacturing optical glass, it is very difficult to obtain high quality glass. . Since the particles of the silica powder are very fine, the packing density does not increase and the shrinkage is large, so that the obtained molded body is likely to crack. Further, since the particles are extremely fine, not only is handling very difficult, but it is also difficult to granulate to a particle size suitable for pressure molding even when granulating. . On the other hand, when a crushed product of natural quartz is used, its purity is inferior to that of the above-mentioned powder, and it is particularly difficult to use it for optical glass.

【0004】[0004]

【目的】本発明の目的は水ガラスから得られるシリカ粉
末を使用して、加圧後の成形体の強度が強く、歩留まり
もよく、光学特性も優れた石英ガラス体の製造方法を提
供することにある。
It is an object of the present invention to provide a method for producing a quartz glass body using silica powder obtained from water glass, which has high strength of a molded body after pressing, good yield, and excellent optical characteristics. It is in.

【0005】[0005]

【課題を解決するための手段】本発明の石英ガラス体の
製造方法は、図1、図2に示す成形型1内にシリカ粉末
或はその粉末を造粒して得られたシリカ粉末2を充填
し、その成形型1に圧力容器3内で圧力を加えて同成形
型1内のシリカ粉末2を成形し、その成形体を燒結して
石英ガラス体を製造する方法において、前記シリカ粉末
2として水ガラスを出発原料として得られたシリカ粉末
或はその粉末を造粒して得られた粉末を用いるようにし
たものである。
A method for producing a quartz glass body according to the present invention comprises a silica powder or a silica powder 2 obtained by granulating the silica powder in a mold 1 shown in FIGS. A method for producing a quartz glass body by filling the mold 1, applying pressure to the mold 1 in a pressure vessel 3 to mold the silica powder 2 in the mold 1, and manufacturing the silica glass body by sintering the molded body. The silica powder obtained by using water glass as a starting material or the powder obtained by granulating the powder is used.

【0006】シリカ粉末を造粒する際の1次粒子の粒径
は0.5〜10μmが適切である。ここで言う造粒と
は、シリカ粉末を水に分散させてスリラ−状とし、これ
をスプレ−ドライヤ等を用いて顆粒とする操作である。
そして加圧成形においては、造粒粒子径が50〜100
μmのシリカ粉末を使用すると成形型1内への充填性が
向上し、成形体の亀裂等が発生しにくい。更に、大型成
形体の製作が容易となる。
When granulating silica powder, the particle size of the primary particles is preferably 0.5 to 10 μm. The term "granulation" as used herein refers to an operation in which silica powder is dispersed in water to form a thriller, which is then granulated using a spray dryer or the like.
In the pressure molding, the granulated particle size is 50-100.
When silica powder of μm is used, the filling property into the molding die 1 is improved, and cracks and the like of the molded body are less likely to occur. Further, it becomes easy to manufacture a large-sized molded body.

【0007】また、光学用の石英ガラスを製作する際は
シリカ粉末2に含まれている不純物を除去する必要があ
る。不純物の除去には1000〜1300℃の範囲でC
2を使用すると効果が大きい。この時のC12 の量は
含有不純物の量にもよるが、主雰囲気ガスをヘリウムと
すると1〜10容量%で十分である。更に、得られた成
形体を透明ガラス化するときは、ヘリウム雰囲気中で1
600℃以上で燒結すれば気泡の非常に少ない石英ガラ
スが得られる。本発明では水ガラスから得られたシリカ
粉末2を単独で用いるのではなく、その他の製法(気相
法)で得られたシリカ粉末を混合して用いることもでき
る。水ガラスから得られたシリカ粉末2にGeO2 、B
23 等のド−プ用の化合物を加えれば、SiO2 −G
eO2、SiO3 ガラス等が得られる。また、水ガラス
から得られたシリカ粉末は、通常、Na、Caなどが火
炎加水分解法で製造したシリカ粉末に比べて多いため、
十分な精製を行なわずに加熱して透明ガラス化(燒結)
しようとすると、クリストバライトの結晶が生成して不
透明化する。これを防ぐため十分な精製が必要であり、
シリカ中のNa及びCaの含有量を共に50ppb以下
とすることが肝要である。
Further, when manufacturing the quartz glass for optics, it is necessary to remove impurities contained in the silica powder 2. For removing impurities, C in the range of 1000 to 1300 ° C
Use of 1 2 is highly effective. The amount of C1 2 at this time depends on the amount of contained impurities, it is sufficient to mainly atmospheric gas at 1 to 10% by volume when helium. Furthermore, when the obtained molded body is transparentized into a glass,
If it is sintered at 600 ° C. or higher, quartz glass with very few bubbles can be obtained. In the present invention, the silica powder 2 obtained from water glass may not be used alone, but silica powder obtained by another manufacturing method (gas phase method) may be mixed and used. GeO 2 , B in silica powder 2 obtained from water glass
If a compound for doping such as 2 O 3 is added, SiO 2 -G
eO 2 , SiO 3 glass, etc. can be obtained. In addition, since silica powder obtained from water glass usually contains a large amount of Na, Ca and the like as compared with silica powder produced by the flame hydrolysis method,
Heating without sufficient purification to clear vitrification (sintering)
Attempts to produce cristobalite crystals make them opaque. Sufficient purification is needed to prevent this,
It is important that both the contents of Na and Ca in silica be 50 ppb or less.

【0008】[0008]

【作用】本発明では水ガラスから得られたシリカ粉末或
はそのシリカ粉末を造粒して得られたシリカ粉末2を用
いて加圧成形するので、成形体に亀裂等が生じにくい。
また水ガラスから得られたシリカ粉末の表面に存在する
多数のシラノ−ル基(OH基)を利用して、結合剤なし
で容易に造粒が可能となる。更に、造粒粒子のつぶれ易
さの調整が可能となり、大型成形体の作製が容易とな
る。また成形体の強度の調整も容易となる。
In the present invention, since the silica powder obtained from water glass or the silica powder 2 obtained by granulating the silica powder is used for pressure molding, cracks and the like are unlikely to occur in the molded body.
Further, by utilizing a large number of silanol groups (OH groups) existing on the surface of silica powder obtained from water glass, it becomes possible to easily granulate without a binder. Further, it becomes possible to adjust the crushability of the granulated particles, and it becomes easy to produce a large-sized molded body. Also, the strength of the molded body can be easily adjusted.

【0009】[0009]

【実施例1】本発明の製造方法により図1の製造装置を
用いて石英棒を作製する場合について以下に説明する。
水ガラスとして市販されているものを用い、この水ガラ
スから得られたシリカ粉末は粒径が約0.7μmであ
る。そして、図1の下蓋5の上に、外径約35φ×内径
25φ×長さ170(ただし充填部は150mm)のゴ
ム製の成形型1をセットした。この成形型1内にシリカ
粉末2を約80g投入・充填し、投入・充填中は下蓋5
を振動させた。次に、成形型1の外周に支持筒8をセッ
トし、その上から上蓋9を被せた。また、成形型1内に
投入・充填したシリカ粉末2が接触する下蓋5、上蓋9
はフッ素樹脂で被覆して、内部に金属等の不純物が混入
するのを防止した。
Example 1 A case where a quartz rod is manufactured by the manufacturing method of the present invention using the manufacturing apparatus shown in FIG. 1 will be described below.
A commercially available water glass is used, and the silica powder obtained from this water glass has a particle size of about 0.7 μm. Then, a rubber molding die 1 having an outer diameter of about 35φ, an inner diameter of 25φ, and a length of 170 (where the filling portion is 150 mm) was set on the lower lid 5 of FIG. Approximately 80 g of silica powder 2 was charged and filled in the mold 1, and the lower lid 5 was charged during charging and filling.
Vibrated. Next, the support cylinder 8 was set on the outer periphery of the molding die 1, and the upper lid 9 was put on the support cylinder 8. Further, the lower lid 5 and the upper lid 9 in contact with the silica powder 2 charged and filled in the mold 1.
Was coated with a fluororesin to prevent impurities such as metal from entering the inside.

【0010】前記のようにシリカ粉末2が投入・充填さ
れた成形型1を、圧媒(油)を入れてある圧力容器3内
に入れ、同圧力容器3の周壁に形成されている圧媒投入
口11から圧媒を注入し、同圧媒を支持筒8の通孔12
から内部に流入させて成形型1に圧力を印加した。その
加圧は約1500kgf/cm2、約1分間行った。こ
の結果、成形型1内の成形体は破損することなく同成形
型1から取り出すことができた。同成形体を1600℃
のヘリウム雰囲気中で燒結して透明ガラス化したとこ
ろ、外径17mmφの気泡のない石英ガラス体が得られ
た。
The mold 1 charged and filled with the silica powder 2 as described above is placed in the pressure vessel 3 containing the pressure medium (oil), and the pressure medium formed on the peripheral wall of the pressure vessel 3 is placed. A pressure medium is injected from the charging port 11 and the pressure medium is passed through the through hole 12 of the support cylinder 8.
Then, pressure was applied to the molding die 1 by flowing it from the inside. The pressurization was performed at about 1500 kgf / cm 2 for about 1 minute. As a result, the molded body in the molding die 1 could be taken out from the molding die 1 without damage. The molded body is 1600 ℃
When it was sintered in a helium atmosphere to give a transparent vitreous material, a bubble-free quartz glass body having an outer diameter of 17 mmφ was obtained.

【0011】[0011]

【実施例2】本発明の製造方法により図2の製造装置を
用いて石英パイプを作製する場合について以下に説明す
る。シリカ粉末2はとして水ガラスから得られたシリカ
粉末を造粒して得られたものを用いた。シリカ粉末を造
粒する際の1次粒子の粒径は約0.5μm,造粒された
粉末の粒子径は約100μmである。そして、図2の上
蓋20の上の上パンチ21を開け、下蓋22の下の下パ
ンチ23の中心に形成されているガラスロッド保持穴2
4に20mmφのガラスロッド25を差込み、同ガラス
ロッド25を保持具26で保持して垂直に立てた。次に
内径約50mmφ、充填部の長さ約250mmのゴム製
の成形型1内にシリカ粉末2を約350g投入・充填し
た後、前記上パンチ21を閉めた。このとき上パンチ2
1の中心に形成されているガラスロッド保持穴27を、
前記ガラスロッド25の上端に被せ、同上端部を保持具
28で保持した。更に、上パンチ21、下パンチ23の
うち、シリカ粉末2と接触する面をフッ素樹脂で被覆し
て、両パンチ21、23からの金属等の不純物の混入を
防止した。
Example 2 A case where a quartz pipe is manufactured by the manufacturing method of the present invention using the manufacturing apparatus of FIG. 2 will be described below. As the silica powder 2, a silica powder obtained by granulating a silica powder obtained from water glass was used. The particle size of the primary particles when granulating the silica powder is about 0.5 μm, and the particle size of the granulated powder is about 100 μm. Then, the upper punch 21 on the upper lid 20 of FIG. 2 is opened, and the glass rod holding hole 2 formed at the center of the lower punch 23 below the lower lid 22.
A glass rod 25 having a diameter of 20 mm was inserted into 4 and the glass rod 25 was held by a holder 26 to stand vertically. Next, about 350 g of the silica powder 2 was charged and filled in a rubber mold 1 having an inner diameter of about 50 mmφ and a length of a filling portion of about 250 mm, and then the upper punch 21 was closed. At this time, upper punch 2
The glass rod holding hole 27 formed at the center of 1
The upper end of the glass rod 25 was covered and the upper end was held by a holder 28. Further, of the upper punch 21 and the lower punch 23, the surfaces of the upper punch 21 and the lower punch 23 that come into contact with the silica powder 2 were covered with a fluororesin to prevent the inclusion of impurities such as metal from both punches 21 and 23.

【0012】そして加圧容器29の周壁に形成されてい
る圧媒投入口30から同加圧容器29内に圧媒(滑油)
を注入した。この圧媒により成形型1の外側の加圧ゴム
型31に約1000kgf/cm2 の圧力を約1分間印
加した。これによって加圧ゴム型31から成形型1に圧
力が伝達され、成形型1内のシリカ粉末2が圧縮され
る。今回用いた成形型1の材料にはNBR(ニトリルゴ
ム)を用いた。これにより、成形型1の急激な復元力に
起因した割れ、亀裂などの無い多孔質母材が得られた。
そして多孔質母材から前記ガラスロッド25を引き抜い
た後、この多孔質母材を1650℃のヘリウム雰囲気中
で燒結して透明ガラス化した。得られた石英パイプに気
泡は認められなかった。
A pressure medium (lubricant) is introduced into the pressure vessel 29 through a pressure medium inlet 30 formed on the peripheral wall of the pressure vessel 29.
Was injected. With this pressure medium, a pressure of about 1000 kgf / cm 2 was applied to the pressure rubber mold 31 outside the molding die 1 for about 1 minute. As a result, pressure is transmitted from the pressure rubber mold 31 to the molding die 1, and the silica powder 2 in the molding die 1 is compressed. NBR (nitrile rubber) was used as the material of the mold 1 used this time. As a result, a porous base material having no cracks or cracks due to the rapid restoring force of the mold 1 was obtained.
Then, after pulling out the glass rod 25 from the porous base material, the porous base material was sintered in a helium atmosphere at 1650 ° C. to form a transparent glass. No bubbles were observed in the obtained quartz pipe.

【0013】[0013]

【実施例3】本発明の製造方法により図2の製造装置を
用いてファイバ母材を作製する場合について以下に説明
する。今回用いた水ガラスから得られたシリカ粉末は粒
径が約0.7μmであり、これを溶媒(今回は純水)を
用いてスラリ−状にした。このときのスラリ−濃度は6
0%であった。これをスプレ−ドライヤ−を用いて造粒
した。得られた造粒粒子径は約50μmであった。そし
て、図2の上パンチ21を開け、下パンチ23の中心に
形成されているガラスロッド保持穴24に10.6φ×
270mmのガラスロッド25を差込み、同ガラスロッ
ド25を保持具26で保持して垂直に立てた。次に、上
記シリカ粉末2を成形型1内に約420g投入・充填し
た後、上パンチ21を閉めた。この時、上パンチ21の
中心に形成されているガラスロッド保持穴27を前記ガ
ラスロッド25の上端に被せ、同上端部を保持具28で
保持した。
[Embodiment 3] A case where a fiber preform is manufactured by using the manufacturing apparatus of FIG. 2 by the manufacturing method of the present invention will be described below. The silica powder obtained from the water glass used this time had a particle size of about 0.7 μm and was made into a slurry using a solvent (pure water this time). The slurry concentration at this time is 6
It was 0%. This was granulated using a spray dryer. The obtained granulated particle size was about 50 μm. Then, the upper punch 21 shown in FIG. 2 is opened, and the glass rod holding hole 24 formed at the center of the lower punch 23 has 10.6φ ×
A 270 mm glass rod 25 was inserted, and the glass rod 25 was held by a holder 26 and stood vertically. Next, about 420 g of the silica powder 2 was charged and filled in the mold 1, and then the upper punch 21 was closed. At this time, the glass rod holding hole 27 formed in the center of the upper punch 21 was covered on the upper end of the glass rod 25, and the upper end portion was held by the holder 28.

【0014】そして加圧容器29の圧媒投入口30から
圧媒(滑油)を注入した。この圧媒により加圧ゴム型3
1に約1000kgf/cm2 の圧力を約1分間加え
た。これによって加圧ゴム型31から成形型1に圧力が
伝達され、成形型1内のシリカ粉末2が圧縮された。今
回用いた成形型1の材料にはNBR(ニトリルゴム)を
用いた。そして成形型1の急激な復元力に起因した割
れ、亀裂等を防止するために約20分をかけてゆっくり
と減圧した。以上の操作により割れ、亀裂等のない多孔
質母材が得られた。そしてこの多孔質母材から前記ガラ
スロッド25を引き抜き、その抜き跡にコア/クラッド
比=1:4の光ファイバ用ロッドを挿入した。この光フ
ァイバ用ロッドは気相法で作製したものである。更に、
この多孔質母材を気相法と同様な条件で脱水、ガラス化
して光ファイバプリフォ−ムを作製した。脱水、ガラス
化条件は通常の気相法と同じである。得られた光ファイ
バプリフォ−ムを通常の方法で線引きして光ファイバ化
した。得られた光ファイバは気相法等で作製したファイ
バと同等の特性を有していた。
A pressure medium (lubricant) was injected from the pressure medium inlet 30 of the pressure vessel 29. With this pressure medium, a pressure rubber mold 3
A pressure of about 1000 kgf / cm 2 was applied to 1 for about 1 minute. As a result, pressure was transmitted from the pressure rubber mold 31 to the molding die 1, and the silica powder 2 in the molding die 1 was compressed. NBR (nitrile rubber) was used as the material of the mold 1 used this time. Then, in order to prevent cracks, cracks and the like due to the rapid restoring force of the mold 1, the pressure was slowly reduced over about 20 minutes. By the above operation, a porous base material having no cracks or cracks was obtained. Then, the glass rod 25 was pulled out from the porous base material, and an optical fiber rod having a core / cladding ratio = 1: 4 was inserted into the pulling trace. This optical fiber rod is manufactured by a vapor phase method. Furthermore,
This porous base material was dehydrated and vitrified under the same conditions as in the vapor phase method to prepare an optical fiber preform. The dehydration and vitrification conditions are the same as those in the ordinary vapor phase method. The obtained optical fiber preform was drawn into an optical fiber by a conventional method. The obtained optical fiber had the same characteristics as the fiber produced by the vapor phase method or the like.

【0015】[0015]

【比較例】水ガラスから得られたシリカ粉末と、それ以
外の製造法で得られたシリカ粉末(ヒュ−ムドシリカ及
び天然石英の粉砕品)について、充填密度、成形及びガ
ラス化した時の歩留まりを表1に示す。また作製したも
のは棒状である(使用粉末はいずれも造粒したものであ
る)。ヒュ−ムドシリカでは成形体の亀裂が多発した。
また天然石英粉砕品では結合剤なしの造粒は不可能であ
り結合剤を用いている。
[Comparative Example] Regarding the silica powder obtained from water glass and the silica powder obtained by other manufacturing methods (crushed products of fumed silica and natural quartz), the packing density, the yield when molded and vitrified It shows in Table 1. Further, the manufactured ones are rod-shaped (the powders used are all granulated). In the fumed silica, many cracks were formed in the molded body.
Granulation without a binder is not possible with a crushed product of natural quartz, and a binder is used.

【0016】[0016]

【表1】 表1に示すように、水ガラスから得られたシリカ粉末
は充填密度が高く、加圧成形時、透明ガラス化する時の
歩留まりが高く、非常に優れたシリカ粉末であることが
わかる。
[Table 1] As shown in Table 1, it is understood that the silica powder obtained from water glass has a high packing density, a high yield at the time of pressure molding and a transparent vitrification, and is a very excellent silica powder.

【0017】[0017]

【発明の効果】本発明の石英ガラス体の製造方法では、
水ガラスから得られたシリカ粉末或はその粉末を造粒し
たシリカ粉末を用いるので、成形性が向上し、また高純
度石英ガラスの作製も容易となり、高品質で広範囲の石
英ガラス体を歩留まり良く製造することが可能である。
According to the method for producing a quartz glass body of the present invention,
Since silica powder obtained from water glass or silica powder obtained by granulating the powder is used, the moldability is improved and the production of high-purity quartz glass is facilitated. It is possible to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の本発明の石英ガラス体の製造方法の一
例を示す説明図。
FIG. 1 is an explanatory view showing an example of the method for producing a quartz glass body of the present invention.

【図2】本発明の本発明の石英ガラス体の製造方法の他
例を示す説明図。
FIG. 2 is an explanatory view showing another example of the method for producing a quartz glass body of the present invention.

【符号の説明】[Explanation of symbols]

1 成形型 2 シリカ粉末 3 圧力容器 1 Mold 2 Silica powder 3 Pressure vessel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 継男 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneo Sato 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Kazuaki Yoshida 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 成形型1内にシリカ粉末或はその粉末を
造粒して得られたシリカ粉末2を充填し、その成形型1
に圧力容器3内で圧力をかけて成形型1内のシリカ粉末
2を成形し、その成形体を燒結して石英ガラス体を製造
する方法において、前記シリカ粉末2として水ガラスを
出発原料として得られたシリカ粉末或はその粉末を造粒
して得られた粉末を用いることを特徴とする石英ガラス
体の製造方法。
Claims: 1. A mold 1 is filled with silica powder or silica powder 2 obtained by granulating the powder, and the mold 1 is then filled.
In the method for producing a silica glass body by pressurizing the silica powder 2 in the mold 1 by applying pressure in the pressure vessel 3, water glass is used as the silica powder 2 as a starting material. A method for producing a quartz glass body, characterized by using the obtained silica powder or a powder obtained by granulating the powder.
JP3214366A 1991-04-30 1991-07-31 Production of quartz glass body Pending JPH0532427A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3214366A JPH0532427A (en) 1991-07-31 1991-07-31 Production of quartz glass body
US07/874,179 US5244485A (en) 1991-04-30 1992-04-24 Method of manufacturing a silica glass preform
AU15150/92A AU641859B2 (en) 1991-04-30 1992-04-27 A method of manufacturing a silica glass preform
CA002067260A CA2067260C (en) 1991-04-30 1992-04-27 Method of manufacturing a silica glass preform
DE69206469T DE69206469T2 (en) 1991-04-30 1992-04-28 Process for making a quartz glass preform.
EP92107194A EP0511621B1 (en) 1991-04-30 1992-04-28 A method of manufacturing a silica glass preform
KR1019920007369A KR950002328B1 (en) 1991-04-30 1992-04-30 Method of manufacturing a silica glass preform
BR929201620A BR9201620A (en) 1991-04-30 1992-04-30 PROCESS FOR PREPARING A SILICA GLASS PREFORM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3214366A JPH0532427A (en) 1991-07-31 1991-07-31 Production of quartz glass body

Publications (1)

Publication Number Publication Date
JPH0532427A true JPH0532427A (en) 1993-02-09

Family

ID=16654600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3214366A Pending JPH0532427A (en) 1991-04-30 1991-07-31 Production of quartz glass body

Country Status (1)

Country Link
JP (1) JPH0532427A (en)

Similar Documents

Publication Publication Date Title
US5244485A (en) Method of manufacturing a silica glass preform
KR950014100B1 (en) Method for consolidating a green body
US5063179A (en) Process for making non-porous micron-sized high purity silica
US20080203625A1 (en) Method For Producing Ultra-High Purity, Optical Quality, Glass Articles
JPH05229839A (en) Production of formed product from quartz based glass
JPH0532427A (en) Production of quartz glass body
CN1026576C (en) Method of manufacturing silica glass preform
JP3177308B2 (en) Manufacturing method of optical fiber preform
JPH06127949A (en) Production of quartz glass
JPH05294658A (en) Production of quartz-based glass
JPH05170470A (en) Production of quartz glass perform
JP2871912B2 (en) Method for producing quartz glass base material
JPH04325430A (en) Production of optical fiber preform
JPH06144862A (en) Production of perform for optical fiber
JPH0558660A (en) Production of glass rod for optical fiber
JPH05208839A (en) Production of silica-based porous glass form
US5711903A (en) Method of manufacturing a porous preform for an optical fiber
JPH05254861A (en) Forming of porous glass material
JPH04321531A (en) Production of optical fiber preform
JPH07187697A (en) Production of porous preform for optical fiber
JPH035329A (en) Production of synthetic quartz glass
JPH05238768A (en) Method for molding constant polarization optical fiber base material
JPH05294659A (en) Production of quartz-based porous glass body
JPH07165433A (en) Production of stress-applying member of preform of constant polarization optical fiber
JPH07157323A (en) Production of stress imparting member of preform for constant polarizing optical fiber